发电厂电气部分变压器保护设计
2×200MW发电机-变压器组继电保护设计

电力工程基础课程设计报告题目2×200MW发电机-变压器组继电保护设计系别电子与电气工程系专业电气工程及其自动化(电力系统)班级0920325学号092032502姓名颜丽芬指导教师黄新完成时间2012年11月29日评定成绩绪论 (3)0引言 (3)继电保护概述 (3)第一部分设计任务书 (4)0.1设计项目 (4)0.2设计要求 (4)0.3设计材料 (5)0.4设计任务 (5)第二部分设计计划书 (5)1主变压器的选择 (5)1.1主要设备型号及参数 (5)1.2系统运行主变压器和发电机中性点接地方式 (7)1.3发电机变压器组参数及系统运行方式 (8)2保护配置 (8)2.1发电机的保护部分 (9)2.2变压器部分继电保护整定 (11)2.3相间短路的后备保护 (12)3继电保护整定计算 (13)3.1发电机继电保护整定 (16)3.2继电保护整定计算结果一览表 (17)4收获和体会 (17)5参考文献 (18)绪论0引言继电保护概述电力系统在运行中,由于电气设备的绝缘老化、损坏、雷击、鸟害、设备缺陷或误操作等原因,可能发生各种故障和不正常运行状态。
最常见的而且也是最危险的故障是各种类型的短路,最常见的不正常运行状态是过负荷,最常见的短路故障是单相接地。
这些故障和不正常运行状态严重危及电力系统的安全和可靠运行,这就需要继电保护装置来反应设备的这些不正常运行状态。
所谓继电保护装置,就是指能反应电力系统中电气设备所发生的故障或不正常状态,并动作于断路器跳闸或发出信号的一种自动装置。
它的基本作用是:⑴当电力系统发生故障时,能自动地、迅速地、有选择性地将故障设备从电力系统中切除,以保证系统其余部分迅速恢复正常运行,并使故障设备不再继续遭受损坏。
⑵当系统发生不正常状态时,能自动地、及时地、有选择性地发出信号通知运行人员进行处理,或者切除那些继续运行会引起故障的电气设备。
可见,继电保护装置是电力系统必不可少的重要组成部分,对保障系统安全运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。
2x200MW发电厂电气部分设计

内容提要我这次设计主要针对一次系统为主、二次设计为辅的原则,主要对2×200MW发电机组接线形式的选择、220KV主接线形式的选择、高压断路器、隔离刀闸的选择、电压互感器和电流互感器的选择,以及进行了短路计算,并对发电机和变压器的主保护进行了简单的配置。
在电力系统中,大、中型电厂起着举足轻重的作用,一旦故障轻则引起大面积停电,重则可能引起电网崩溃。
本次设计的电厂220KV 变电站是豫北电网和河南主网联系的纽带,一旦发生事故将引起河南主网的解裂,所以对220KV变电站接线形式进行了详细的分析比较,以期找到一种安全经济成熟的主接线形式。
引言本次设计是在毕业设计任务书的基础上进行的,依靠大专四年所学的专业理论知识,结合自己参加工作几年来的经验,旨在提高自己的技术理论水平,以达到理论联系实际,学以致用的目的。
本次设计参考《电力工程电气设计手册》、《发电厂电气部分》、《电力系统分析》、《大型火力发电厂厂用电系统》等技术资料,对本设计进行经济技术上的选择,主要是对电气一次系统主接线及设备进行选择。
通过本次对发电厂发电机、变压器、主接线的选择及短路电流的计算、部分高压设备的选择,以达到理论联系实际的目的。
这次设计能够顺利完成,与指导老师的大力帮助是分不开的,同时也吸取了同学们的宝贵经验,在此向他们表示衷心的感谢。
由于本人水平有限,设计中难免存在不足之处,希望大家不惜多加指正。
2×200MW发电厂电气部分设计一、原始资料:1.发电厂类型:火力发电厂1、本厂设计规模:根据系统规划本厂计划安装200MW汽轮发电机组两台,设计工作一次完成。
2、厂址地理条件:本厂厂址地势平坦,平均海拔不超过50米,年最高温度40度,土壤最高温度为26度,本厂东临107国道,南临京广铁路交通运输特别方便。
本厂位于市郊,距离负荷中心仅30公里,供电半径70公里,本厂位于8级地震区,周围有一些水泥厂,环境较为恶劣,所以选择电气设备要能抗震外,还应选择抗污能力强的电气设备,并每年对220KV变电站进行带电水冲洗。
(完整版)浙江电网220kV变压器保护化设计规范(QGDW-11-217-)

