最速下降法简介

合集下载

最速下降法

最速下降法

最速下降法姓名:沈东东 班级:研1404 学号:1415033005一、最速下降法的原理目标函数:(1)n f R R n →>在决策变量的当前点()k n x R ∈处的一阶Taylor 展开式为()()()()()()()k k k T f x f x g x δδοδ+=++式中,()()k n g x R ∈为f 在点()k x 处的梯度向量。

当扰动量n R δ∈充分小时,有()()()()()()k k k T f x f x g x δδ+≈+设新的迭代点为(1)()k k x x δ+=+,于是得到(1)()()()()()k k k T f x f x g x δ+-≈为了使(1)k x +处的目标函数值比()k x 处有所下降,需要满足()()0k T g x δ<此外,梯度向量()()k g x 和扰动量δ的内积可以表示为()()()()cos k T k g x g x δδθ=式中,θ为两向量之间的夹角。

若要使目标函数值的下降量尽可能大,可知δ的方向应该为梯度方向的负方向,即cos 1θ=-。

函数f 在点()k x 处的负梯度方向称为该点的最速下降方向。

在每次迭代时都取最速下降方向作为搜索方向的方法就称为最速下降法。

二、最速下降法的特点1.若()k x 不是极小点,则f 在点()k x 处的最速下降方向总是下降方向。

2.如果每次迭代时都用精确搜索方法得到最佳步长作为搜索步长,则寻优过程中相邻的最速下降方向是正交的。

3最速下降法产生的迭代点序列在一定条件下是线性收敛的,其收敛性质与极小点*x 处的Hesse 矩阵有关。

三、最速下降法的计算步骤最速下降法的计算步骤如下:步骤1:已知待求问题的目标函数()f x ,选择初始点(0)x ,并设定精度要求tol ,令:0k =。

步骤2:计算()f x 在点()k x 处的梯度向量()()k g x ,得到最速下降方向()()()k k d g x =-。

最速下降法解题步骤

最速下降法解题步骤

最速下降法(Steepest Descent Method)是一种数值优化算法,用于求解无约束优化问题的最小值。

下面是最速下降法的一般解题步骤:
1.定义目标函数:首先,需要明确要优化的目标函数。

这个函数通常表示为f(x),其中
x 是优化变量。

2.初始化起始点:选择一个合适的起始点x0,作为最速下降法的初始点。

3.计算梯度:计算目标函数在当前点的梯度,即∇f(x)。

这可以通过对目标函数进行偏
导数计算得到。

4.确定搜索方向:将梯度反向取负作为搜索方向d,即d = -∇f(x)。

5.确定步长:确定沿着搜索方向移动的步长,也称为学习率或步长因子。

常见的选择
方法有固定步长、线性搜索和精确线搜索等。

6.更新当前点:根据步长和搜索方向,更新当前点x,即x = x + αd,其中α 表示步
长。

7.判断终止条件:判断是否满足终止条件,可以是达到预定的迭代次数、目标函数值
变化很小或梯度变化很小等。

8.若不满足终止条件,则返回第3步,重新计算梯度,并重复3-7步骤,直到满足终
止条件。

最速下降法的关键在于选择合适的步长和搜索方向。

步长过大可能导致无法收敛,步长过小可能导致收敛速度慢。

搜索方向的选择应该保证在当前点能够使目标函数值下降最快。

需要注意的是,最速下降法可能会陷入局部最小值,而无法达到全局最小值。

为了克服这个问题,可以考虑使用其他优化算法,如共轭梯度法、牛顿法等。

matlab最速下降法

matlab最速下降法

matlab最速下降法最速下降法是一种求解非线性函数的最优化方法。

在数学上,最速下降法是一种迭代算法,用于寻找多元函数的最小值。

最速下降法常常被用在优化和数值分析领域。

最速下降法基于负梯度方向更新搜索点的方法寻找函数最小值。

方法使用梯度下降的技术,因为负梯度方向是函数值下降最快的方向。

梯度是指函数在指定点的变化率。

对于给定的函数f(x),我们定义梯度为∇f(x)=[∂f/∂x1, ∂f/∂x2, … , ∂f/∂xn]^T因此,最速下降法是根据梯度的方向(也就是负梯度的方向)来改变搜索方向和步长的。

最速下降法的流程如下:(1)确定起始点x0和收敛精度ε;(2)计算f(x)在x0处对各个方向上的导数;(3)按照负梯度方向进行搜索;(4)最终收敛到函数的最小值。

