电子时钟程序设计

合集下载

8086数字电子钟的设计 附程序代码

8086数字电子钟的设计 附程序代码

附件3课程设计(综合实验)报告( 2011 -- 2012 年度第 1 学期)名称:硬件课程与实践题目:8086数字电子钟的设计院系:班级:学号:学生姓名:指导教师:设计周数:2周成绩:日期:2011年09月01日一、课程设计的目的与要求1. 综合运用学过的相关软、硬件知识,利用伟福LAB6000实验设备,设计具有实用功能的电子钟,实现电子时钟的准确运行、校时等功能。

2.熟悉伟福LAB6000的功能,掌握数码管设计和键盘设计的要领及相关技术,能够利用实验设备实现电子钟系统的设计。

3.提高自己的硬件设计分析能力,同时培养软硬结合的系统设计思维,从而提高设计系统的可行性和准确性。

二、课程设计正文A.设计题目:8086数字电子钟的设计:1.设计并完成LED七段数码管数字钟电路。

2.数字钟显示格式为:HH:MM:SS。

3.具有通过键盘能够调整时、分、秒及设置闹铃的功能。

4.具有暂停时间及复位功能。

B.设计方案本设计采用LAB6000伟福仿真实验箱,利用4MHz脉冲信号源和多级分频电路产生脉冲信号,4MHz脉冲信号经过F/64分频后得到62.5KHz脉冲信号,将脉冲信号传递给8253定时器,定时器每0.000016秒中断一次,在中断服务程序中对中断次数进行计数,0.000016秒计数62500次就是1秒,然后在中断服务程序中对秒计数得到分和小时值并判断闹铃是否到时。

编写键盘扫描和LED显示程序完成设置时间、定闹铃及数码管显示功能。

C.硬件原理1.七段数码管显示和键盘扫描显示图1.1七段数码管图1.2伟福实验台六位LED的电路图及寻址空间实验箱提供了6位八段数码LED显示电路,只要按地址输出相应数据,就可以实现对显示器的控制。

将KEY/LED CS接到CS0上,则实验箱中八位段码输出地址为08004H,位码输出地址为08002H。

实验箱提供了一个6×4的小键盘,将KEY/LED CS信号接到CS0上,则列扫描地址为08002H,行码地址为08001H。

51单片机课程设计电子时钟

51单片机课程设计电子时钟

51单片机课程设计电子时钟课程设计:单片机课程设计课程名称:单片机电子时钟题目名称:电信学院学院:程工专业子电:姓名曾代科:学号 3201:国加杨指导教师2010月11年 7日一、课程设计名称:51单片机电子时钟二、设计方案:1、通过单片机内部的计数/定时器,采用软件编程来实现时钟计数,一般称为软时钟,这种方法的硬件线路简单,系统的功能一般与软件设计相关,通常用在对时间精度要求不高的场合。

2、采用时钟芯片,它的功能强大,功能部件集成在芯片内部,具有自动产生时钟等相关功能,硬件成本相对较高;软件编程简单,通常用在对时钟精度要求较高的场合。

三、设计内容:这里采用应用广泛的AT89C52作为时钟控制芯片,利用单片机内部的定时/计数器T0 实现软时钟的目的。

首先将T0设定工作于定时方式,对机器周期计数形成基准时间(50ms),然后用另一个定时/计数器T1对基准时间计数形成秒,妙计60次形成分,分计60形成小时,小时计到12。

最后通过数码管把它们的内容在相应的位置显示出来,达到时、分、秒计时的功能。

此外还要实现对时间的调整功能,89C52的、、外接三个独立按键,当按下按键时,系统进入调时间的状态或启动时间显示的功能;当按下按键时,对显示的数码管进行加一的功能;当按下按键时,对显示的数码管进行减一的功能,达到调整时间的目的。

四、系统软件程序设计1.主程序先对显示单元和定时器/计数器初始化,然后重复调用数码管显示模块和按键处理模块,当有按键按下时,则转入相应的功能程序。

2、数码管显示模块本实验有8个数码管,从右到左为妙、横线、分、横线、时。

在本系统中数码管显示采用软件译码动态显示。

在存储器中首先建立一张显示信息的字段码表,显示时,先中取出显示的信息,然后通过查表程序在从显示缓冲区字段表中查出所显示的信息的断码,从P0端口输出,同时在P2端口进行数码管显示。

