模电第一章详解
模电第一章(江晓安)祥解

第一章 半导体器件
此时, PN结处于导通状态, 它所呈现出的电阻为正向 电阻, 其阻值很小。 正向电压愈大, 正向电流愈大。其关
系是指数关系:
ID ISe
U UT
式中, ID为流过PN结的电流;U为PN结两端电压;
kT UT q , 称为温度电压当量, 其中k为玻耳兹曼常数, T为绝对温度 ,q为电子的电量 ,在室温下即 T=300K 时,UT=26mV;IS为反向饱和电流。电路中的电阻 R是为了限制正向电流的大小而接入的限流电阻。
身的性质有关以外, 还与温度有关, 而且随着温度的升高,
基本上按指数规律增加。因此, 半导体载流子浓度对温度 十分敏感。对于硅材料, 大约温度每升高8℃, 本征载流 子浓度ni增加 1 倍;对于锗材料, 大约温度每升高12℃,
ni增加 1 倍。 除此之外, 半导体载流子浓度还与光照有
关, 人们正是利用此特性, 制成光敏器件。
第一章 半导体器件
外电场
外电场
P
N
P
N
ID
自建场
自建场
+ - U R
- + U R
(a ) 外加正向电压
(b ) 外加反向电压
图 1 - 7 PN结单向导电特性
第一章 半导体器件
2. 若将电源的正极接N区, 负极接P区, 则称此为反向接法
或反向偏置。此时外加电压在阻挡层内形成的电场与自建
场方向相同, 增强了自建场, 使阻挡层变宽, 如图1-7(b)所 示。 此时漂移作用大于扩散作用, 少数载流子在电场作用下 作漂移运动, 由于其电流方向与正向电压时相反, 故称为反 向电流。 由于反向电流是由少数载流子所形成的, 故反向电 流很小, 而且当外加反向电压超过零点几伏时, 少数载流子 基本全被电场拉过去形成漂移电流, 此时反向电压再增加, 载流子数也不会增加, 因此反向电流也不会增加, 故称为反 向饱和电流, 即 ID=-IS。
《模电》第一章重点掌握内容

《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。
2、半导体奇妙特性:热敏性、光敏性、掺杂性。
3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。
4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。
它们在外电场作用下均能移动而形成电流,所以称载流子。
5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。
6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。
7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。
所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。
8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。
9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。
其死区电压:S i管约0。
5V,G e管约为0。
1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。
其导通压降:S i管约0.7V,G e管约为0.2 V 。
这两组数也是判材料的依据。
10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。
二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。
三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。
是硅管。
b 、二极管反偏截止。
f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。
《模拟电子技术基础》(第四版)_第1章