最速下降法的算法可以表示为算法1 最速下降法%输入:f(x),∇f(x)表示函数f(x)的梯度,x0表示搜索起点,ε表示收敛精度,α表示步长%输出:x表示函数f(x)的最小值点function x = steepest_descent_method(f, grad_f, x0, epsilon, alpha)k = 0;x = x0;while norm(grad_f(x)) > epsilondk = -grad_f(x);x = x + alpha*dk;k = k + 1;endend其中,norm是向量的范数,grad_f表示函数f的梯度,alpha是步长因子,可以通过试验或线搜索确定。

在上述算法中,基于梯度的每一步都保证了函数值下降。

算法的停止条件通常是达到预定的精度或规定的最大迭代次数。

最速下降法的优缺点优点:(1)相对简单,易于理解和实现;(2)算法的执行速度相对较快。

(1)可能会在迭代过程中陷入局部最小值;(2)需要对步长因子α进行调整;(3)在非线性函数的优化中,最速下降法可能需要许多迭代才能收敛,导致计算量大。

最速下降法是一种通用的非线性优化算法,广泛应用于各种数学和工程问题中。

机器学习算法系列最速下降法牛顿法拟牛顿法

机器学习算法系列最速下降法牛顿法拟牛顿法

机器学习算法系列最速下降法牛顿法拟牛顿法最速下降法、牛顿法和拟牛顿法都是常用的机器学习优化算法。

它们在求解函数最小化问题中起到关键作用。

1. 最速下降法(Gradient Descent):最速下降法是一种基于函数梯度的迭代优化算法。

其核心思想是沿着负梯度方向以步长α更新参数,直到达到收敛条件。

最速下降法的步骤如下:1)选择初始参数值;2)计算目标函数的梯度;3)沿着负梯度方向更新参数;4)重复步骤2和步骤3,直到达到停止条件。

最速下降法的优点是简单易实现,但它可能会面临局部最小值的问题,收敛速度较慢。

2. 牛顿法(Newton's Method):牛顿法是一种二阶优化算法,利用目标函数的一阶和二阶导数信息来更新参数。

它通过二阶导数矩阵(即Hessian矩阵)来指导方向和步长的选择。

牛顿法的步骤如下:1)选择初始参数值;2)计算目标函数的一阶和二阶导数;3)解线性方程(Hessian矩阵和梯度的乘积);4)更新参数;5)重复步骤2-步骤4,直到达到停止条件。

牛顿法的优点是收敛速度快,但它需要计算二阶导数矩阵,计算量较大,且可能收敛到非全局最小值。

3. 拟牛顿法(Quasi-Newton Methods):拟牛顿法是一种基于牛顿法思想的近似优化算法。

与牛顿法不同,拟牛顿法通过正定矩阵来近似二阶导数矩阵,从而避免了计算复杂的二阶导数矩阵。

拟牛顿法最经典的算法是BFGS算法(Broyden-Fletcher-Goldfarb-Shanno),它通过近似更新逆Hessian矩阵的方式来求解优化问题。

拟牛顿法的步骤如下:1)选择初始参数值和初始逆Hessian矩阵的估计;2)计算目标函数的梯度;3)更新参数;4)更新逆Hessian矩阵的估计;5)重复步骤2-步骤4,直到达到停止条件。

拟牛顿法的优点是避免了计算二阶导数矩阵,计算复杂度相对较低,且具有较好的收敛性质。

总结来说,最速下降法适用于简单的优化问题,牛顿法适用于二次型问题,而拟牛顿法在保持收敛速度的同时减少了计算复杂度。

matlab 最速下降法

matlab 最速下降法

matlab 最速下降法MATLAB 最速下降法最速下降法是一种求解无约束优化问题的基本方法,也是一种迭代算法。

该方法的基本思想是:在当前点处,沿着当前点到最优解的方向,走一步能够使目标函数值下降最快的方向,即负梯度方向。

因此,最速下降法也被称为梯度下降法。

MATLAB 是一种强大的数学计算软件,可以用于求解各种数学问题,包括最速下降法。

在 MATLAB 中,可以使用 fminunc 函数来实现最速下降法。

该函数的基本语法如下:[x,fval,exitflag,output] = fminunc(fun,x0,options)其中,fun 是目标函数,x0 是初始点,options 是选项参数。

