高中数学必修二数列数列总知识点
高中数列知识点归纳总结

高中数列知识点归纳总结在高中数学学习中,数列是一个重要的知识点。
数列是按照一定规律排列的一组数,常常出现在各种数学问题中。
本文将对高中数列知识点进行归纳总结。
一、数列的概念和表示方法数列是按照一定规律排列的一组数,可以用一般的表示方法或者递推公式表示。
一般形式为{a1, a2, a3, ...}或者{an},其中a1, a2, a3, ...为数列的项。
二、等差数列等差数列是指数列中相邻两项之差都相等的数列。
公差是指相邻两项的差值。
常用表示形式为{a, a+d, a+2d, ...}或者{an},其中a为首项,d为公差。
等差数列有以下重要性质:1. 第n项公式:an = a + (n-1)d2. 前n项和公式:Sn = (2a + (n-1)d)n/23. 若数列的首项、末项和项数之一确定,则数列可以唯一确定。
三、等比数列等比数列是指数列中相邻两项之比都相等的数列。
公比是指相邻两项的比值。
常用表示形式为{a, ar, ar^2, ...}或者{an},其中a为首项,r为公比。
等比数列有以下重要性质:1. 第n项公式:an = ar^(n-1)2. 前n项和公式(当r≠1):Sn = a(1-r^n)/(1-r)3. 若数列的首项、末项和项数之一确定,则数列可以唯一确定。
四、斐波那契数列斐波那契数列是指数列中每一项都是前两项之和的数列。
常用表示形式为{0, 1, 1, 2, 3, 5, ...}或者{Fn},其中F0 = 0, F1 = 1,Fn = F(n-1) + F(n-2)(n≥2)。
斐波那契数列是一种特殊的等差数列,具有很多有趣的性质,例如黄金分割比。
五、数列的递推关系和通项公式数列的递推关系是指数列中的每一项与前一项之间的关系。
通项公式是指数列中第n项与n的关系。
对于等差数列和等比数列,一般可以根据递推关系或者通项公式进行求解。
六、数列的求和问题求和问题是数列的一个常见应用,求和公式是指前n项和与n的关系。
高中数学 必修第二册 数列的概念

第一章 数列最新课程标准1.通过日常生活和数学中的实例,了解数列的概念和表示方法(列表、图象、通项公式).2.了解数列是一种特殊函数.学科核心素养1.了解数列的相关概念.(数学抽象)2.了解数列的函数特性、数列的通项公式.(数学抽象)3.能根据数列的前几项写出数列的通项公式.(逻辑推理、数学建模)1.1 数列的概念[教材要点]要点一 数列的有关概念及表示方法1.数列的有关概念(1)数列:按________排列的一列数叫作数列.(2)数列的项:数列中的________叫作这个数列的项. 2.数列的表示方法数列的一般形式可以写成a 1,a 2,a 3,…,a n ,…或简记为数列{a n },其中a 1是数列的第1项,也叫数列的________;a n 是数列的第n 项,也叫数列的________.状元随笔 (1)数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(2)数列1,2,3,4,5和数列5,3,2,4,1为两个不同的数列,因为二者的元素顺序不同,而集合{1,2,3,4,5}与这两个数列也不相同,一方面形式上不一致,另一方面,集合中的元素具有无序性.要点二数列的分类根据数列的项数可以将数列分为两类: (1)有穷数列:项数________的数列; (2)无穷数列:项数________的数列.状元随笔 有穷数列与无穷数列的表示方法:(1)有穷数列一般表示为a 1,a 2,a 3,…,a m ;无穷数列一般表示为a 1,a 2,a 3,…,a m ,…. (2)对于有穷数列,要把末项(即最后一项)写出来,对于无穷数列,不存在最后一项,要用“…”结尾.要点三 数列的通项公式如果数列{a n }的第n 项________与________之间的函数关系可以用一个式子表示成________,那么这个式子就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式.状元随笔 (1)数列的通项公式必须适合数列中的任意一项.(2)已知通项公式a n =f(n),那么只需依次用1,2,3,…代替公式中的n ,就可以求出这个数列的各项.(3)一个数列的通项公式可以有不同的形式,如a n =(-1)n 可以写成a n =(-1)n +2,还可以写成a n ={−1,n =2k −1,1,n =2k(k ∈N *),这些通项公式虽然形式上不同,但都表示同一数列.(4)并不是所有的数列都有通项公式,就像并不是所有的函数都能用解析式表示一样.