6最大公因数与最小公倍数应用
最大公因数和最小公倍数的定义

最大公因数和最小公倍数的定义在数学中,最大公因数和最小公倍数是两个常见的概念,它们在数论、代数、几何等领域都有广泛的应用。
本文将详细介绍最大公因数和最小公倍数的定义、性质和相关应用。
一、最大公因数的定义最大公因数,简称最大公约数,是指两个或多个整数公有的约数中最大的一个。
例如,12和30的公约数有1、2、3、6,其中最大的是6,所以12和30的最大公约数是6。
最大公因数的求法有多种方法,其中最常用的是辗转相除法。
该方法的基本思想是,用较大的数去除以较小的数,再用余数去除以刚才的除数,如此反复,直到余数为0为止。
最后一次除数即为最大公约数。
例如,求出120和84的最大公约数:120÷84=1 (36)84÷36=2 (12)36÷12=3 0因此,最大公约数是12。
二、最小公倍数的定义最小公倍数,简称最小公倍数,是指两个或多个整数公有的倍数中最小的一个。
例如,6和8的公倍数有6、12、18、24、30、36、42、48、54、60等,其中最小的是24,所以6和8的最小公倍数是24。
最小公倍数的求法也有多种方法,其中最常用的是分解质因数法。
该方法的基本思想是,将每个数分解成质因数的乘积,然后将这些质因数的最高次幂相乘即可。
例如,求出12和18的最小公倍数:12=2×318=2×3将它们的质因数分解乘起来,得到2×3=36,因此最小公倍数是36。
三、最大公因数和最小公倍数的性质最大公因数和最小公倍数有许多重要的性质,下面列举其中的几个:1. 最大公因数和最小公倍数的乘积等于这些数的乘积。
即,设a、b为两个整数,则有gcd(a,b)×lcm(a,b)=ab。
证明:设a=p^α×p^α×…×p^α,b=p^β×p^β×…×p^β,其中p、p、…、p是不同的质数,α、α、…、α、β、β、…、β是非负整数。
最大公因数与最小公倍数的实际应用

最大公因数和最小公倍数基础知识与实际应用相关基础知识几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
最大公因数和最小公倍数的性质(1)两个数分别除以它们的最大公因数,所得的商一定是互质数。
(2)两个数的最大公因数的因数,都是这两个数的公因数,(3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。
两个自然数的最大公因数与最小公倍数关系是:(a,b)×[a,b]=a×b。
6是12和18的最大公因数,记作(12,18)=6。
36是12和18的最小公倍数,记作[12,18]=36。
这样,求两个数的最小公倍数的问题,即可转化成先求两个数的最大公因数,再用最大公因数除两个数的积,其结果就是这两个数的最小公倍数。
两个数A,B,①如果A是B的倍数,那么最大公因数就是B,最小公倍数是A;②如果AB互质,那么最大公因数就是1,最小公倍数是A*B;欧几里得用辗转相除法求两个数的最大公因数。
《九章算术》更相减损术找最大公因数65-26=3939-26=1326-13=13所以,260与104的最大公因数等于13乘以第一步中约掉的两个2,即13*2*2=52。
短除法找最大公因数与最小公倍数短除符号就是除号倒过来。
短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质,最大公因数是1的两个数叫互质数,如8和9)。
而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。
直到剩下每两个都是互质关系。
求最大公因数便乘一边,求最小公倍数便乘一圈。
(公因数:如果一个整数同时是几个整数的因数,称这个整数为它们的“公因数”;公因数中最大的称为最大公因数。
)实际应用例:有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。
最大公因数和最小公倍数的比较和应用课件

6、暑假期间,贝贝和明明去敬老院 照顾老人。7月7日她们都去了敬老院, 并约定以后贝贝每隔2天去一次, 明明每隔3天去一次。 (1)两人下一次在敬老院相遇是 几月几日?
(2)从7月7日到8月底,她们一起 去敬老院的日子有几次?