3、定时器/计数器T0中断服务程序T0用于计时,选中方式一,重复定时,定时时间设为50ms,定时时间到则中断,在中断服务程序中用一个计数器对50ms计数,计20次则对秒单元加一。

基于单片机电子时钟的设计

基于单片机电子时钟的设计

基于单片机电子时钟的设计一、设计背景随着科技的不断进步,电子设备在我们的生活中扮演着越来越重要的角色。

时钟作为时间的测量工具,也从传统的机械时钟逐渐发展为电子时钟。

单片机作为一种集成度高、功能强大的微控制器,为电子时钟的设计提供了高效、可靠的解决方案。

基于单片机的电子时钟具有精度高、易于编程、成本低等优点,能够满足人们对时间测量和显示的各种需求。

二、系统设计方案1、硬件设计单片机选择:选择合适的单片机是整个系统设计的关键。

常见的单片机如STM32、AT89C51 等,具有不同的性能和特点。

根据系统需求,我们选择了 AT89C51 单片机,其具有成本低、性能稳定等优点。

时钟芯片:为了保证时间的准确性,需要选择高精度的时钟芯片。

DS1302 是一款常用的实时时钟芯片,具有低功耗、高精度等特点,能够为系统提供准确的时间信息。

显示模块:显示模块用于显示时间。

常见的显示模块有液晶显示屏(LCD)和数码管。

考虑到显示效果和成本,我们选择了 1602 液晶显示屏,能够清晰地显示时间、日期等信息。

按键模块:按键模块用于设置时间和调整功能。

通过按键可以实现时间的校准、闹钟的设置等功能。

电源模块:为整个系统提供稳定的电源。

可以选择电池供电或外部电源供电,根据实际使用场景进行选择。

2、软件设计编程语言:选择合适的编程语言进行软件编程。

C 语言是单片机编程中常用的语言,具有语法简单、可读性强等优点。

主程序流程:主程序首先进行系统初始化,包括单片机端口初始化、时钟芯片初始化、显示模块初始化等。

然后读取时钟芯片中的时间信息,并将其显示在液晶显示屏上。

通过按键检测模块,判断是否有按键操作,如果有,则进行相应的处理,如时间校准、闹钟设置等。

中断服务程序:为了保证时间的准确性,需要使用定时器中断来实现时钟的计时功能。

在中断服务程序中,对时钟芯片进行时间更新,确保时间的准确性。

三、硬件电路设计1、单片机最小系统单片机:AT89C51 单片机是整个系统的核心,负责控制和协调各个模块的工作。

题目:电子日历时钟系统程序设计

题目:电子日历时钟系统程序设计

题目:电子日历时钟系统程序设计一、功能:1.可通过M键切换显示模式:日期(年、月、日)、时间(小时、分、秒)、秒表(小时、分、秒、1/100秒)、闹钟(小时、分、秒)。

2.在日期显示模式,可通过A键依次使年、月、日闪烁或变色,这时可通过I键加1调整。

3.在时间显示模式,可通过A键依次使小时、分、秒闪烁或变色,这时可通过I键加1调整。

4.在秒表显示模式,可通过I键切换(启动/暂停)计时,当暂停计时时可通过A键复位。

5.在闹钟显示模式,可通过A键依次使On/Off标志、小时、分、秒闪烁或变色,这时可通过I键切换On/Off标志或加1调整。

6.调整和秒表操作不影响日期和时间的准确性。

7.可通过Q键结束程序。

二、任务与要求:1.实现方案,流程图(20分)2.实现日期的显示和调整(15分)3.实现时间的显示和调整(15分)4.实现日期和时间的准确性(5分)5.实现程序正常结束(5分)6.实现秒表功能(20分)7.实现闹钟功能,发声10秒(20分)8.基本实现前5项要求,再实现其它扩展要求,视难度加分。