[基础自测]1.判断正误(正确的画“√”,错误的画“×”) (1){0,1,2,3,4}是有穷数列.( )(2)数列1,2,3,4和数列1,2,4,3是同一数列.( ) (3)所有自然数能构成数列.( )(4)数列1,3,5,7,…,2n +1,…的通项公式是a n =2n +1.( ) 2.(多选题)数列-1,1,-1,1,…的通项公式可以为( )A .a n =(-1)n -1 B .a n =(-1)n C .a n =cos n π D .a n =sin n π3.已知数列{a n }的通项公式是a n =n 2+1,则122是该数列的( ) A .第9项 B .第10项 C .第11项 D .第12项4.数列1,2,√7,√10,√13,…中的第26项为________.题型一 数列的概念与分类例1 (多选题)下列说法正确的是( ) A .数列4,7,3,4的首项是4B .数列{a n }中,若a 1=3,则从第2项起,各项均不等于3C .数列1,2,3,…就是数列{n }D .数列中的项不能是三角形方法归纳 正确理解数列及相关概念,注意以下几点:(1)数列与数集不同,数集具有互异性和无序性,而数列中各项可以相同,但与顺序有关;(2)数列a 1,a 2,…,a n ,…可以记为{a n },但不能记作{a 1,a 2,…,a n ,…}.跟踪训练1 (多选题)下列说法正确的是( ) A .数列{2n +1}的第5项是10B .数列1,12,13,…,1n ,…可以记为{1n }C .数列3,5,7与数列5,7,3是相同的数列D .数列1,2,3,4,5,…,n ,…是无穷数列 题型二 根据数列的前几项写出通项公式例2 写出数列的一个通项公式,使它的前4项是下列各数: (1)-1,12,-13,14;(2)√3,3,√15,√21;(3)0.9,0.99,0.999,0.999 9; (4)3,5,3,5.方法归纳(1)据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征: ①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征;④各项符号特征等,并对此进行归纳、联想.(2)观察、分析数列中各项的特点是最重要的,观察出项与序号之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.跟踪训练2 写出下列数列的一个通项公式: (1)0,3,8,15,24,…; (2)1,-3,5,-7,9,…; (3)112,223,334,445,…;(4)1,11,111,1 111,….题型三数列通项公式的简单应用例3已知数列{a n}的通项公式为a n=3n2-28n.(1)写出此数列的第4项和第6项.(2)-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢?如果是,应是哪一项?变式探究本例中,数列{a n}中有多少个负数项?方法归纳(1)利用数列的通项公式求某项的方法数列的通项公式给出了第n项a n与它的位置序号n之间的关系,只要用序号代替公式中的n,就可以求出数列的相应项.(2)判断某数值是否为该数列的项的方法先假定它是数列中的第n项,然后列出关于n的方程.若方程解为正整数则是数列的一项;若方程无解或解不是正整数,则不是该数列的一项..跟踪训练3已知数列{a n}的通项公式为a n=4n2+3n(1)写出数列的第4项和第6项.(2)试问1是该数列的项吗?若是,是第几项?若不是,请说明理由.10易错辨析忽略了相邻正方形的公共边而致误例4图中由火柴棒拼成的一列图形中,第n个图形由n个正方形组成.通过观察可以发现:第n个图形中,火柴棒的根数为________________________________________________________________________.解析:因为每两个相邻的正方形均有1条公共边,所以第二个图形的火柴棒根数为2×3+1.第三个图形的火柴棒根数为3×3+1.……第n个图形的火柴棒根数为3n+1.答案:3n+1[课堂十分钟]1.数列0,-13,12,-35,23,…的通项公式为()A.a n=(-1)n·n−2n+1B.a n=(-1)n+1·n−1n+2C.a n=(-1)n-1·n−1n+1D.a n=(-1)n-1·n−2n+22.在数列-1,0,19,18,…,n−2n2,…中0.08是它的()A.第100项B.第12项C.第10项D.第8项3.