0 iD
+ uD
uD
–
Question1 UD UON
2.二极管导通时正向压降为一常量UD (正向导通电压0.7V 或0.3V ), 截止时反向电流为零的二极管的等效 模型 iD iD + uD UD –
一、外加正向电压(正向偏置)
P区
外电场驱使P区的空穴进入空间 N区电子进入空间电荷区 空间电荷区变窄 电荷区抵消一部分负空间电荷 抵消一部分正空间电荷
N区
I 扩散运动增强,形 成较大的正向电流, 此时PN结导通 内电场方向 外电场方向
E
R 外电场加强扩散
二、 外加反向电压(反向偏置)
外电场驱使空间电荷区两侧的多子(空穴和自由电子)移走, 空间电荷区加宽
Uon
0 0.4 0.8
–50
-IS – 0.1
非线性特性 UBR反向击穿电压
UZ(稳压管)
uD / V UD
– 0.2
死区
反向击穿
硅管的伏安特性
一般:特性曲线上区分Uon和UD 计算时不区分Uon和UD Si 管:0.5V左右
开启电压: Uon
正向导通电压UD 二极管方程
Ge管:0.1V左右 Si 管:0.6V~0.8V (0.7V) Ge管:0.2V~0.3V(0.3V)
三、如何学好模电
课程特点:内容多、内容杂、工程实践性强
基本原理 “基本电路”原理
放大器、反馈、 振荡器
绪论
1、抓“重点”
基 本 分析方法
图解法、小信号等效电路法
2、注重综合分析 注重工程化素质培养 3、提高学习效率、培养自学能力
模拟电子技术基础-第一章课后习题详解

习题1.1选择合适答案填入空内。
(1)在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。
A. 五价B. 四价C. 三价(2)当温度升高时,二极管的反向饱和电流将。
A. 增大B. 不变C. 减小(3)工作在放大区的某三极管,如果当I B从12μA增大到22μA时,I C从1mA变为2mA,那么它的β约为。
A. 83B. 91C. 100(4)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将。
A.增大B.不变C.减小解:(1)A ,C (2)A (3)C (4)A1.2 能否将1.5V的干电池以正向接法接到二极管两端?为什么?解:不能。
因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V时,管子会因电流过大而烧坏。
1.3 电路如图P1.3所示,已知u i=10sinωt(v),试画出u i与u O的波形。
设二极管正向导通电压可忽略不计。
图P1.3解图P1.3解:u i和u o的波形如解图P1.3所示。
1.4 电路如图P1.4所示,已知u i=5sinωt(V),二极管导通电压U D=0.7V。
试画出u i与u O的波形,并标出幅值。
图P1.4解图P1.4解:波形如解图P1.4所示。
1.5 电路如图P1.5(a)所示,其输入电压u I1和u I2的波形如图(b)所示,二极管导通电压U D=0.7V。
试画出输出电压u O的波形,并标出幅值。
图P1.5解:u O的波形如解图P1.5所示。
解图P1.51.6 电路如图P1.6所示,二极管导通电压U D=0.7V,常温下U T≈26mV,电容C对交流信号可视为短路;u i为正弦波,有效值为10mV。
试问二极管中流过的交流电流有效值解:二极管的直流电流I D=(V-U D)/R=2.6mA其动态电阻r D≈U T/I D=10Ω故动态电流有效值I d=U i/r D≈1mA 图P1.61.7现有两只稳压管,它们的稳定电压分别为6V和8V,正向导通电压为0.7V。
模电第一章习题解答

压上升,在 VGS 和 VDS 不变的情况下,漏极电流变小。
1.17
已知某 NMOS 器件的参数:VTH=2V,NCOX=20A/V2,W=100m,L=10m,
源极电位 VS=0,栅极电位 VG=3V。试问:①当漏极电位 VD 分别为 0.5V,1V 和 5V 时,器件分别工作在什么状态?②若饱和状态工作时忽略 vDS 对 iD 的影响,试确 定在 VD 等于 0.5V,1V 和 5V 三种情况下的漏极电流 iD 大小。 解答:① ,线性区; ,线性区与饱和区的临界状态; ,饱和区。 ②