Q/ZD 浙江省电力公司企业标准Q/GDW—11—217—浙江电网220 kV变压器保护标准化设计规范目次1 范围 (3)2 规范性引用文件 (3)3 总则 (3)4 组屏和配置原则 (3)5 技术原则 (5)6 回路设计 (5)7 压板、按钮设置 (7)8 屏(柜)端子排设计 (8)9 定值设置 (9)10 保护输出报告 (10)附录A(规范性附录) 浙江电网220 kV变压器保护定值和软压板清单 (10)附录B(规范性附录) 浙江电网220 kV降压变压器保护跳闸矩阵固化表 (15)附录C(规范性附录) 浙江电网220 kV变压器保护信息输出格式 (17)前言本标准规定了浙江电网220 kV变压器保护及辅助装置标准化设计的基本原则,实现了220 kV变压器保护功能配置统一、定值格式统一、报告输出统一、接口标准统一、组屏方案统一、回路设计统一(以下简称“六统一"),为继电保护的制造、设计、运行、管理和维护工作提供有利条件,为浙江电网供电企业提供统一的技术规范。
本标准附录A、附录B、附录C为规范性附录。
本标准由浙江电力调度通信中心提出。
本标准由浙江省电力公司科技信息部归口。
本标准起草单位:浙江电力调度通信中心。
本标准主要起草人:陈水耀朱炳铨裘愉涛黄晓明方愉冬朱凯进赵萌金山红徐灵江.本标准由浙江电力调度通信中心负责解释。
浙江电网220 kV变压器保护标准化设计规范1 范围本标准规定了浙江电网220 kV变压器保护及辅助装置功能配置、定值格式、报告输出、接口标准、组屏方案、回路设计的基本原则。
本标准适用于浙江电网新建、扩建和技改等工程中220 kV“六统一”变压器保护及辅助装置的标准化设计工作.2 规范性引用文件下列文件中的条款通过本标准的引用而成为本规范的条款.凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
发电厂电气部分设计

三、发电厂电缆线路设计
三、发电厂电缆线路设计
电缆线路是发电厂电能输送的重要通道,其设计应满足安全、可靠、经济和 环保的要求。在电缆线路的设计过程中,需要考虑以下几个方面:
三、发电厂电缆线路设计
1、电缆型号选择:电缆型号的选择应考虑电力系统的电压等级、电流容量、 敷设环境等因素,以确保电缆能够安全可靠地运行。
一、发电厂主接线设计
一、发电厂主接线设计
主接线是发电厂的重要组成部分,用于实现电能的生产、变换和输送。主接 线的设计应满足可靠性高、灵活性强、易于操作和维修、经济性好的要求。在主 接线的设计过程中,需要考虑以下几个方面:
一、发电厂主接线设计
1、可靠性:主接线的设计应确保电力系统的稳定运行,避免因设备故障导致 的大规模停电事故。为此,可以采用分段接线和桥型接线等方式,提高主接线的 可靠性。
一、发电厂主接线设计
4、经济性:主接线的设计应在满足可靠性和灵活性的前提下,尽量降低建设 成本和维护成本。例如,可以采用低损耗设备、优化线路布局等方式,降低能耗 和维护成本。
二、发电厂防雷设计
二、发电厂防雷设计
防雷设计是发电厂电气部分设计的关键环节之一,其目的是在雷击情况下保 护设备和建筑物不受损坏。发电厂的防雷设计应包括以下几个方面:
内容摘要
总之,本次演示通过详细阐述4200MW发电厂电气一次部分设计的原则、流程、 要求及成果,为我们成功地完成这一复杂而关键的设计工作提供了有力的支持。 通过这一设计工作,我们不仅提高了发电厂的效率和性能,还推动了电力行业的 技术进步和发展。
引言
引言
随着电力工业的不断发展,发电厂的规模不断扩大,设备日益复杂,对发电 厂的运营和管理提出了更高的要求。为了提高发电厂的运营效率和管理水平,电 气综合自动化系统的应用越来越受到。本次演示将对发电厂电气综合自动化系统 的发展和应用进行探讨。
220KV变电站电气部分初步设计方案

c.要能限制短路电流,以便于选择价廉的电气设备或轻型电器。
d.如能满足系统安全运行及继电保护要求,110KV及以下终端或分支变电所可采用简易电器。
(2)占地面积小
主接线设计要为配电装置创造条件,尽量使占地面积减少。
(3)电能损失小
经济合理的选择主变压器的种类、容量和数量,要避免因两次变压而增加电能损失。
3.3.2 第二种方案主接线图(如图3.2):
3.2第二种方案主接线图
一次侧(220KV侧)采用双母线接线形式
二次侧(0KV侧)采用双母线接线形式图
此种方案的特点:
双母线接线形式的特点上面已经介绍。
双母线带旁路接线:
除了具有双母线接线的优点外,双母线带旁路接线还具有许多其它的优点:
当进出线检修时,可由专用旁路断路器代替,通过旁路母线供电。但当设置了专用旁路断路器后,设备的投资和配电装置的占地面积都有所增加。
3.变电所的主变压器一般采用三相变压器,因制造或运输条件限制及初期只装一台主变压器的220KV枢纽变电所中,一般采用相变压器组,当装设一组单相变压器时,应设有备用相,当主变压器超过一台,且各台容量满足上述要求时,单相变压器组可不装设备用相。