已知数列{a n}的通项公式为a n=n2-n,则下列结论正确的是() A.第2项a2=0 B.0不是数列中的一项C.21是数列中的一项D.42是数列中的一项4.若数列{a n}的通项公式是a n=3-2n,则a2n=________,a2a3=________.5.写出数列a n=2nn+1的前5项,并用图象表示出来.第一章数列§1数列的概念及其函数特性1.1数列的概念新知初探·课前预习要点一1.(1)一定次序(2)每一个数2.首项通项要点二(1)有限(2)无限要点三a n n a n=f(n)[基础自测]1.答案:(1)×(2)×(3)√(4)×2.答案:BC3.解析:由a n=n2+1=122,得n2=121.∴n=11.故选C.答案:C4.解析:因为a1=1=√1,a2=2=√4,a3=√7,a4=√10,a5=√13,所以a n=√3n−2,所以a26=√3×26−2=√76=2√19.答案:2√19题型探究·课堂解透题型一例1解析:根据数列的相关概念,数列4,7,3,4的第1项就是首项4,A正确;同一个数在数列中可以重复出现,B 错误;根据数列的相关概念可知C 正确;数列中的项必须是数,不能是其他形式,D 正确.故选ACD. 答案:ACD跟踪训练1 解析:当n =5时,a 5=11,A 错误;B 正确;因为数列是按一定次序排成的一列数,C 错误;D 正确.故选BD. 答案:BD 题型二例2 解析:(1)任何一个整数都可以看成一个分数,所以此数列可以看做是自然数列的倒数,正负相间用(-1)的多少次幂进行调整,其一个通项公式为a n =(-1)n ·1n (n ∈N +).(2)数列可化为√3,√9,√15,√21,即√3×1,√3×3,√3×5,√3×7,…,每个根号里面可分解成两数之积,前一个因数为常数3,后一个因数为2n -1,故原数列的一个通项公式为a n =√3(2n −1)=√6n −3(n ∈N +).(3)原数列可变形为(1−110),(1−1102),(1−1103),(1−1104),…,故数列的一个通项公式为a n =1-110n (n ∈N +).(4)数列给出前4项,其中正奇数项为3,正偶数项为5,所以通项公式的一种表示方法为a n ={3 (n 为正奇数)5 (n 为正偶数).此数列还可以这样考虑,3与5的算术平均数为3+52=4,4+1=5,4-1=3,因此数列的一个通项公式又可以写为a n =4+(-1)n (n ∈N +).跟踪训练2 解析:(1)观察数列中的数,可以看到0=1-1,3=4-1,8=9-1,15=16-1,24=25-1,…,所以它的一个通项公式是a n =n 2-1(n ∈N *).(2)数列各项的绝对值为1,3,5,7,9,…,是连续的正奇数,并且数列的奇数项为正,偶数项为负,所以它的一个通项公式为a n =(-1)n +1(2n -1)(n ∈N *).(3)此数列的整数部分1,2,3,4,…恰好是序号n ,分数部分与序号n 的关系为nn+1,故所求的数列的一个通项公式为a n =n +n n+1=n 2+2n n+1(n ∈N *).(4)原数列的各项可变为19×9,19×99,19×999,19×9 999,…,易知数列9,99,999,9 999,…的一个通项公式为a n =10n -1,所以原数列的一个通项公式为a n =19(10n -1)(n ∈N *).题型三例3 解析:(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)-49是该数列的一项,68不是该数列的项. 由3n 2-28n =-49, 解得n =7或n =73(舍去), 所以-49是该数列的第7项;由3n 2-28n =68解得n =-2或n =343,均不合题意, 所以68不是该数列的项.变式探究 解析:a n =3n 2-28n =n (3n -28), 令a n <0,则0<n <283,又n ∈N +,所以n =1,2,3,4,5,6,7,8,9. 即数列{a n }中共有9个负数项. 跟踪训练3 解析:(1)因为a n =4n 2+3n ,所以a 4=442+3×4=17,a 6=462+3×6=227. (2)110是该数列的项,令4n 2+3n =110,则n 2+3n -40=0,解得n =5或n =-8,注意到n ∈N *, 故将n =-8舍去,所以110是该数列的第5项.[课堂十分钟]1.解析:当n =1时,排除A 、D ,当n =2时,排除B ,故选C. 答案:C2.解析:由题意知,a n =n−2n 2. 令a n =0.08,即n−2n 2=8100,所以n =10或n =52(舍去),故选C. 答案:C3.解析:令n 2-n =42,解得n =7(n =-6舍去).故42是数列的第7项,其余选项均错.故选D. 答案:D4.解析:根据通项公式我们可以求出这个数列的任意一项. 因为a n =3-2n , 所以a 2n =3-22n =3-4n ,a 2a 3=3−223−23=15.答案:3-4n 155.解析:数列{a n }的前5项依次是1,43,32,85,53.图象如图.。