图 P1.5
解答:由于二极管的单向导电性,当 vi 处于正半周且幅度大于 5V 时,二极 管 D2 正向导通,使得 vo 被约束在 V=5V;当 vi 处于正半周且幅度小于 2V 或者处 于负半周期时,二极管 D1 正向导通,使得 vo 被约束在 V=2V,其波形如图所示:
5V 2V
1.6
稳压电路如图 P1.6 所示。①试近似写出稳压管的耗散功率 PZ 的表达
5V 2V
1.7 图。
图 P1.7 所示为具有电容滤波的桥式整流电路,试分析画出 vo 的波形
+ v1 _
v2 C
图 P1.7
+ vo RL _
解答:如图所示,由于四个整流二极管的作用,加到电容 C 上的电压 vo 一 直处在正弦波形的正半周期。设 C 上初始电压为零,在未接 RL 时,v2 的正半周期 和负半周期分别通过不同的两对二极管向 C 充电, 使得 C 上电压达到正弦波的最 大值,即图中的第二象限所示。设在 a 点处开始接入负载电阻 RL,因 C 上已经充 电,刚接入 RL 时,有 到 ,故 向 RL 放电, ,如 ab 段所示;当 上升
模电第一章总结论文

第一章常用半导体元件一半导体1 半导体三大特性搀杂特性热敏特性光敏特性2本征半导体指纯净的具有晶体结构的半导体。
3载流子(Carrier)运动电荷的粒子。
有温度环境就有载流子。
绝对零度(-273C)时晶体中无自由电子。
4本征激发(光照、加温度)会成对产生自由电子和空穴对自由电子(负电)空穴(正电)本征半导体载流子浓度为:n i=p i=K1T^(3/2)e^(-E GO/2kT)ni表示自由电子的浓度pi表示空穴的浓度5 N型半导体:电子型半导体(掺入五价元素,如磷)多数载流子:自由电子少数载流子:空穴自由电子数= 空穴数+ 施主原子6 P型半导体:空穴型半导体(掺入三价元素,如硅)多子:空穴少子:自由电子空穴数= 自由电子数+ 受主原子二PN结1 PN结是指使用半导体工艺使N型和P型半导体结合处所形成的特殊结构。
PN结具有单向导电性。
空间电荷区(耗尽层)P区出现负离子区,N区出现正离子曲2 PN结形成“三步曲”(1)多数载流子的扩散运动。
(2)空间电荷区的少数载流子的漂移运动。
(3)扩散运动与漂移运动的动态平衡。
3 PN结的单向导电性正向偏置P接电源正,N接电源负•削弱内电场,使PN结变窄。
•扩散运动>漂移运动。
•称为“正向导通”。
反向偏置P接电源负,N接电源正•增强内电场,使PN结变宽。
•扩散运动<漂移运动•称为“反向截止”5 PN结伏安特性•单向导电性–正向导通开启电压–反向截止饱和电流7 反向击穿当对PN结的外加反向电压超过一定的限度,反向电流急剧增加,称之为反向击穿。
•击穿有两种机理:–雪崩击穿低掺杂,耗尽层宽度较宽(少子,加速)–齐纳击穿高掺杂,耗尽层宽度较窄(强电场破坏共价键)8 PN结电容特性•PN结呈现电容效应•有两种电容效应势垒电容(和反向偏置有关)CT•PN结外加反向偏置时,引起空间电荷区体积的变化(相当电容的极板间距变化和电荷量的变化)扩散电容(和正向偏置有关)CDPN结外加正向偏置时,引起扩散浓度梯度变化出现的电容(电荷)效应。
模电第一章半导体基础知识

杂质能3
对电子的影响
施主杂质能级向导带提供 电子,使半导体呈现n型 导电性。
对空穴的影响
受主杂质能级接受价带的 电子成为空穴,使半导体 呈现p型导电性。
影响程度
杂质浓度越高,对电子和 空穴的影响越显著,半导 体的导电性能也越强。
06
半导体中的光电效应
光电效应的原理和分类
光电器件的特性
光电器件的主要特性包括光谱响应、光电灵敏度、响应速度和噪声等,这些特性决定了光电器件的应用范围和效 果。
光电器件的应用和发展趋势
光电器件的应用
光电器件在多个领域都有应用,如光电探测、光电转换、光通信等。
光电器件的发展趋势
随着科技的不断进步和应用需求的不断提高,光电器件的发展趋势包括高灵敏度、高速响应、高稳定 性、多功能化等。