该函数的返回值包括最优解 x、目标函数值 fval、退出标志 exitflag 和输出信息 output。

下面是一个使用 fminunc 函数求解 Rosenbrock 函数的例子:fun = @(x) 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;x0 = [-1.2,1];options =optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');[x,fval,exitflag,output] = fminunc(fun,x0,options);在上面的例子中,Rosenbrock 函数是一个经典的无约束优化问题,其目标函数为:f(x) = 100*(x2-x12)2 + (1-x1)2该函数的最优解为 (1,1),最小值为 0。

使用 fminunc 函数求解该问题,可以得到最优解 x = (1,1),最小值 fval = 2.9387e-11。

需要注意的是,最速下降法是一种基本的优化方法,但其收敛速度较慢,容易陷入局部最优解。

最速下降法

最速下降法

0 为一维搜索最佳步长,应满足极值必要条件
0Байду номын сангаас0 f x1 min f x f x
min 2 4 25 2 100 min
2 2


0 8 2 4 5000 2 100 0
解 取初始值
x 0 2, 2
T
则初始点处函数值及梯度分别为
f x0 104 2 x1 4 f x0 50 x2 x0 100 沿负梯度方向进行一维搜索,有
x1 x 0 0f x 0 2 4 2 4 0 2 0 100 2 100 0
从直观上看在远离极小点的地方每次迭代可能使目标函数有较大的下降但是在接近极小点的地方由于锯齿现象从而导致每次迭代行进距离缩短因而收敛速度不快
最速下降法
1 无约束多变量问题最优化
考虑无约束问题
min
f (X) X E n
其中函数f (X)具有一阶连续偏导数。 在处理这类问题时,总希望从某一点出发,选择一个目
其中 d ( k ) 是从 x ( k ) 出发的搜索方向,这里取在点x ( k ) 处的最速 下降方向,即
d ( k ) f ( x ( k ) )
k 是从 x ( k )出发沿方向 d ( k )进行一维搜索的步长,即 k 满足
f ( x ( k ) k d ( k ) ) min f ( x ( k ) d ( k ) )
x 0
*
f
* x 0
0
T
根据一元函数极值的必要条件
和复合函数求导公式可得:

最优化方法-最速下降法

s.t. 0
计算步骤
设f (X )是可微函数,精度要求为
X f ( ) K 1

X 0 为初始点。
(1)计算梯度
f
(
X
)
k
,初始k=0;
(2)
Pk

f
(
X
)
k
(3)求解 k
min f ( X k Pk)
s.t. 0
设 k 是一维搜索的最优解;
(4)求下一个点
评价
由例题中可以发现两次迭代的搜索方向满足:
P P P P T 0, T 0,...,
01
12
即相邻两个搜索方向 PK 与 PK1 正交,这是最速下降
法的搜索方向的基本形质。因此,最速下降法的迭代
路线呈锯齿形,尤其是在极小点附近,锯齿现象尤为
严重,从而影响了迭代速度。
评价
锯齿现象
最优化技术
第三章 7节 最速下降法
主要内容
1原 理
2 计算步骤
3 例题分析 4评 价
原理
定义:用来求解无约束多元函数 min f(x)
极小化问题的一种迭代算法。
拓展:
最速下降法又称梯度法,是 1847 年由著名数学家
Cauchy 给出的,它是解析法中最古老的一种,其他解析 方法或是它的变形,或是受它的启发而得到的,因此它是 最优化方法的基础。
X
)
0

(1,1)T
3-最优步长
2
X P ( ) f 5
0
0 2
1
0
应用一维搜索技术,解得函数最小值点 0 =0.2
举例分析
4-下一搜索点
X1

最速下降法

数学软件与实验结课作业------最速下降法班级:071111学号:07111008 07111012 07111057姓名:李咏邹仁朋宋郝开摘要最速下降法又称梯度法,早先求解无约束多元函数极值的数值方法,是1847年由著名数学家Cauchy给出的,它是解析法中最古老的一种,是最优化方法的基础。

它工作量较少,且储存变量不多,初始点要求也不高,但效率不高。

最速下降法多用来解觉n元函数的无约束非线性规划问题。

利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减小,从而最终找到最优解。

最速下降法的基本思想是:从当前点x k出发,取函数f(x)在点x k 处下降最快的方向作为我们的搜索方向p k,由f(x)的Taylor 展式知(x k) - f (x k +t p k) = -tÑf (x k)T p k+ o‖( t p k‖),略去t的高阶无穷小项不计,可见取p k= -Ñf (x k)时,函数值下降得最多。