4.变电所中的变压器在系统调压有要求时,一般采用带负荷调压变压器,如受设备制造限制时,可采用独立的调压变压器预留位置。
3.3.1第一种方案主接线图(如图3.1):
图3.1第一种方案主接线图
此种方案的特点:
一次侧(220KV侧)采用单母分段接线形式
优点:单母分段按可进行分段检修,对于重要负荷可以从不同段引出两个回路,使重要负荷有两个电源供电,在这种情况下,当一段母线发生故障时,由于分段断路器在继电保护装置的作用下能自动将故障切除,因而保证了正常段母线不间断供电和不致使重要负荷停电。
50MW发电机变压器组继电保护毕业设计

沈阳工程学院毕业设计(论文)摘要由于大型电厂的母线、发电机和变压器的结构比较复杂,在运行过程中都可能会发生各种各样的故障和异常运行状态,为了确保在保护范围内发生故障,都能有选择性的快速切除故障,需要配置多种继电保护装置,必要时进行多重化配置,从而将电厂中重要设备的危害和损失降到最小,对电力系统的影响最小。
发电厂和变电所母线是电力系统中的中的一个重要组成部件,发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用;而变压器是电力系统十分重要的供电元件再者,发电机、变压器本身就是十分贵重的电气元件,所以,继电保护装置对大型电厂的正常运行起着至关重要的作用。
本设计共包括五章,分别对电力系统、发电机、变压器的继电保护进行详细介绍,并给出相关的整定计算,画出主接线图。
本文主要通过分析原始资料中主要设备的参数,首先,需要对电力系统保护原理进行全面系统的复习、查阅相关资料,加深理解;其次,结合相关参数和各种继电保护原理,确定适用于大型电厂的保护方案,最后,分别对发电机和变压器进行整定计算和配置,并且画出系统一次设计图及其配置图和一般原理图。
关键词:电厂、继电保护、发电机、变压器。
50MW发电机变压器组继电保护设计AbstractBecause of large power plants bus bar, generators and transformers structure is more complex, in operation process of all may be all kinds of faults and abnormal operating condition, in order to ensure that the protection range in failure, all can have selective swift removal, need configuration fault diversified relay protection device, necessary in the multiple configuration, so as to will be important in power plant equipment to minimize harm and loss of power system, affect the minimum.Power plant and substation bus in power systems is one of the important components of the generator, the safe operation of the power system to guarantee the normal work and power quality plays a decisive role; And the transformer is power system is of great power supply components again, generator, transformer itself is very expensive electrical components, so, relay protection device of large power plants to the normal operation of the play a crucial role.This design including five chapters, respectively for power system, generator, transformer of relay protection, and gives a detailed