高中数学数列知识点总结(精华版)

一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项 a n与项数 n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集( 或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列 a n的第 n 项与序号之间可以用一个式子表示, 那么这个公式叫做这个数列的通项公式,即a n f (n) .3. 递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a n 1(或前几项)间的关系可以用一个式子来表示,即 a n f (a n 1 ) 或 a n f (a n 1 , a n 2 ) ,那么这个式子叫做数列a n的递推公式 . 如数列a n中, a1 1, a n2a n 1 ,其中a n2a n 1 是数列 a n的递推公式 .4.数列的前 n项和与通项的公式① S n a1 a2a n;② a nS1 (n1)S n .S n 1 ( n 2)5. 数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列 .①递增数列 : 对于任何n N , 均有 a n 1②递减数列 : 对于任何n N , 均有 a n 1③摆动数列 : 例如 :1,1,1,1,1, .④常数数列 : 例如 :6,6,6,6, ,,.⑤有界数列 : 存在正数M 使 a n M , n a n .a n . N.⑥无界数列 : 对于任何正数M , 总有项 a n使得 a n M .1、已知 a n n (n N *) ,则在数列 { a n } 的最大项为 __(答: 1 );n2156an 252、数列 { a n } 的通项为a n,其中 a,b 均为正数,则 a n与 a n 1的大小关系为 ___(答:bn 1a n a n 1);3、已知数列 { a n }中,a n n2n ,且 { a n } 是递增数列,求实数的取值范围(答:3 );4、一给定函数y f (x) 的图象在下列图中,并且对任意a1(0,1) ,由关系式 a n 1 f (a n )得到的数列{ a n }满足 a n 1 a n(n N *),则该函数的图象是()(答: A )二、等差数列1、等差数列的定义:如果数列an 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高中数学数列知识点归纳

高中数学数列知识点归纳一、数列的概念数列是按照一定顺序排列的一列数。
例如,1,2,3,4,5……就是一个自然数列。
数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……以此类推。
数列的一般形式可以写成 a₁,a₂,a₃,…,aₙ,…,其中 aₙ 是数列的第 n 项。
我们用{aₙ} 来表示一个数列。
二、数列的分类1、按项数分类(1)有穷数列:项数有限的数列。
例如,数列 1,2,3,4,5 就是一个有穷数列。
(2)无穷数列:项数无限的数列。
比如自然数列 1,2,3,4,……就是一个无穷数列。
2、按项的大小变化分类(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。
例如,数列 1,2,4,8,16,……就是一个递增数列。
(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。
比如数列 10,8,6,4,2 就是一个递减数列。
(3)常数列:各项都相等的数列。
例如,数列 3,3,3,3,……就是一个常数列。
(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。
比如数列 1,-1,1,-1,1,……就是一个摆动数列。
三、数列的通项公式如果数列{aₙ} 的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。