从而,构造出最速下降法的迭代步骤求解。

最速下降法的一种简单形式是:x(k+1)=x(k)-a*g(k),其中a称为学习速率,可以是较小的常数。

g(k)是x(k)的梯度。

一、问题描述求解最优化问题是通常采用两种方法:1.解析解法——利用函数的导数构造迭代公式使之收敛到极值点的方法;2.直接解法——根据数学原理,用尽可能少的计算量直接比较函数值的大小,来确定函数极值的方法。

在最优化计算方法中,要求解12(,,,)n y f x x x = 的局部最小值,选用解析解法,采用如下的方法进行迭代计算:先给出初始点000012(,,,)n x x x =x ,然后根据其梯 度方向0()f ∇x ,计算一元函数0010()min (())y f f λλλ≥=-⋅∇x x ,并得到1001()f λ=-⋅∇x x x 。

如此反复迭代,最终收敛于局部最优点。

实现该算法。

最速下降法-最优化方法


(4)f
(
X
)
3

(0.04,0.04)T
,
f ( X 3) 2 0.0032 0.01
X 3 已达到预定精度要求,迭代终止。
故f(x)的无约束近似极小点为
X X 3 (0.96,1.44)T
注:原问题的精确极小点为
X (1,1.5)T
3. 最速下降法性质与评价
x1 x1

2 2
x2 x2
1 1
(1) X 0 (1,1)T
,
f
(
X
)
0

(1,1)T
,
P0

f
(
X
)
0

(1,1)T
X P (t ) f( 0 t
)
0

5t 2

2t
1
,t>0
ቤተ መጻሕፍቲ ባይዱ
应用一维搜索技术,可解得 (t) 的极小点为t0=0.2
所以 X 1 X 0 t0 P0 (1,1)T 0.2(1,1)T (0.8,1.2)T
X X P
Y f (X ) N 输出X
停止
例3.18 用最速下降法求解无约束优化问题:
x x x x x x min f (X ) 2 2 2
2
1
12
2
1
2
初始点 X 0 (1,1)T
,迭代终止准则为
f
(X k)
2
0.01

解:
f
(
X
)

4 2
1. 最速下降法原理 2. 最速下降法算法 3. 最速下降法性质与评价

最优化Armijo算法确定步长的最速下降法资料

最优化Armijo算法确定步长的最速下降法资料最速下降法是最优化算法中最简单、最基础的一种方法,但其收敛速度较慢且容易陷入局部最优解。

因此,在最速下降法的基础上,可以通过引入步长的方法来提高算法的收敛速度。

而Armijo算法就是一种常见的用于确定步长的方法。

最速下降法基础假设我们要最小化目标函数f(x),那么最速下降法的思路就是从一个初始点x0开始,不断朝着负梯度方向进行迭代,直到找到最优解x∗,即:$x_{k+1} = x_k - \\alpha_k \ abla f(x_k)$其中,ablaf(x k)是f(x)在x k处的梯度,$\\alpha_k$ 是步长(也称为学习率),表示每次迭代的步长大小。

但这里还有一个问题:如何确定每次迭代的步长呢?Armijo算法Armijo算法是一种基于梯度下降法的步长确定方法。

它的思路是,每次迭代的步长不应该过大,否则容易导致超出收敛区域。

同时,步长也不应该过小,否则收敛速度会变得非常缓慢。

因此,步长的大小应该恰到好处,即在一定范围内找到一个最优的步长大小。

具体地,Armijo算法通过二分搜索的方法,在可行步长范围内找到一个最优的步长 $\\alpha_k$。

具体过程如下:1.首先初始化 $\\alpha_0$,并设定一些参数,如尝试步长大小t、可行步长下界 $\\tau$ 和函数下降的最小比例 $\\gamma$。

2.计算目标函数f(x k−t ablaf(x k)),以及根据一定准则确定下一个$\\alpha$。

3.如果 $f(x_k - \\alpha_k\ abla f(x_k))$ 函数值比f(x k)减小了一些比例$\\gamma$,则认为当前 $\\alpha_k$ 是可行的步长。