补充: 1.美美客运有A、B两种车,A车每45分发车 一次,B车每1小时发车一次,两车同时由 上午6点发车,下一次同时发车是什么时候? 2.王伯伯有两个小孩,老大3天回家一次, 老二4天回家一次,老三6天回家一次, 这次10月1日一起回家,则下一次是几月 几日一起回家?
如果这些学生的总人数在40人以内, 可能是多少人?
练习:人民公园是1路和6路汽车的起点站。1路汽车 每3分钟发车一次,6路汽车每5分钟发车一 次。这两路汽车同时发车以后,至少再过多久 又同时发车?
解: 题意就是要求3和5的最小公倍数。
6路
3× 5 = 15
1路
答:至少再过15分钟又同时发车。
思考:有一包糖果,不论是分给8个人,还 是分给10个人,都正好剩3块,这包糖至少 有多少块?
想一想
用求最大公因数和最小公倍数的方法 解决生活中的实际问题。
1、明明用一些长6分米、宽4分米的 长方形纸板拼成了一个正方形,正方 形的边长至少是多少?要用多少块小 长方形纸板?
2、贝贝用一块长6分米、宽4分米的 长方形纸板裁成若干个边长是整分米 数的小正方形,小正方形的边长最大 是多少?可以裁成多少块?
1、明明用一些长6分米、宽4分米的 长方形纸板拼成了一个正方形,正方 形的边长至少是多少?要用多少块小 长方形纸板? 最小公倍数
2、贝贝用一块长6分米、宽4分米的 长方形纸板裁成若干个边长是整分米 数的小正方形,小正方形的边长最大 是多少?可以裁成多少块?
公因数和公倍数

公因数和公倍数初中数学中,公因数和公倍数是一个非常重要的概念。
理解公因数和公倍数的概念,对于解决数学问题、进行数学推理和提高数学思维能力都有着重要的作用。
本文将从实际问题入手,通过举例和分析,详细介绍公因数和公倍数的概念、性质和应用。
一、公因数的概念和性质公因数是指两个或多个数共有的因数。
比如,对于数5和10来说,它们的公因数有1和5。
公因数的性质主要有以下几点:1. 公因数是两个或多个数的因数,因此,公因数一定是这些数的约数。
2. 公因数中最大的一个数,称为最大公因数。
最大公因数是两个或多个数的公共约数中最大的一个。
3. 如果两个数的最大公因数是1,那么这两个数被称为互质数。
通过以下例子,我们可以更好地理解公因数的概念和性质:例1:求出12和18的公因数。
解:首先,我们列出12和18的所有因数:12的因数有:1、2、3、4、6、1218的因数有:1、2、3、6、9、18根据以上列出的因数,我们可以发现12和18的公因数有1、2、3、6。
其中,最大公因数为6。
例2:求出24和36的最大公因数。
解:同样地,我们列出24和36的所有因数:24的因数有:1、2、3、4、6、8、12、2436的因数有:1、2、3、4、6、9、12、18、36根据以上列出的因数,我们可以发现24和36的公因数有1、2、3、4、6、12。
其中,最大公因数为12。
二、公倍数的概念和性质公倍数是指两个或多个数共有的倍数。
比如,对于数3和5来说,它们的公倍数有15和30。
公倍数的性质主要有以下几点:1. 公倍数是两个或多个数的倍数,因此,公倍数一定是这些数的倍数。
2. 公倍数中最小的一个数,称为最小公倍数。
最小公倍数是两个或多个数的公共倍数中最小的一个。
通过以下例子,我们可以更好地理解公倍数的概念和性质:例3:求出6和8的公倍数。
解:首先,我们列出6和8的所有倍数:6的倍数有:6、12、18、24、30、36、...8的倍数有:8、16、24、32、40、48、...根据以上列出的倍数,我们可以发现6和8的公倍数有24。
五年级数学最大公因数和最小公倍数应用题