答辩中误导答辩教师(由答辩教师认定,如某些同学参考其它资料但坚持声称全是自己编写的情况),视情节扣分。

n组设计雷同(由答辩教师认定),第一组正常计分,其余n-1组不计分。

设计报告总体要求:①写出主要设计思路,工作原理;②画出硬件接线图;③调试出现的问题及解决方法;④提交程序清单。

三、编程提示:PC机系统中的8253定时器0工作于方式3,外部提供一个时钟作为CLK信号,频率f=1.1931816MHz。

定时器0输出方波的频率: f out=1.1931816/65536=18.2Hz输出方波的周期T out=1/18.2=54.945ms。

8253A每隔55ms引起一次中断,作为定时信号。

可用55945ms作基本计时单位。

用BIOS调用INT 1AH可以取得该定时单位。

例:1秒=18.2 (计时单位)。

主要利用PC机系统功能调用实现电子日历时钟。

电子设计自动化(EDA)_数字时钟程序模块(LED数码管显示)_实验报告

电子设计自动化(EDA)_数字时钟程序模块(LED数码管显示)_实验报告

电子设计自动化(EDA)—数字时钟LED数码管显示二、实验内容和实验目的1. 6个数码管动态扫描显示驱动2. 按键模式选择(时\分\秒)与闹钟(时\分)调整控制,3. 用硬件描述语言(或混合原理图)设计时、分、秒计数器模块、闹钟模块、按键控制状态机模块、动态扫描显示驱动模块、顶层模块。

要求使用实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒;要求模式按键和调整按键信号都取自经过防抖处理后的按键跳线插孔。

实验目的: 1)学会看硬件原理图, 2)掌握FPGA硬件开发的基本技能3)培养EDA综合分析、综合设计的能力三、实验步骤、实现方法(或设计思想)及实验结果主要设备: 1)PC机, 2)硬件实验箱, 3)Quartus II软件开发平台。