introduction of related setting calculation, draw the Lord the wiring diagram.This paper mainly through the analysis of original data of the parameters of the main equipment, first of all, need to power system protection principle of full system review and access relevant information, deepen understanding; Secondly, in conjunction with the relevant parameters and all kinds of relay protection principle, sure used in large power plant protection scheme, then respectively, the generator and transformer in setting calculation and configuration, and draw the system design and its a configuration diagram and the general principle diagram.Key word: power plant, relay protection, generator, transformer.沈阳工程学院毕业设计(论文)目录中文摘要 (I)Abstract (II)引言 (1)第1章电力系统继电保护简论 (2)1.1 继电保护的作用 (2)1.2 继电保护的基本要求、原理、构成与分类 (2)1.2.1 基本要求 (2)1.2.2 基本原理 (3)1.2.3 构成 (4)1.2.4 分类 (4)第2章主变压器保护设计 (6)2.1 变压器保护重要性 (6)2.2 变压器的故障类型和不正常运行状态 (6)2.3 变压器保护配置原则 (6)2.4 变压器纵联差动保护 (7)2.4.1 构成变压器纵差动保护的基本原则 (7)2.4.2 变压器差动保护的不平衡电流 (8)2.5 变压器后备保护 (9)2.5.1 低电压启动的过电流保护 (9)2.5.2 变压器零序电流保护 (10)2.5.3 过负荷保护 (11)第3章发电机保护设计 (12)3.1 发电机故障及不正常运行状态 (12)3.1.1 发电机故障类型 (12)3.1.2 不正常运行状态 (12)3.2 发电机保护的配置原则 (13)3.3 发电机纵差保护 (13)3.3.1 工作原理 (13)第4章短路计算 (14)4.1 发电机出口短路计算 (14)4.2 后备保护短路计算 (15)50MW发电机变压器组继电保护设计第5章整定计算 (19)5.1 发电机纵差动保护整定 (19)5.2 发电机横联差动保护整定 (20)5.3 发电机定子绕组过负荷保护整定 (20)5.4 发电机复合电压启动的过电流保护整定 (20)结论 (23)致谢 (24)参考文献 (25)附录 (26)A1.1 全厂电气主接线图A1.2 50MW发电机保护展开图A1.3 50MW发电机保护交流展开图A1.4 50MW发电机保护直流展开图沈阳工程学院毕业设计(论文)引言本次毕业设计的主要内容是针对电力系统中可能出现的各种不正常状态和故障状态,对大型电厂的发电机、主变压器的保护配置及继电保护设计,参照《电力系统继电保护》及《电力工程电气设备手册》,并依据继电保护配置原理,对所选择的保护进行整定从而来确定方案中的保护是否适用来编写的。
2×50MW发电厂电气部分设计

引言电力系统由发电厂、变电所、线路及用户组成。
发电厂是把各种能源(化学能、水能、原子能)转换成电能的工厂。
发电厂生产的电能,一般先由电厂的升压站升压,经高压输电线路送出,再经变电所若干次降压后,才能供给用户使用。
直接生产、转换和输配电能的如:开关设备,载流导体称为一次设备。
对一次设备进行监察、测量、控制、保护、调节的辅助设备,称为二次设备,如自动保护及自动装置。
本次设计包括发电厂一次设备及二次设备的部分设计。
发电厂的主接线是根据容量,电压等级负荷等等情况设计,并经过技术经济比较,选出最佳方案,然后通过短路电流计算、回路最大持续工作电流计算,选出设备的型号,了解配电装置布置原则,设计防雷接地,最后对发电机配置保护。