最大公约数和最小公倍数应用题1.认真理解整除的概念;2.熟练运用求最大公因数与最小公倍数的方法:短除法3.对题意的深入理解;例题1 一张长方形纸,长96厘米,宽60厘米,如果把它裁成同样大小且边长为整厘米的最大正方形,且保持纸张没有剩余,每个正方形的边长是几厘米?每个正方形的面积是多少?可以裁多少个这样的正方形?随堂练习:1.有一块长方形纸板,长24厘米,宽15厘米,将这块纸板裁成同样大小的正方形,不能有剩余,每块小正方形的边长是最长是多少?可以裁成多少块?2.王师傅找到一块长72厘米,宽60厘米,高48厘米的长方体木料,王师傅把它锯成同样大小的正方体木块,木块的体积最大,不能有剩余,算一算,可以锯成多少块?3.五(1)班给每个同学买了1个练习本,共花去9.30元钱,已知每个练习本的价钱比学生人数少,五(1)班共有多少个学生?例题2 张林、李强都爱在图书馆看书,张林每4天去一次,李强每6天去一次,有一次他们两人在图书馆相遇,至少再过多少天他们又可以在图书馆相遇?随堂练习:1.有一包奶糖,无论分给6个小朋友,8个小朋友,还是10个小朋友,都正好分完,这包糖至少有多少块?2.某公共汽车站有三条不同线路,1路车每隔6分钟发一辆,2路车每隔10分钟发一辆,3路车每隔12分钟发一辆,三路车在早上8点同时发车后,至少再到什么时候又可以同时发车?3.一个班不足50人,上体育课站队时,无论每行站16人,还是每行站24人,都正好是整行,这个班有多少人?例题3 用一个数去除52,余4,再用这个数去除40,也余4,这个数最大是多少?随堂练习:1.把19支钢笔和23个软面抄平均奖给几个三好学生,结果钢笔多出了3支,软面抄也多出了3三,得奖的学生最多有几人?2.一个自然数,去除22少2,去除34也少2,这个自然数最大是几?3.一个数除73余1,除98余2,除147余3,这个数最大应是多少?例题4 有一批作业本,无论是平均分给10个人,还是12个人,都剩余4本,这批作业本至少有多少本?随堂练习:1.有一箱卡通书,把它平均分给6个小朋友,多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多1本,这箱卡通书最少有多少本?2.五年级同学参加社区服务活动,人数在40和50之间,如果分成3人一组,4人一组或6人一组都正好缺一人,五年级参加活动的一共有多少人?4.有一篮鸡蛋,两个两个去数,余1个;三个三个去数,余2个;四个四个去数,余3个,这篮鸡蛋至少有多少个?课堂作业:1.有两根钢管,一根长25米,一根长20米,把它们锯成同样长的小段,使每根不许有剩余,每段最长几米?一共要锯几次?2.李老师要把84本语文课本,70本数学课本,56本自然课本,平均分为若干堆,每堆中这三种课本的数量分别相等,那么最多可以分成多少堆?每堆中有语文、数学、自然课本各多少本?3缝纫店有一块长40分米,宽25分米的布料,现在顾客要求把它裁成正方形小布块(不能有剩余),块数又要求最少,那么裁成的正方形不布块面积有多大?4.一盒铅笔,可以平均分给4,5,6个小朋友,都没有剩余,这盒铅笔最少有多少只?5.某学校暑假期间安排王老师生4天值一次班,李老师每6天值一次班,张老师每8天值一次班,如果7月1日他们三人同一天值班,下一次他们三人同一天值班是几月几日?6.开学初,学校准备了96个黑板擦,72把扫帚,48个纸篓,平均分给各个班。
求最大公因数和最小公倍数的方法(简单实用)

求最大公因数和最小公倍数的方法:一、 特殊情况:1、倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
(如;6和12的最大公因数是6,最小公倍数是12。
)2、互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
(如,5和7的最大公因数时1,最小公倍数是5×7=35)二、一般情况:1求最大公因数:列举法、单列举法、分解质因数法、短除法、除法算式法。