1.打开Quartus II , 连接实验箱上的相关硬件资源, 如下图1所示。

2.建立新文件, 选择文本类型或原理图类型。

3. 编写程序。

4.编译5. 仿真, 加载程序到芯片, 观察硬件输出结果(数码管显示)6.结果正确则完成。

若结果不正确, 则修改程序, 再编译, 直到正确。

模24计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count24 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count24;ARCHITECTURE arc OF count24 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(clk,en)BEGINhh<=a;hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0010" AND b="0011") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;IF(a="0010" AND b="0010") THENcout<='1';ELSE cout<='0';END IF;END IF;END IF;END PROCESS;END arc;模60计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count60 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count60;ARCHITECTURE arc OF count60 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL sout:STD_LOGIC;BEGINPROCESS(clk)BEGINhh<=a; hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0101" AND b="1001") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;END IF;END IF;END PROCESS;sout<='1' WHEN a="0101" AND b="1001" ELSE '0';cout<=sout AND en;END arc;4-7显示译码模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY segment4to7 ISPORT(s:IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g:OUT STD_LOGIC);END segment4to7;ARCHITECTURE arc OF segment4to7 IS SIGNAL y:STD_LOGIC_VECTOR(6 DOWNTO 0); BEGINa<= y(6);b<= y(5);c<= y(4);d<= y(3);e<= y(2); f<= y(1);g<= y(0);PROCESS(s)BEGINCASE s ISWHEN "0000"=>y<="1111110"; WHEN "0001"=>y<="0110000"; WHEN "0010"=>y<="1101101"; WHEN "0011"=>y<="1111001"; WHEN "0100"=>y<="0110011"; WHEN "0101"=>y<="1011011"; WHEN "0110"=>y<="1011111"; WHEN "0111"=>y<="1110000"; WHEN "1000"=>y<="1111111"; WHEN "1001"=>y<="1111011"; WHEN OTHERS=>y<="0000000"; END CASE;END PROCESS;END arc;带闹钟控制模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mode_adjust_with_alarm ISPORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END mode_adjust_with_alarm;ARCHITECTURE arc OF mode_adjust_with_alarm ISTYPE mystate IS (s0,s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS (c_state)BEGINCASE c_state ISWHEN s0=> next_state <= s1; clkh<=clk1hz; clkm<=clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="000";WHEN s1=> next_state <= s2; clkh<=adjust; clkm<= '0'; clks<='0';enh<='1'; enm<='0';enha<='0'; clkh_a<= '0';clkm_a<= '0'; mode_ss <="001";WHEN s2=> next_state <= s3; clkh<= '0'; clkm<=adjust; clks <= '0';enh<='0';enm<='1';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="010";WHEN s3=> next_state <= s4; clkh<= '0'; clkm<= '0'; clks<=adjust;enh<='0'; enm<='0';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="011";WHEN s4=> next_state <= s5; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0';enm<='0';enha<='1'; clkh_a<=adjust; clkm_a<= '0'; mode_ss <="100";WHEN s5=> next_state <= s0; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<=adjust; mode_ss <="101";END CASE;END PROCESS;PROCESS (mode)BEGINIF (mode'EVENT AND mode='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;扫描模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY scan ISPORT(clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END scan;ARCHITECTURE arc OF scan ISTYPE mystate IS (s0, s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS ( c_state )BEGINCASE c_state ISWHEN s0=> next_state <=s1; ss<="010";WHEN s1=> next_state <=s2; ss<="011";WHEN s2=> next_state <=s3; ss<="100";WHEN s3=> next_state <=s4; ss<="101";WHEN s4=> next_state <=s5; ss<="110";WHEN s5=> next_state <=s0; ss<="111";END CASE;END PROCESS;PROCESS (clk256hz)BEGINIF (clk256hz'EVENT AND clk256hz='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;复用模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mux ISPORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END mux;ARCHITECTURE arc OF mux ISSIGNAL a,hhtmp,hltmp,mhtmp,mltmp,shtmp,sltmp:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(mode_ss)BEGINCASE mode_ss ISWHEN "000"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "001"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "010"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "011"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "100"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN "101"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN OTHERS=>hhtmp<="0000";hltmp<="0000";mhtmp<="0000";mltmp<="0000";shtmp<="0000";sltmp<="0000"; END CASE;END PROCESS;PROCESS(ss)BEGINCASE ss ISWHEN "010"=> a <=hhtmp;WHEN "011"=> a <=hltmp;WHEN "100"=> a <=mhtmp;WHEN "101"=> a <=mltmp;WHEN "110"=> a <=shtmp;WHEN "111"=> a <=sltmp;WHEN OTHERS => a <="0000";END CASE;y<=a;END PROCESS;alarm<='1' WHEN ((hh=hha)AND(hl=hla)AND(mh=mha)AND(ml=mla)) ELSE '0';END arc;闪烁模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY blink_control ISPORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END blink_control;ARCHITECTURE arc OF blink_control ISBEGINPROCESS (ss,mode_ss)BEGINIF(ss="010" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="110" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="111" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="010" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="101") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="101") THEN blink_en<='1';ELSE blink_en<='0';END IF;END PROCESS;END arc;Top文件LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY design3 ISPORT (mode,adjust,clk1hz,clk2hz,clk256hz,clk1khz:IN STD_LOGIC;alarm,a,b,c,d,e,f,g:OUT STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END design3;ARCHITECTURE arc OF design3 ISCOMPONENT mode_adjust_with_alarm PORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT scan PORT (clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT segment4to7 PORT (s: IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g: OUT STD_LOGIC);END COMPONENT;COMPONENT mux PORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END COMPONENT;COMPONENT blink_control PORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END COMPONENT;COMPONENT count24 PORT (clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;COMPONENT count60 PORT (clk ,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;SIGNALclkh,enh,clkm,enm,clks,clkh_a,clkm_a,coutm,couts,coutm_en,couts_en,cout,vcc,coutma_en,coutma,alarm1,bli nk_en,blink_tmp,enha: STD_LOGIC;SIGNAL mode_ss,ss1:STD_LOGIC_VECTOR(2 DOWNTO 0);SIGNAL hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,y,i:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINvcc<='1';coutm_en <= enh OR coutm;couts_en <= enm OR couts;coutma_en<= enha OR coutma;blink_tmp<=blink_en and clk2hz;i(3)<=y(3) OR blink_tmp;i(2)<=y(2) OR blink_tmp;i(1)<=y(1) OR blink_tmp;i(0)<=y(0) OR blink_tmp;ss<=ss1;alarm<=alarm1 AND clk1khz;u1:mode_adjust_with_alarmPORT MAP( adjust,mode,clk1hz,clkh,enh,clkm,enm,clks,enha,clkh_a,clkm_a,mode_ss);u2:count24 PORT MAP(clkh,coutm_en,cout,hh,hl);u3:count60 PORT MAP(clkm,couts_en,coutm,mh,ml);u4:count60 PORT MAP(clks,vcc,couts,sh,sl);u5:count24 PORT MAP(clkh_a,coutma_en,cout,hha,hla);u6:count60 PORT MAP(clkm_a,vcc,coutma,mha,mla);u7:mux PORT MAP(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,ss1,mode_ss,y,alarm1);u8:scan PORT MAP(clk256hz,ss1);u9:blink_control PORT MAP(ss1,mode_ss,blink_en);u10:segment4to7 PORT MAP(i,a,b,c,d,e,f,g);END arc;实验结果:数字钟包括正常的时分秒计时, 实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒。