半导体的热学性质
热导率
半导体的热导率取决于其材料 和结构,热导率越高,导热性
能越好。
热容
半导体的热容取决于其材料和 温度,它决定了半导体的耐热 性能。
热膨胀
半导体的热膨胀系数决定了其 在温度变化时的尺寸变化,对 器件的稳定性有影响。
温差电动势率
半导体的温差电动势率是指在 温度梯度下产生的电动势,它
05
半导体中的掺杂和杂质能级
掺杂的概念和分类
掺杂
在半导体材料中人为地加入某种元素,以改变其导电性能的过程。
分类
施主掺杂、受主掺杂、中性杂质掺杂。
杂质能级的形成和特性
形成
杂质原子在半导体晶体中占据了特定 的位置,这些位置上的电子能级与晶 体中的其他电子能级不同,形成了杂 质能级。
特性
杂质能级位于禁带中,其能量位置取 决于掺杂元素的种类和浓度,对半导 体的导电性能有重要影响。
模电第一章课件

图1.6 PN结的形成过程
空间电荷区:在交界面附近出现的带电离子集中 的薄层,又称耗尽层、阻挡层。
内电场:空间电荷区的左半部是带负电的杂质离 子,右半部是带正电的杂质离子,空间电荷区中 就形成一个N区指向P区的内建电场。
接触电位差 U :达到动态平衡后的PN结, 内建电场的方向由N区指向P区的电位差。
1.1 半导体的基础知识 1.2 PN结与半导体二极管 1.3 特殊二极管
1.4 半导体三极管
1.5 场效应晶体管
1.1 半导体的基础知识
1.1.1 导体、绝缘体、和半导体 1.1.2 本征半导体 1.1.3 杂质半导体
1.1.1 导体、绝缘体和半导体
导体:导电的物质,如铜、铝、铁、银等。 绝缘体:不导电的物质,石英、橡胶等。 半导体:导电性能介于导体和绝缘体之 间。常用的半导体材料有硅(Si)、锗 (Ge)、砷化镓(GaAs)等。
4.最大反向工作电压UFM:二极管安全运行时所能承受的最大反向电压。一 般取击穿电压U(BR)的一半作为UFM 。
5.反向电流:指二极管未击穿时反向电流。IR 值越小,二极管单向导电性越 好。随温度变化而改变。 6. 最高工作频率fM :fM 由PN结的结电容大小决定。二极管的工作频率超过 fM,单向导电性变差。
1.2.3
PN结的电容效应
PN结的结电容:在外加电压发生变化时,PN结耗尽层内的空间电 荷量和耗尽层外的载流子数目均发生变化的电容效应。 按产生的机理不同结电容可分为:
一是势垒电容CB 二是扩散电容CD
一、势垒电容CB
指阻挡层中电荷量随外加电压变化而改变所呈 现的电容效应,用CB表示。CB的大小与PN结面积、 阻挡层宽度、半导体材料的介电常数有关, 且随外加反向电压变化而 变化。反向电压越大,CB 越小。 利用PN结的势垒电容 效应,可制造变容二极 管(压控可变电容器)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由此可见 RL
Av 即负载的大小会影响增益的大小
要想减小负载的影响,则希望…? (考虑改变放大电路的参数)
Ro RL
理想情况 Ro 0
1.4 放大电路模型
(1)电压放大模型
另一方面,考虑到 输入回路对信号源的 衰减
有
vi
Ri Rs
Ri
vs
要想减小衰减,则希望…?
Ri Rs 理想情况 Ri
1.4 放大电路模型
(2)电流放大模型
Ais ——负载短路时的
电流增益
由输出回路得
io
Ais ii
Ro Ro RL
则电流增益为
Ai
io ii
Ais
Ro Ro RL
由此可见 RL
Ai
要想减小负载的影响,则希望…? Ro RL 理想情况 Ro
由输入回路得
ii
is
Rs Rs Ri
要想减小对信号源的衰减,则希望…? Ri Rs 理想情况 Ri 0
vo vi
互阻增益
Ar
vo ii
()
简化电路
电流增益
Ai
io ii
互导增益
Ag
io vi
(S)
1.4 放大电路模型
2、放大电路模型
(1)电压放大模型
Avo ——负载开路时的
电压增益
Ri ——输入电阻
Ro ——输出电阻 RL
则电压增益为
Av
vo vi
Avo
RL Ro RL
[o ( ) i ( )]
或写为 Av Av ()()
