最优化搜索算法结构
最优化方法第二章_线搜索算法_最速下降法

f x1 , x2 c, c>0,
2
改写为:
x12 2c 1
2 x2
2c 2
2
1
二、最速下降法
x2
这是以
2c
1
和
2c
2
为半轴的椭圆
2c
2c
2
2
从下面的分析可见 两个特征值的相对
x1
大小决定最速下降法的收敛性。
(1)当 1 2 时,等值线变为圆
2 2
4 f x , 2
2 x1 2 x2 4 f ( x) , 2 x1 +4x2
4 d = f x , 2
0 0
=40 2 20 3 令 0= ' ( ) 80 20, 得 0 =1/4,
一
一维搜索
二 三 四
下 降 算 法
五
最速下降法 Newton法 共轭梯度法
多尺度法 (拟Newton法)
二、最速下降法 假设 f 连续可微,取 线搜索方向
k
d f ( x )
k
步长k 由精确一维搜索得到。 从而得到第 k+1次迭代点,即
f ( x k k d k ) min f ( x k d k )
(推论)在收敛定理的假设下,若f (x)为凸函数,则最速下降 法或在有限迭代步后达到最小点;或得到点列 x k ,它的任 何聚点都是 f (x)的全局最小点。
二、最速下降法
最速下降法特征:相邻两次迭代的方向互相垂直。
令
( ) f ( x d ), 利用精确一维搜索,可得
最优化方法-一维搜索

按任务方式插入n个观测点后,剩下的搜索区间的长度不少于原初始长 度的1/ Fn
令缩短后的长度为S,有: S (b-a)/ Fn
• Fibonacci数列:
• =b- (b-a)=a+(1- )(b-a)
• =a+ (b-a)
•
• 2 0.618法算法
设
值
(t)是单谷函数,[ a
t
与精确极小点
t*
0的,最b大0 ]绝是对初误始差搜t索 区t * 间 , 要求精确极小点近似
记:a= a0,b= b0 , =0.618.
(1) =a+(1- )(b-a), 1 = ()
进退算法的基本步骤:
(((t01 2 3点 回)))及升:::,首若若t则0先[+tt任t00h0++选点,hh一t的点点n个函]的的初数就函 函始值是数 数点.一值 值个下 上t0搜降 升,索, ,初区继 则始间续 从步,前长t算进0h法点,,进停退直到止到到.t某0t个+0 -ht,h0点并点.计的算函数值
4= a4 +( F0 / F2
b4
)(
=
b4
3 /a4
=2.5 , 4= 3 = 1.625
)=0.75+1/2*1.75=1.625
这时,
=
4
,(因为已到k=3=n-2)
4
K=4, 因此
(5取5 =)a=0t5.41===410.,.6542((5=b,515).+5=6=02a.550,47b+6)50,.=1==2(1.b.05476)2255>=2(.55 )
最优化问题的算法迭代格式

最优化问题的算法迭代格式最优化问题的算法迭代格式最优化问题是指在一定的条件下,寻找使某个目标函数取得极值(最大值或最小值)的变量取值。
解决最优化问题的方法有很多种,其中较为常见的是迭代法。
本文将介绍几种常用的最优化问题迭代算法及其格式。
一、梯度下降法梯度下降法是一种基于负梯度方向进行搜索的迭代算法,它通过不断地沿着目标函数的负梯度方向进行搜索,逐步接近极值点。
该方法具有收敛速度快、易于实现等优点,在许多应用领域中被广泛使用。
1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和学习率 $\alpha$,梯度下降算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 更新当前点 $x_k$ 为 $x_{k+1}=x_k-\alpha\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则返回第 1 步。
2. 算法特点- 沿着负梯度方向进行搜索,能够快速收敛;- 学习率的选择对算法效果有重要影响;- 可能会陷入局部极小值。
二、共轭梯度法共轭梯度法是一种基于线性方程组求解的迭代算法,它通过不断地搜索与当前搜索方向共轭的新搜索方向,并在该方向上进行一维搜索,逐步接近极值点。
该方法具有收敛速度快、内存占用少等优点,在大规模问题中被广泛使用。
1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和初始搜索方向 $d_0$,共轭梯度算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则进行下一步;- 计算当前搜索方向 $d_k$;- 在当前搜索方向上进行一维搜索,得到最优步长 $\alpha_k$;- 更新当前点为 $x_{k+1}=x_k+\alpha_k d_k$;- 计算新的搜索方向 $d_{k+1}$;- 返回第 2 步。
2. 算法特点- 搜索方向与前面所有搜索方向都正交,能够快速收敛;- 需要存储和计算大量中间变量,内存占用较大;- 可以用于非线性问题的求解。
工程优化方法第1章