单片机电子时钟设计程序

单片机电子时钟设计程序

单片机电子时钟设计程序
1.引用头文件和定义全局变量
首先需要引用相应的头文件,例如`reg52.h`,并定义全局变量用于
存储时间、闹钟时间以及其他相关参数。

2.初始化时钟
在主函数中,首先进行时钟的初始化。

这包括设置定时器和中断相关
的寄存器,以及初始化显示屏和按钮等外设。

3.时间更新
编写一个中断服务函数,用于根据定时器的中断来更新时间。

在该中
断服务函数中,需要将全局变量中的时间进行递增,并考虑到分钟、小时、日期和星期等的进位和换算。

4.按钮输入
设置一个子函数用于读取按钮输入,并根据按钮的状态来进行相应的
操作,比如切换时钟显示模式、设置闹钟等。

5.显示时间
编写一个子函数用于将时间信息显示在数码管上。

这需要先将时间信
息转换为数码管的显示格式,然后通过IO口输出控制数码管的显示。

6.闹钟设置
使用按钮输入的功能,可以设置闹钟时间和开关闹钟功能。

当闹钟时
间到达时,可以通过控制蜂鸣器发声或点亮LED等方式来进行提醒。

7.主函数
在主函数中,循环执行按钮输入的检测和相应操作,以及时间的更新和显示等功能。

可以通过一个状态机来控制整个程序的流程。

以上是一个简要的单片机电子时钟设计程序的概述。

实际的程序设计过程中,还需要考虑到各个模块之间的交互、错误处理、电源管理以及代码的优化等细节问题。

具体的程序实现可以根据具体需求和硬件平台的差异进行适当的修改和扩展。

基于STC89C52多功能电子时钟系统程序+原理图

基于STC89C52多功能电子时钟系统程序+原理图

一、设计任务设计制作一台以控制器为核心的多功能电子时钟系统二、设计要求:①.系统具有3种工作模式状态(正常时钟显示模式、系统校准模式、秒表计时模式);系统所有功能,均能够通过上位PC机对其操作修改与实时动态显示。

(PC主机端可利用高级语言进行人机界面设计)②.在正常时钟显示模式时,时钟具有显示年、月、日、时、分、秒的功能。

③.在正常时钟显示模式时,系统具有整点报时的功能,在离整点前10秒时,自动发出鸣叫声,步长1秒,每间隔1秒鸣叫一次,前4响是低音,后1响为高音,共鸣叫5次,最后1响结束时为整点。

高音频率为1KHz;④.在系统校准模式时,系统具有快速校准时间的功能。

⑤.在秒表计时模式时,可兼做比赛时间记录表。

秒表记时的精度为0.1秒,由3个键分别控制秒表的启动、清零、记录功能,可连续记录3组时间,并能够显示记录时间。

⑥.系统显示器采用LCD液晶显示器1602或其它显示器件,并采用键盘对相关数据进行设置与操作。

原理图设计制作一台以控制器为核心的多功能电子时钟系统二、设计要求:①.系统具有3种工作模式状态(正常时钟显示模式、系统校准模式、秒表计时模式);系统所有功能,均能够通过上位PC机对其操作修改与实时动态显示。