①列举法:如,求18和27的最大公因数:先找出两个数的所有因数 18的因数有:1、2、3、6、9、1827的因数有:1、3、9、27再找出两个数的公因数: 18的因数有:1、2、3、6、9、1827的因数有:1、3、9、27 1、3、9最后找出最大公因数: 9②单列举法:如,求18和27的最大公因数先找出其中一个数的因数:18的因数有:1、2、3、6、9、18再找这些因数中那些又是另一个数的因数:1、3、9又是27的因数最后找出最大公因数: 9> ③短除法:3 18 273 6 9 除到商是互质数为止,最后把所有的除数相乘2 3 3×3=9④除法算式法:用这两个数同时除以公因数,除到最大公因数为止。
18. 9就是18和27的最大公因数 27)2、求最小公倍数:列举法、单列举法、大数翻倍法、分解质因数法或短除法。
①列举法:如,求18和12的最小公倍数先按从小到大的顺序找出这两个数的倍数: 18的倍数:18、36、54、7212的倍数:12、24、36、48再找出两个数的最小公倍数: 18的倍数:18、36、54、7212的倍数:12、24、36、48 :②单列举法:如,求18和12的最小公倍数先找出一个数的倍数: 18的倍数有:18、36、54、72再按从小到大的顺序找这些倍数中那个又是另一个数的倍数,找出最小公倍数: 36 ③大数翻倍法:如,求18和12的最小公倍数把较大的数翻倍(2倍开始),每次翻倍后看结果是不是另一个数的倍数,直到找到最小公倍数为止。
最小公倍数解决实际问题

如果这些学生的总人数在40人以内,可能是多少人?
咱们可以分成6人一组,也可以分成9人一组,都正好分成。
答:可能是18人,或是36人。
9
3
3
×2 ×3=18(人)
18×2 =36(人)
李阿姨 4 月 15 日给月季和君子兰同 时浇了水,下一次再给这两种花同时 浇水应是 4 月几日?
4 6
2
2 3
6、12、18、24……
6
6、12、18、24……
6
解决这类问题的关键,是把铺砖问题转化成求( )的问题来求。
最小公倍数
四、加强应用,巩固练习
有一堆糖,4颗4颗地数,6颗6颗地数,都能刚好数完。这堆糖至少有多少颗?
答:这堆糖至少有12颗。
6
2
3
×2 ×3=12(颗)
四、加强应用,巩固练习
二、小组合作,探究解决问题
3dm 2dm 6dm 6dm
3dm
2dm
12dm12dm来自如果我们有足够多的小长方形的话,还可以拼出边长是其他数的正方形吗?
用这样的小长方形可以拼出边长是18dm,24dm,30dm……的正方形吗?小组内讨论一下。
三、小组合作,探究解决问题
三、小组合作,探究解决问题
和你的同桌进行交流,说说你摆出的正方形边长是多少。
01
02
1.要求:
三、小组合作,探究解决问题
你还能拼成不一样的大正方形吗?
探究结果交流。 我第一行摆了2个长方形,摆了这样的3行,拼成了一个边长 6dm的正方形。 我第一行摆了4个长方形,摆了这样的6行,拼成了一个边长是 12dm的正方形。
01
02
我们长2dm、宽3dm的长方形可以拼出多少个边长不一样的大的正方形呢?说说理由。
(完整版)最小公倍数和最大公因数的应用题归纳

最小公倍数与最大公因数典型的应用题汇总一、解题技巧:最大公因数解题技巧:通常从问题入手,所求的数量处于小数(即处于除数、商、因数)的地位时,因为小数(即处于除数、商、因数)是大数(即处于被除数、被除数、积)的因数,此时,所求的数量就处于因数的地位。
如果出现相同的(公有的)/最长的所求数量,即求他们的公因数/最大公因数的应用题。
最小公倍数解题技巧:通常从问题入手,所求的数量处于大数(即处于被除数、被除数、积)的地位时,因为大数(即处于被除数、被除数、积)是小数(即处于除数、商、因数)的倍数,此时,所求的数量应处于倍数的地位。
如果出现相同的(公有的)/最小的所求数量,即求他们的公倍数/最小公倍数的应用题。