断路器是发电厂中十分重要的设备,本厂选用的为真空断路器.对于真空断路器的技术性能改造还在不断进行,如用带有双重开关或多重开关的断路器代替只带有一个开关的断路器的先进技术,正在被很多发明者改进,存在的问题是真空断路器应为电介质的特性,而在高压范围内限制使用。
本设计基本达到安全可靠,经济合理的要求。
尽量采用新型技术设备。
作为现代化中型发电厂,是建立大型发电厂的基础。
因此意义重大。
第一章电气主接线的设计1.1 电气主接线的设计1.1.1 电气主接线设计的要求电气主接线图是由各种电气元件如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等,接照一定的要求和顺序接起来,并用国家统一规定图形的文字符号表示的发、变、供电的电路图。
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线是的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择,配电装置布置,继电保护和控制方式的拟定有较大影响。
因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。
1.1.2 基本接线及适用范围1. 35kV及110kV母线采用单母分段接线(1)优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
600MW发电厂电气部分初步设计-毕业设计论文

600MW发电厂电气部分初步设计目录摘要............................................................................................................. 错误!未定义书签。
Aabstract........................................................................................................ 错误!未定义书签。
第一部分说明书 (1)第1章主变压器的选择 (1)1.1容量和台数的确定 (1)1.2型式和结构的选择 (1)1.2.1 相数 (1)1.2.2 绕组数与结构 (1)1.2.3 绕组接线组别 (2)1.2.4 调压方式 (2)1.2.5 冷却方法 (2)第2章电气主接线的设计 (3)2.1 主接线设计的要求和原则 (3)2.1.1 主接线设计的基本要求 (3)2.1.2 大机组超高压主接线可靠性的特殊要求 (3)2.1.3 主接线设计的原则 (3)2.2 原始资料分析 (4)2.3 主接线方案的拟定 (4)2.3.1 发电机-变压器单元接线 (4)2.3.2500KV电压母线接线 (4)2.4 主接线方案的比较 (7)2.5 主接线方案的确定 (7)第3章厂用电系统设计 (8)3.1厂用电接线的设计原则 (8)3.2 厂用电压等级的确定 (8)3.3厂用电源的引接方式 (8)3.3.1 厂用工作电源的引接 (8)3.3.2 备用/启动电源的引接 (8)3.4 厂用电接线形式 (9)3.5厂用高压变压器的选择 (9)3.5.1 额定电压的确定 (9)3.5.2 台数和型式的选择 (9)3.5.3 容量得选择 (10)3.5.4 电抗的选择 (10)3.6 厂用电系统接线 (11)3.6.1 高压厂用电接线 (11)3.6.2 低压厂用电接线 (11)第4章短路电流计算 (12)4.1短路电流计算的主要目的 (12)4.2一般规定 (12)4.2.1 计算的假定条件 (12)4.2.2 接线方式 (12)4.2.3 短路类型 (12)4.2.4 短路计算点 (13)4.2.5 短路电流计算方法 (13)4.3短路电流计算步骤 (13)4.4计算公式 (14)4.4.1 元件参数计算 (14)4.4.2 网络变换 (14)4.4.3 计算电抗 (16)4.4.4 短路点短路电流周期分量有效值的计算 (16)4.4.5 短路的冲击电流 (16)4.4.6 电流分布系数及转移电抗 (16)第5章电气设备和导体的选择 (18)5.1电气设备选择的一般原则 (18)5.1.1按正常工作条件选择 (18)5.1.2 按短路状态校验 (19)5.2500kV高压设备的选择 (19)5.2.1 高压断路器的选择 (19)5.2.2 隔离开关的选择 (20)5.2.3 电流互感器的选择 (21)5.2.4 电压互感器的选择 (21)5.2.5 并联电抗器的选择 (22)5.36KV高压开关柜的选择 (22)5.3.1 种类和型式的选择 (22)5.3.2 主开关的选择 (23)5.3.3 额定电压和额定电流的选择 (23)5.3.4 防护等级的选择 (23)5.3.5 开断和关合短路电流的选择 (23)5.3.6 短路热稳定和动稳定校验 (24)5.4裸导体的选择 (24)5.4.1500KV母线的选择 (24)5.4.2 封闭母线的选择 (24)5.4.3 电晕电压校验 (25)5.4.4 热稳定校验 (25)第6章500KV高压配电装置设计 (26)6.1配电装置的基本要求 (26)6.2配电装置设计的基本步骤 (26)6.3配电装置的型式选择 (26)6.4配电装置的安全净距 (26)6.5屋外配电装置的布置原则 (27)第7章继电保护和自动装置配置 (28)7.1继电保护配置 (28)7.1.1 发电机保护 (28)7.1.2 变压器保护 (29)7.1.3 并联电抗器保护 (30)7.1.4500kV线路保护 (31)7.1.5 母线和断路器失灵保护 (31)7.2自动装置配置 (32)第8章防雷保护设计 (33)8.2直击雷的防护 (33)8.2.1 直击雷防护措施 (33)8.2.2 避雷针装设的基本原则 (33)8.2.3 避雷针的保护范围 (33)8.3入浸雷的防护 (34)8.3.1 入浸雷防护措施 (34)8.3.2 避雷器的配置要求 (34)8.3.3 避雷器的配置原则 (34)8.3.4 避雷器参数选择 (35)8.4防雷接地 (35)第二部分计算书 (36)第9章变压器的选择计算 (36)9.1主变压器的选择 (36)9.2厂用高压变压器的选择 (36)第10章短路电流计算 (38)10.1短路电流计算接线图 (38)10.2参数计算 (38)10.3500kV母线短路(k1) (39)10.4发电机出口短路(k2) (40)10.5厂用高压工作变压器6kV一段短路(k3) (42)10.6备用/启动变压器6kV一段短路(k4) (44)10.7计算结果列表 (46)第11章电气设备和导体的选择计算 (47)11.1 500kV高压设备的选择 (47)11.1.1 高压断路器的选择 (47)11.1.2 高压隔离开关的选择 (47)11.1.3 电流互感器的选择 (48)11.1.4 电压互感器的选择 (48)11.1.5 并联电抗器的选择 (49)11.26kV高压开关柜的选择 (49)11.3裸导体的选择 (50)11.3.1500kV主母线的选择 (50)11.3.2 发电机出口主封闭母线选择 (52)11.3.3 共箱封闭母线选择 (52)第12章防雷保护设计 (54)12.1 避雷针的布置图 (54)12.2避雷针高度的确定 (54)总结 (56)致谢 (57)参考文献......................................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Title: 变压器保护设计
作者: 刘金帛电气102班201000307075
广西科技大学(筹)电气学院,广西柳州545006
摘要:变压器是电力系统中十分重要的供电设备。
它的故障将对供电可靠性和系统的正常运行带来严重的影响,因此,为了保证电力系统安全连续地运行,并将故障和异常运行对电力系统的影响限制到最小范
围,必须根据变压器容量大小、电压等因素装设必要的、动作可靠的继电保护装置。
本文就从一般火
力发电厂电气部分变压器的保护设计角度详细阐述了变压器保护的类别及设计特点。
关键词:变压器保护分类零序过电流
一、发电厂电气部分常见变压器故障及不正常运行状态
(一)发电厂电气部分常见变压器的故障类型主要有:
1、油箱内故障:包括绕组的接地短路、相间短路、匠间短路以及铁心的烧损等,这些故障将产生电弧,烧坏绕组绝缘及铁心,引起绝缘材料及变压器油的强烈气化,甚至造成油箱的爆炸。
2、油箱外的故障:主要是套管和引出线上发生接地短路、相间短路等。
(二)发电厂电气部分常见变压器的不正常运行状态
不正常运行状态主要有:
1、由于变压器外部相间短路引起的过电流和中性点过电压。
2、由于负荷超过额定容量而引起的过负荷。
3、由于漏油等原因而引起的油面降低。
二、发电厂电气部分变压器保护装置
鉴于以上故障类型和不正常运行状态,应装设下列保护装置:
(一)瓦斯保护
当在变压器内部发生故障时,由于故障点电流和电弧的作用,将使变压器油及其它绝缘材料因局部受热而分解产生气体,因气体比较轻,它们将从油箱流向油枕的上部。