(PC主机端可利用高级语言进行人机界面设计)(注:此三种模式可以通过SET键盘来回切换,在正常时钟模式,第二排显示S:time,校准模式显示S:adjst,秒表模式,是TN~T3:四个秒表模式);②.在正常时钟显示模式时,时钟具有显示年、月、日、时、分、秒的功能。

(注:这个已经全部显示了,含星期)③.在正常时钟显示模式时,系统具有整点报时的功能,在离整点前10秒时,自动发出鸣叫声,步长1秒,每间隔1秒鸣叫一次,前4响是低音,后1响为高音,共鸣叫5次,最后1响结束时为整点。

高音频率为1KHz;(注:这个都实现了,要验证的话就是将时钟调整到59分后验证即可)④.在系统校准模式时,系统具有快速校准时间的功能。

毕业设计84吉林建筑工程学院电子时钟显示程序设计

毕业设计84吉林建筑工程学院电子时钟显示程序设计

目录一、课程设计的目的----------------------(2)二、课程设计的题目----------------------(2)三、课程设计的主要内容--------------------(2)(一)、程序论述----------------------(2)(二)、程序设计的步骤-------------------(2)(三)程序流程图----------------------(2)(四)程序------------------------(4)(五)结果显示-----------------------(14)四、总结----------------------------(14)(一)、本设计主要用到的DOS、BIOS调用及功能---------(14)(二)、心得体会----------------------(15)五、参考文献--------------------------(16)一、课程设计的目的:本次《微型计算机原理及应用》课程设计我选择了用汇编语言做电子时钟,其主要目的是加强软件编程能力。

通过本次设计复习并熟练掌握微机原理中的基本操作指令、DOS 中断功能调用以及BIOS中断功能调用。

最主要的是使用汇编语言编程来实现现实中许多电子产品的功能。

二、课程设计的题目:电子时钟显示程序设计三、课程设计的主要内容:(一)、程序论述本次《微型计算机原理及应用》课程设计我做的题目是“电子时钟显示程序设计”,是使用汇编语言编程实现电子时钟显示的功能。

主要提供了系统时间的调用,设置时间及显示时间等功能。

在我所做的程序中主要以下面的内用运行。

主程序首先注册新的中断处理程序从系统中取得时间,然后持续等待,直到在中断程序中检测到有按键时间的发生,然后主程序取消中断处理程序。

判断输入的键,然后根据相应的按键提供相应的设置功能。

中断处理程序每次得到系统定时器中断时间、,判断是否到达1秒,如果到达则更新时间,存入数据区,然后更新数据的显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设计目的
电子时钟是采用数字电路实现对日期、时、分、秒,数字显示的计时装置,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表的报时功能。

电子时钟已成为人们日常生活中的必需品,广泛应用于家庭、车站、码头、剧院、办公室等场所,给人们的生活、学习、工作带来极大的方便。

不仅如此,在现代化的进程中,也离不开电子钟的相关功能和原理,比如机械手的控制、家务的自动化、定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。

而且是控制的核心部分。

因此,研究电子时钟及扩大其应用,有着非常现实的意义。

2.设计内容
2.1设计思想
针对要实现的功能,拟采用AT89C51单片机进行设计,AT89C51 单片机是一款低功耗,高性能CMOS8位单片机,片内含4KB在线可编程(ISP)的可反复擦写1000次的Flash只读程序存储器,器件采用高密
度、非易失性存储技术制造,兼容标准MCS- 51指令系统及80C51引脚结构。