4.如果当前 $\\alpha_k$ 不是可行的步长,则将其折半,即 $\\alpha_k\\leftarrow \\alpha_k/2$,直到找到一个可行的步长为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
(k )
1 n k (0) * x ( ) x x A 1 n
*
A
其中, 1 , n 分别为对称正定矩阵 A 的最大与最小特征值, 当 1 》 n 时收敛就变的非常慢,而且当 r
(k )
很小时,由于舍
入误差的影响,计算将出现不稳定,所以这个算法实际中使用 很少,一般作为其他优化算法的启动项。
( p ( k 1) , p ( k ) ) (b A( x ( k ) p ( k ) ), p ( k ) ) ( p ( k ) , p ( k ) ) k ( Ap ( k ) , p ( k ) ) 0
说明两个相邻的搜索方向是正交的。

对于最优化目标函数来说,图中的一束椭圆表 示函数的等值线,愈是内圈的椭圆,所对应的 函数值愈小。由于最速下降法相邻两次的搜索 方向互相垂直,搜索路径实际上是一条锯齿状 的路径,也就是最速下降法的锯齿现象。
最速下降法
3118
最速下降法简介
最速下降法又称为梯度法,早先求解无约束多元 函数极值的数值方法,是1847 年由著名数学家 Cauchy 给出的,它是解析法中最古老的一种,其 他解析方法或是它的变形,或是受它的启发而得 到的,因此它是最优化方法的基础。作为一种基 本的算法,他在最优化方法中占有重要地位。 优点:是工作量少,存储变量较少,初始点要求 不高; 缺点:是收敛慢,效率不高,有时达不到最优解。
谢谢
x( k 1) x( k ) p ( k ) ,
使得
( x ( k 1) ) min ( x ( k ) k p k )
R
确定最优步长的方法如下: 采用任意一种一维寻优法 此时的 ( x
(k )
p ) 已成为步长 的一元函数,
k
故可用任意一种一维寻优法求出 k , 即
x(2) x(1) 1 p1 ( 36 8 T , ) 31 31
13 62
关于相邻连个梯度的关系
n 1 1 n n 函数 : R R ; ( x) ( Ax, x) (b, x) aij xi x j b j x j 2 2 i 1 j 1 j 1
n
( Ax ( k ) b, p ( k ) ) k 的表达式可表示为 k ( Ap ( k ) , p ( k ) )
因为 p
(k )
( x ( k ) ) b Ax ( k )
( p(k ) , p(k ) ) 所以 k 可表示为 k ( Ap ( k ) , p ( k ) )
(k )
f ( x( k ) ) ;
(k )
4 进行一维搜索,求 k ,使得 f ( x 令x
( k 1)
k p ( k ) ) min f ( x ( k ) p ( k ) )
0
x( k ) k p ( k ) , k : k 1 ,转第二步。

最速下降法基本思想
从当前点 出发,取函数在该点 处下降最快的 方向作为搜索方向 。 任一点的负梯度方向是函数值在该点下降最快 的方向。 将n维问题转化为一系列沿负梯度方向用一维 搜索方法寻优的问题。

定义函数:

ቤተ መጻሕፍቲ ባይዱ
可微。
梯度的概念: 是定义在 量为 即 上的可微函数,称以 的 n 个偏导数为分量的向
由以上计算步骤可知,最速下降法迭代终止时,求得的是目标函数驻点的一个 近似点。
例题
求解 min f ( x) x1 3x2 ,设初始点为 x
2 2
(1)
(2,1)T
求迭代一次后的迭代点 x 解:因为 所以 所以 令 求解 令 所以
(2)
f ( x) (2 x1 , 6 x2 )T
的梯度,记作
函数的梯度是一个向量,

处的梯度向量为:
梯度方向是函数在该点增长最快的方向,负梯度方向是函数 在该点减少最快的方向。 如下示意图:
令 p ( k ) ( x ( k ) ) , k 为在 x
(k )
点沿最速下降
方向 p ( k ) 所走的距离,最优步长。 可有最速下降法的迭代公式:
( x ( k 1) ) ( x ( k ) k p k ) min ( x ( k ) p k )
R
计算步骤 1 选取初始点 x(0) ,给点终止误差 0 ; 2 计算 f ( x) ,若 f ( x) ,停止迭代,输出 x( k ) ,否则,进行第三步; 3 取p
p1 f ( x (1) ) (4, 6)T x(1) p1 (2 4 ,1 6 )T
( ) f ( x(1) p1 ) (2 4 )2 3(1 6 ) 2
min ( x)

' ( ) 8(2 4 ) 36(1 6 ) 0 1
相关文档
最新文档