当故障严重时,油会迅速膨胀并产生大量的气体,此时将有剧烈的气体夹杂着油流冲向油枕的上部。
利用油箱内部故障时的这一特点,可以构成反应于上述气体而动作的保护装置,称为瓦斯保护。
反应变压器油箱内部故障和油面降低的保护,容量为800KVA及以上的油浸式变压器,均应装设瓦斯保护。
一般瓦斯气体容积整定范围为250-300cm3,变压器容量在10000KVA以上时,一般正常整定值为250cm3,气体容积整定值是利用调节重锤的位置来改变的。
重瓦斯保护动作的油流速度整定范围为0.6-1.5m/s,在整定流速时均以导油管中的流速为准,而不依据继电器处的流速。
但是,在变压器外部故障时,由于穿越性故障电流的影响,在导油管中的流
速为准约为0.4-0.5m/s。
因此,为发防止穿越性故障时瓦斯保护误动作,可将油流速度整定范围为1m/s。
(二)纵联差动保护
反应变压器绕组和引出线的相间短路的保护,对其中性点直接接地侧绕组和引出线的接地短路以及绕组匝间短路能起保护作用。
且容量为6300KVA及以上的厂用工作变压器和并列运行的变压器、10000KVA及以上厂用备用变压器和单独运行的变压器、以及2000KVA及以上用电流速断保护灵敏性不符合要求的变压器应装设纵联差动保护。
三绕组变压器差动保护分析:(1)、为保证动作的选择性,保护装置的动作电流必须躲过外部短路时的最大不平衡电流和励磁电流为提高保护的灵敏度,大多数情况都采用制动特性的差动保护。
(2)、变压器的接线组别不同,两侧的电流相位关系也不同,即使变压器两侧电流互感器的二次电流的大小相等,也会在差动回路中产生不平衡电流,为消除不平衡的影响,通常将变压器星形接线一侧电流互感器的二次绕组接成三角形,而将变压器角形接线一侧电流互感器的二次绕组接成星形,便将电流互感器二次电流的相位校正过来。
(3)、由于电流互感器不能按需要选择,出现电流互感器的计算变比与实际变比不相符的问题,以致在差动回路中产生不平衡电流,所以可利用BCH型差动继电器中的平衡绕组来消除这种不平衡电流的影响。
(4)、对于多绕组变压器,当采用BCH-2型差动保护不能满足灵敏度要求时,用BCH-1型。
(三)复合电压闭锁过电流保护
三绕组变压器过流保护分析
1、三绕组变压器当外部短路时,过流保护应保证有选择性的只断开直接供给故障点短路电流那一侧的断路器,从而使另外两侧绕组仍然可以继续工作。
2、在两侧电源的三绕组变压器上,应当在三侧都装设过电流保护,而且在动作时限最小的一侧加方向元件,以保证动作的选择性,在装设方向元件后,还应采取措施,保证在变压器内部故障时能起后备作用。
3、为提高保护的灵敏度,以及简化接线,装设复合电压起动的过流保护。
(四)零序过电流保护
在大接地电流系统,为防止母线和引线上的接地短路,在三侧都有电源而中性点接地的变压器上,一般装设零序过电流保护,作为相邻元件及变压器本身主保护的后备。
零序过电流保护的整定原则
1、零序电流保护的后备段在灵敏度上相配合:
2、与中性点不接地运行的变压器的零序电压元件在灵敏度上相配合。
(五)过负荷保护
对于400KVA及以上的变压器,当数台并列运行或单运行并作为其他负荷的备用电源时,应根据可能过负荷的情况装设过负荷保护。
保护接于一相电流上,延时作用于信号。
过负荷保护的动作电流,按躲过额定电流来整定:
I dz=K k/K f × Ie
式中:
Kk——可靠系数,取1.05
Kf——返回系数,取0.85
Ie——保护安装处的额定电流
(1)、高压侧装设过负荷保护
Idz=K k/K f×Ie=1.05/0.8 ×251=329.4A
Idz.j=Idz/n110=329.4/(600/5)=2.745
(2)中压侧装设过负荷保护
Idz=Kk/Kf ×Ie=1.05/0.85× 780=963.5A
Idz.j=Idz/n35=963.5/(1500/5)=3.212A
(3)低压侧装设过负荷保护
Idz=Kk/Kf × Ie=1.05/0.85 ×2749=3395.8A
Idz.j=Idz/n10.5=3395.8/(3000/5)=5.66A
保护分别设有单独的信号继电器和出口连片,以便根据需要投入或退出保护,并在保护动作后做出相应指示,使运行人员便于对故障进行分析和处理。
参考文献:
1、西北电力设计院、东北电力设计院.电力工程设计手册(2)上海:上海科学技术出版社.1981
2、四川联合大学范锡普编. 发电厂电气部分.北京:中国电力出版社.2000
3、熊信银主编,朱永利副主编.发电厂电气部分.北京:中国电力出版社,2004
4、姚春球编.发电厂电气部分.北京:中国电力出版社,2004。