这样,既能做到经济合理又能实现预期的功能。

在程序方面,采用分块设计的方法,这样既减小了编程难度、使程序易于理解,又能便于添加各项功能。

程序可分为闹钟的声音程序、显示程序、闹钟显示程序、调时显示、定时程序。

运用这种方法,关键在于各模块的兼容和配合,若各模块不匹配会出现意想不到的错误。

2.2设计元件
元件
规格
数量
单片机 AT89C51 1 晶振 12MHz 1 晶振电容 30pF
2 按键
4
准备器件、搭接电

熟悉硬件 了解各引脚功
能 分块设计各部分电

将分块的电路组合
认真学习单片机汇编
语言 完成整体电路图 确定变成结构和思

综合各程序完成整体
程序
编辑各个程序模块
用Proteus 画出电路图
调试程序,进行修改
对仿真中出现的问题
进行改正 画出仿真图进行仿

仿真成功
软硬件结合,完成任务
书要求
验证硬件电路
成功
进行扩展
电阻10K,1K,220欧,各1,1,15电容10uF(+)1
七段数码管共阳极四位、两位各1,1 USB接口1
USB延长线1/2
底座40脚1
2.3设计图
2.4设计程序
#include<reg51.h>
#include<stdio.h>
#include<intrins.h>
char data time[6];
void delay(unsigned char k);
sbit check=P0^0;
sbit inter0=P3^2;
sbit inter1=P3^3;
char data which=0;
char data count=0;
void smadd(unsigned char k);
void smsub(unsigned char n);
char code buf[]={ 0x00,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0xff,0x6f }; char code sel[]= {0x01,0x02,0x04,0x08};
void main()
{
char i;
for(i=0;i<500;i++);
time[0]=0;
time[1]=1;
time[2]=8;
time[3]=0;
time[4]=2;
time[5]=1;
TMOD=0X01;
TH0=(65535-5000)/256;
TL0=(65535-5000)%256;
IP=0x07;
IE=0X87;
TR0=1;
while(1)
{
for(i=0;i<6;i++)
{
P1=sel[i];
P2=buf[time[i]] ;
delay(10);
}
if(check==0)
{
delay(8);
TR0=0;
which=(which+1)%3;
while(check==0);
TR0=1;
}
}
}
void delay(unsigned char k)
{char i;
for (;k>0;k--)
for(i=0;i<80;i++)
{;}
}
void time_tr0() interrupt 1 using 2 {
TH0=(65535-5000)/256;
TL0=(65535-5000)%256;
count++;
if(count==100)
{
smadd(0);
}
}
void int0_i() interrupt 0 using 3
{
TR0=0;
smadd(which*2);
TR0=1;
while(inter0==0);
}
void int1_i() interrupt 2 using 1
{
TR0=0;
delay(20);
smsub(which*2);;
TR0=1;
while(inter1==0);
}
void smsub(unsigned char n)
{
delay(80);
if(time[n]>0)
{
time[n]=time[n]-1;
}
else if(time[n]==0&&(n==3||n==1))
{
time[n]=5;
smsub(n+1);
}
else if(time[n]==0&&(n==4||n==2||n==0))
{
time[n]=23;
smsub(n+1);
}
else if(time[n]==0&&(n==5))
{
time[n]=0;
}
}
void smadd(unsigned char n)
{
char flag=0;
delay(80);
if((n==0)||(n==2)||(n==4))
{
if(n==4&&time[5]==2&&time[4]==3)
{
time[4]=0;
time[5]=0;
flag=1;
}
if(time[n]==9)
{
time[n]=0;
smadd(n+1);
}
else if(time[n]<9&&flag==0)
{
time[n]=time[n]+1;
}
}
else if((n==1)||(n==3))
{
if(time[n]==5)
{
time[n]=0;
smadd(n+1);
}
else
{
time[n]=time[n]+1;
}
}
else if(n==5)
{
if(time[n]==2&&(time[n-1]==3))
{
time[5]=0;
time[4]=0;
}
else
{
time[n]=time[n]+1;
}
}
}
2.5伟福系统仿真如图所示:
3.设计总结
通过这次的设计使我认识到我对单片机方面的知识知道的太少了,对于书本上的很多知识还不能灵活运用,有很多我们需要掌握的知识在等着我去学习,我会在以后的学习生活中弥补我所缺少的知识。

本次的设计使我从中学到了一些很重要的东西,那就是如何从理论到实践的转化,怎样将我所学到的知识运用到我以后的工作中去。

在大学的课堂的学习只是在给我们灌输理论知识,而我们应把所学的用到我们现实的生活中去,此次的电子时钟设计给我奠定了一个实践基础,我会在以后的学习、生活中磨练自己,使自己适应于以后的竞争。

相关文档
最新文档