其中Av ()
Vo (j) Vi (j)
称为幅频响应 ( ) o ( ) i ( ) 称为相频响应
1.5 放大电路的主要性能指标
4、频率响应
A、频率响应及带宽
该图称为波特图 纵轴:dB 横轴:对数坐标
其中
fH — —上限频率 fL — —下限频率
1.4 放大电路模型
(3) 互阻放大模型(自学) (4) 互导放大模型(自学) (5) 隔离放大电路模型
输入输出回路没有公共端
1.5 放大电路的主要性能指标
性能指标:是衡量放大电路品质优劣的标准,同时这些指标还 决定放大电路的适用范围。
1、输入电阻
Ri
vt it
1.5 放大电路的主要性能指标
2、输出电阻
Ag
io vi
电流增益 20lg Ai (dB)
功率增益 10lg AP (dB)
1.5 放大电路的主要性能指标
4、频率响应
A、频率响应及带宽 在输入正弦信号情况下,输出随输入信号频率连续
变化的稳态响应,称为放大电路的频率响应。
电压增益可表示为
A v
(
j)
Vo (j) Vi (j)
Vo (j ) Vi (j )
❖ 学习目的
1、掌握基本概念、基本电路、基本分析方法和基 本实验技能。
2、具有能够继续深入学习和接受电子技术新发展 的能力,以及将所学知识用于本专业的能力。
1.1 信号 1.2 信号的频谱 1.3 模拟信号和数字信号 1.4 放大电路模型 1.5 放大电路的主要性能指标
1.1 信号
1、信号: 信息的载体
❖ 学习方法
1、掌握基本概念、基本电路、基本分析方法及基 本应用 基本概念:概念是不变的,应用是灵活的。
基本电路:构成原则不变的基础上电路的形式 是基多本样 分的 析。 方法:不同的电路性能指标和描述方 法不同,分析方法不同。 2、辩证的全面地分析电路中的问题 最适用的电路才是最好的电路。
3、注意常用的电路定理在电子电路中的应用。
BW fH fL 称为带宽
当 fH fL时,BW fH
普通音响系统放大电路的幅频响应
1.5 放大电路的主要性能指标
4、频率响应
B、频率失真(线性失真)
幅度失真: 对不同频率的信号增
益不同产生的失真。
1.5 放大电路的主要性能指标
4、频率响应
B、频率失真(线性失真)
幅度失真: 对不同频率的信号增
益不同产生的失真。
相位失真: 对不同频率的信号相
移不同产生的失真。
1.5 放大电路的主要性能指标
5、非线性失真
由元器件非线性特性 引起的失真。
非线性失真系数:
Vo2k
k2 100%
Vo1
Vo1是输出电压信号基波分量的 有效值,Vok是高次谐波分量的有效
值,k为正整数。
end
vt
R o
vs 0,RL
it
注意:输入、输出电阻为线性情况下的交流电阻
1.5 放大电路的主要性能指标
3、增益
反映放大电路在输入信号控制下,将供电电源能量 转换为输出信号能量的能力。
四种增益
Av
vo vi
Ai
io ii
Ar
vo ii
其中 Av、Ai 常用分贝(dB)表示。
电压增益 20lg Av (dB)
微音器(话筒)输出的某一段信号的波形
1.1 信号
2、电信号源的电路表达形式
电压源等效电路
is
vs Rs
电流源等效电路
1.3 模拟信号和数字信号
模拟信号:在时间和幅值上都是连续的信号。 数字信号:在时间和幅值上都是离散的信号。
O
t
模拟信号
数字信号
处理模拟信号的电子电路称为模拟电路。
1.4 放大电路模型
1、放大电路的符号及模拟信号放大 信号的放大:是最基本的模拟信号处理功能,是通过各 种放大电路实现的。(线性的放大) 放大的本质:是对能量的控制。 有源元件:能控制能量的元件。如晶体管,场效应管。
实际电路
简化电路
1.4 放大电路模型
1、放大电路的符号及模拟信号放大
实际电路
电压增益(电压放大倍数)
Av
课程性质及特点
❖ 课程性质:入门性质的技术基础课 ❖ 课程特点:
1、工程性
※实际工程需证明其可行性。(定性分析) ※实际工程在满足其性能指标的前提下,总容许存在一 定的误差范围。(要合理估算)
2、实践性
※常用电子仪器的使用方法。 ※电子电路的测试方法。 ※故障的诊断与排除方法。 ※EDA软件的使用方法。