补充部分公式小长方形个数=(大正方形边长÷小长方形长)×(大正方形边长÷小长方形的宽)小正方形个数=(大长方形的长÷小正方形边长)×(大长方形的宽÷小正方形边长)小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)小正方体个数=(大长方体边长÷小正方体边长)×(大长方体的宽÷小正方体边长)×(大长方体的高÷小正方体边长)剩余定理余数相同时,总数(被除数)=最小公倍数+余数缺数相同时,总数(被除数)=最小公倍数-缺数植树问题公式不封闭型:2、只有一端都栽1、两端都栽间隔个数=株数间隔个数=株数-1株数=间隔个数+1 株数=间隔个数距离=一个间隔的长度×间隔个数距离=一个间隔的长度×间隔个数3、两端都不栽间隔个数=株数+1株数=间隔个数-1封闭型:间隔个数=株数株数=间隔个数距离=一个间隔的长度×间隔个数封闭型再正方形边上栽,并且4个顶点都栽:株数=(每边株数-1)×4备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可二、经典题目1、一个大长方形长24厘米,宽18厘米,把它裁成若干个小正方形而没有剩余,如小正方形的边长最长,边长是多少厘米?最多能裁成多少个小正方形?2、一个长方形的长6厘米,宽4厘米,至少要多少个这样的小长方形才能拼成一个大的正方形?此时,大的正方形的边长是多少厘米?3、一个大长方体长24厘米,宽18厘米,高12厘米,把它裁成若干个小正方体而没有剩余,如小正方体的边长最长,正方体的棱长是多少厘米?最多能裁成多少个小正方体?4、一个长方体的长6厘米,宽4厘米,高2厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师总结评定
1.学生上次作业完成情况:
2.学生本次上课表现情况:
3.老师对本次课的总结:
教师签字:课前审阅:课后检查:
龙文教育课后作业
学生
科目
教师
课次
完成时间
完成
情况
教师签字:审阅签字:时间
完成时间
得分
/
测试内容
试卷分析
教师签字:审阅签字:时间:
4.小明发现1路公交车每隔10分钟经过一次商业大楼,3路公交车每隔8分钟经过一次商业大楼,1路和3路公交车每隔多少分钟在商业大楼相遇一次?
5.暑假期间,小华、小明和小芳都去参加舞蹈训练。小华每隔3天去一次,小明每隔4天去一次,小芳每隔6天去一次。8月1日三人都参加了舞蹈训练后,几月几日他们又再次一起参加训练?
3.把一条长12CM和18CM的两根小棒截成同样长的小段,不许有剩余,每小段最长是多少厘米?
4.妈妈买回一块长40厘米、宽60厘米的布,如果要裁成若干个同样大小的正方形而没有剩余,裁出正方形的边长最大是几厘米?裁成了多少个正方形?
5.超市里运回40块肥皂,50盒牙膏和30把牙刷,现在要把肥皂、牙膏、牙刷捆在一起做奖品,要求每份奖品的肥皂、牙刷和牙膏都一样多,这些东西最多可以捆扎多少个这样的奖品?每个奖品中有多少块肥皂,多少盒牙膏和多少把牙刷?
株数=间隔个数-1
距离=一个间隔的长度×间隔个数
封闭型:
间隔个数=株数
株数=间隔个数
距离=一个间隔的长度×间隔个数
封闭型再正方形边上栽,并且4个顶点都栽:
株数=(每边株数-1)×4
备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可
补充部分公式
小长方形个数=(大正方形边长÷小长方形长)×(大正方形边长÷小长方形的宽)
小正方形个数=(大长方形的长÷小正方形边长)×(大长方形的宽÷小正方形边长)
小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)
小正方体个数=(大长方体边长÷小正方体边长)×(大长方体的宽÷小正方体边长)×(大长方体的高÷小正方体边长)
剩余定理
余数相同时,总数(被除数)=最小公倍数+余数
缺数相同时,总数(被除数)=最小公倍数-缺数
植树问题公式
不封闭型:2、只有一端都栽
1、两端都栽间隔个数=株数
间隔个数=株数-1
株数=间隔个数+1株数=间隔个数
距离=一个间隔的长度×间隔个数距离=一个间隔的长度×间隔个数
3、两端都不栽
间隔个数=株数+1
5.一只筐里有苹果若干个,每次取3个余1个,每次取5个余3个,每次取7个余5个,筐里最少有多少额苹果?