例如,数列 1,3,5,7,9,……的通项公式为 aₙ = 2n 1 。
通项公式可以帮助我们快速求出数列中的任意一项,也能让我们更深入地了解数列的性质。
四、数列的递推公式如果已知数列{aₙ} 的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。
例如,已知数列{aₙ} 的首项 a₁= 1 ,且 aₙ = aₙ₋₁+ 2 (n ≥2 ),则可以依次求出 a₂= a₁+ 2 =3 ,a₃= a₂+ 2 = 5 ,……五、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
高中数学数列知识点总结

高中数学数列知识点总结数列是数学中非常重要的概念,它也是许多数学问题的基础。
在高中数学中,数列的学习是必不可少的一部分。
本文将对高中数学中的数列知识点进行总结,包括数列的定义、常见的数列类型、数列的性质和应用。
一、数列的定义数列是按照一定规律排列的一组数,一般用字母表示。
数列中的每个数称为数列的项,用 a₁, a₂, a₃, ... 表示。
数列的第一项 a₁、第二项 a₂、第三项 a₃依次类推,这些项的下标表示了它们的位置。
二、常见的数列类型在高中数学中,常见的数列类型包括等差数列、等比数列和斐波那契数列。
1. 等差数列(Arithmetic Progression,简称AP):等差数列指的是该数列中每两项之间的差都是相等的。
如果一个数列的公差为 d,首项为 a₁,则该等差数列可以表示为 a₁, a₁+d, a₁+2d, ...2. 等比数列(Geometric Progression,简称GP):等比数列指的是该数列中每两项之间的比都是相等的。
如果一个数列的公比为 r,首项为 a₁,则该等比数列可以表示为 a₁, a₁r, a₁r², ...3. 斐波那契数列(Fibonacci Sequence):斐波那契数列是一个特殊的数列,除了前两项以外,从第三项开始,每一项都是前两项的和,即 Fₙ = Fₙ₋₁ + Fₙ₋₂。
其中,F₁ = 1,F₂ = 1。
三、数列的性质数列有一些重要的性质,这些性质对于解题具有重要的指导意义。
1. 通项公式:对于每个数列,都存在一个通项公式,可以通过该公式直接计算数列中的任意一项。
例如,等差数列的通项公式为 an = a₁+ (n-1)d,等比数列的通项公式为 an = a₁r^(n-1)。
2. 前 n 项和:数列的前 n 项和可以通过求和公式来计算。
对于等差数列,前 n 项和为 Sn = (a₁ + an)n/2;对于等比数列,有 Sn = a₁(r^n - 1)/(r - 1)。
高中数学数列知识点总结5篇

高中数学数列知识点总结5篇篇1一、数列的基本概念数列是一种特殊的函数,其定义域为自然数集或其自然数子集。
数列分为等差数列和等比数列两种基本形式,此外还有更为复杂的数列形式。
数列的通项公式是描述数列的一般规律的重要工具,对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1×q^(n-1)。
掌握数列的基本概念对于后续的学习至关重要。
二、等差数列等差数列是一种常见且重要的数列形式,其任意两项之差都相等。
在等差数列中,需要掌握的主要知识点包括等差数列的通项公式、求和公式、中项公式等。
等差数列的求和公式为Sn=n(a1+an)/2或Sn=na1+[n(n-1)/2]d,这些公式在处理与等差数列相关的问题时非常实用。
等比数列的特点是任意两项之比都相等。
在等比数列中,需要掌握的知识点包括等比数列的通项公式、求和公式以及公比的概念。
等比数列的求和公式为Sn=a1(1-q^n)/(1-q),掌握这个公式对于解决涉及等比数列的问题非常关键。
四、数列的极限数列的极限是描述数列变化趋势的重要概念。
当n趋近于无穷大时,数列的项会趋近于一个固定的值,这个值就是数列的极限。
掌握数列极限的概念和计算方法是分析数列性质的重要工具。
五、数列的应用数列在实际生活中有着广泛的应用,如金融、物理、工程等领域。
例如,在金融领域,复利计算就涉及等比数列的应用;在物理领域,许多物理量的变化可以看作是等差或等比数列的形式。
掌握数列的应用对于解决实际问题具有重要意义。
除了等差数列和等比数列外,还有一些特殊数列需要了解,如斐波那契数列、三角数列等。
这些数列具有独特的性质和应用场景,了解这些数列有助于拓宽数学视野,提高数学素养。
七、数列的证明在数列的学习中,还需要掌握一些证明方法,如数学归纳法、反证法等。