6.五(3)班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人。上体育课的最少有多少人?
学生总结评定
1.学生本次课对老师的评价:
○特别满意○满意○一般○差
2.本次课我学到了什么知识:
6.有一张长方形纸长80cm、宽50cm,如果要剪成若干个同样大小的正方形而没有剩余,剪出的小正方形的边长最大是几厘米?
50cm
80cm
7.有84个练习本和60支铅笔,老师用这些学习用品作为奖品分给“文明星”,如果每个“文明星”分得的练习本和铅笔都一样多,这些奖品最多可以分给多少个“文明星” ?
8.有两根小棒分别长70cm、56cm,小明把他们截成相等的小段而没有剩余,截成的小段每段最长是几厘米?一共截成了多少段这样的小段?
个性化辅导教案
学生
学校
年级
六年级
课次
6次
科目
初中数学
教师
刘翠翠
日期
时段
课题
最大公因数与最小公倍数应用
教学目标
考点分析
1.掌握最大公因数与最小公倍数的基础应用
2.熟悉最小公倍数与植树问题和周期问题结合类型的应用
3.进一步巩固最小公倍数与剩余定理结合
教学重点
难点
与植树问题,周期问题,剩余定理综合运用
教学内容
9.某校五年级有学生96人,六年级有学生84人。在一次体操表演活动中,要把两个年级的学生分成人数相等的小队。
(1)每个小队的人数最多是多少人?
(2)五年级和六年级分别排成了几个小队?
10.小红家的客厅长48dm、宽32dm,现在给客厅的地面铺正方形的地砖,下面有三种地砖可供选择,你认为选择哪种地砖既铺得整齐又不会有余料?
2.有一排电线杆,每相邻两根之间的距离原来都是40米,现改成60米,起点的一根不动,每隔多远又有一根电线杆不用移动?
3.从学校到电影院这段公路的一侧,一共有31根电线杆,原来每相邻两根电线杆之间相距40米,现在要改成相邻两根之间相距50米,除两端两根不需要移动外,中途还有多少根不必移动?
(四)最小公倍数与剩余定理
1.一个自然数除以18和除以27都余5,这个自然数最小是多少?
2.五(1)班同学,做课间操站队,无论每行站12人,还是每行站16人,都正好是整行,这个班至少有多少人?
3.五年级组织学生参加义务劳动,不论是10人、12人或15人分成一队,都正好没有剩余,参加义务劳动的同学至少有多少人?
4.一个自然数,用4去除余2,用5去除余3,用11去除余2,这个自然数最小是多少?
A:边长3dm的正方形, B:边长6dm的正方形, C:边长8dm的正方形
(二)最小公倍数
1.一种地板砖的规格是长40厘米,宽25厘米,至少要用多少块这样规格的地板砖才能铺成正方形地面?
2.两个数的最大公因数是15,最小公倍数150,已知其中一个数是75,求另一个数是多少?
3.已知两个自然数的积是1536,这两个自然数的最大公因数是16,求这两个数的最小公倍数是多少?
二、经典题目
(一)最大公因数
1.师家的卫生间长24dm、宽18dm,如果要用边长是整分米数的正方形地砖把卫生间地面铺满(使用的地砖是整数),可以选择边长是几分米的地砖?边长最大是几分米?
2.五(4)班有男生36人,女生24人。在“六一”文艺汇演中,要求男、女生分开站,并且每行人数都要相等。每行最多站几人?
6.两个自然数的最大公因数是14,最小公倍数是84,这两个数各是多少?
7.甲、乙、丙三人绕操场步行一圈,甲要2分钟,乙要3分钟,丙要4分钟。三人同时同地同方向出发环绕操场走,当他们第一次相遇时,甲、乙、丙三人分别走了多少圈?
(三)最小公倍数与周期和植树综合
1.学校操场周围插上了旗杆,原来每相邻两根旗杆的距离为45米,现在要改为60米,如果升旗台的旗杆不动,最少再过多远又有一根不需要移动?