这些证明方法在证明数列的性质和解决问题时非常有用。
掌握这些证明方法有助于提升数学思维和逻辑推理能力。
综上所述,高中数学中的数列知识点丰富且重要,需要掌握基本概念、等差数列和等比数列的性质、数列的极限、应用、特殊数列以及证明方法等方面的知识。
高中数列知识点归纳总结大全

高中数列知识点归纳总结大全数列是数学中一个基础而重要的概念,广泛应用于各个领域。
在高中数学学习中,数列的概念与应用也是不可或缺的内容。
本篇文章将对高中数列的知识点进行归纳总结,旨在帮助读者系统理解和掌握数列的相关概念和性质。
一、数列的基本概念和性质1. 数列的定义:数列是按照一定顺序排列的数,用字母a、b、c…表示。
2. 公式与通项公式:数列的通项公式是指数列中的第n个数与n的关系式,通常用an表示。
3. 数列的项和:数列的项和是指数列中前n项的和,常用Sn表示。
4. 等差数列:等差数列是指一个数列中的相邻两项之差等于同一个常数d。
5. 等差数列的通项公式与项和公式:对于等差数列an,它的通项公式为an = a1 + (n - 1)d,项和公式为Sn = (a1 + an)n/2。
6. 等比数列:等比数列是指一个数列中的相邻两项之比等于同一个常数q。
7. 等比数列的通项公式与项和公式:对于等比数列an,它的通项公式为an = a1 * q^(n - 1),项和公式为Sn = a1 * (q^n - 1)/(q - 1)。
二、数列的应用1. 等差数列的应用:等差数列可以描述各种线性变化的情况,例如描述自然数序列、等差数列求和、等差数列的推广等。
2. 等比数列的应用:等比数列常用于表示指数增长或指数衰减的情况,例如人口增长、物种繁殖、金融利率等方面。
3. 斐波那契数列:斐波那契数列是一个特殊的数列,其前两项为1,从第三项开始,每一项均为前两项之和。
斐波那契数列在自然界中普遍存在,如植物的叶子排列、蜂窝的排列等。
4. 数列与函数关系:数列与函数有着密切的联系,可以将数列看作离散的函数,通过数列的性质与函数的性质相互转化。
三、常见数列的特殊性质1. 等差数列的前n项和的性质:对于等差数列an,其前n项和为Sn = (n/2)(a1 + an)。
2. 等差数列的中项:对于等差数列an,当n为奇数时,中项为am= a((n+1)/2),当n为偶数时,不存在中项。
高中数学数列知识点总结(优秀3篇)

高中数学数列知识点总结(优秀3篇)科学是一种以实证为基础,追求真理和解决问题的方法论,它致力于揭示客观规律和产生创新。
哲学是一种以思辨为基础,追求人类意义和价值的方法论,它致力于探究人类的本质和存在。
为您精心收集了3篇《高中数学数列知识点总结》,亲的肯定与分享是对我们最大的鼓励。
高中数学数列知识点总结篇一数列的相关概念1.数列概念①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
等差数列1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二数列数列总知识点
1. 数列的定义与概念
- 数列是指由一系列按照一定规律排列的数构成的序列。
- 数列中的每个数称为项,用an表示第n项。
- 数列按照一定规律排列的规律称为通项公式,用an = f(n)表示。
- 数列的表示方法有通项公式、递推公式和图形表示等。
2. 等差数列
- 等差数列是指数列中相邻两项之间差相等的数列。
- 等差数列的通项公式为an = a1 + (n - 1)d,其中a1为首项,d 为公差,n为项数。
- 等差数列的前n项和公式为Sn = (a1 + an) * n / 2。
3. 等比数列
- 等比数列是指数列中相邻两项之间比相等的数列。
- 等比数列的通项公式为an = a1 * r^(n - 1),其中a1为首项,r 为公比,n为项数。
- 等比数列的前n项和公式为Sn = a1 * (1 - r^n) / (1 - r),当|r| <
1时成立。
4. 通项公式的推导
- 对于一些特定的数列,可以通过观察规律或利用数学方法推
导出通项公式。
- 例如,斐波那契数列的通项公式为an = (φ^n - (1 - φ)^n) / √5,其中φ为黄金分割比。
5. 常见数列的性质与应用
- 数列的性质包括单调性、有界性、极限等,这些性质在数学
应用中起到重要作用。
- 等差数列和等差中项数列常用于计算物体运动的位置和速度
等问题。
- 等比数列常用于计算复利、投资等涉及指数增长的问题。
以上是高中数学必修二数列的总知识点,希望对你的研究有所
帮助!。