一致性 5 )灵敏性分析:参数扰动对解的影响情况 6 )解的实施:回到实践中 7 )后评估:考察问题是否得到完满解决
工程优化方法第1章
§3 基本概念 1、最优解与极值点
p m x iR n n fx s.t. gix0
设 f: D→ R 1( D R)n (D-定义域) (1) x 为D的一个内点; (2) f(x)在 x 可微; (3) x 为f(x)的极值点;
则: f x 0
工程优化方法第1章
Th3(充分条件) : 设 f: D→ R(1 D )Rn(D-定义域)
(1) x 为D的一个内点; (2) f(x)在 x 处二次可微;
2 f
x12
2 f x2x1
2 f
x
n
x1
2 f x1x2
2 f x22
2 f x1x3 2 f x2x3
2 f
2 f
xnx2 xnx3
2 f
x1xn
2 f
x2xn
2 f
xn2
线性函数:f (x) = cTx + b , 2f (x) = 0
二次函数:f (x) = (1/2) xTQx + cTx + b,
则 x ≤ 0, ≥ 0 . (2)若 xTy ≤ , y L Rn ,
则 x L, ≥ 0 .(特别, L=Rn时,x =0)
定理的其他形式:
“若 xTy ≤ , yRn 且 y ≤ 0,则 x ≥ 0, ≥ 0 .” “若 xTy ≥ , yRn 且 y ≥ 0,则 x ≥ 0, ≤ 0 .” “若 xTy ≥ , yRn 且 y ≤ 0,则 x ≤ 0, ≤ 0 .” “若 xTy ≥ , y L Rn , 则 x L, ≤ 0 .”
第二章最优化方法——直线搜索

单谷函数的这一性质可用来将搜索区间无限缩小, 以至求到极小点。
本章下面就介绍的直线搜索法,第一步就是要找一 个初始搜索区间,下面就介绍一种有效的找初始搜索区 间的 方法。
算法1:(搜索区间的确定)已知目标函数 (t ) 。
〈1〉 选择初始点t0和步长 h.
〈2〉 比较(t0 )和(t0 h) 的值,转<3>,<4> 〈3〉若 (t0 ) (t0 ,h)比较 (t0)和(t0 ,h) 转 <5>,
这是~(t0 )的唯一极小点,可作为 (t)极小点t*的一个 近但似~t 。中因要此计想算到二用阶导数~t 。t一0 般作来为说初计始算步二长阶h。导数比较困
难,而一阶导数即使较困难,也可用差分近似,因此, 要想办法避免二阶导数的计算。
假若似设对。某(个t)的~t极,小使值得可~以(~t估) 计出e ,来则,将如为~t作为e ,t*即的一 (个t*近) e
若仍然有 a t0,b t1,则取 t1 0 t2 t1 t
(或将t 放大一倍,即取 t2 t1 2t )若t2 0则以
t1, t2 作区间[a,b];否则继续下去。
对于 t0 0 的情况,可类似于上面在 t0 左侧取点。
若t1<t3< t2,也可将搜索区间 t1, t2记为 t1, t3, t2
单谷函数的性质:
设 a,b是单谷函数极小点的一个搜索区间。在
(a,b)上任取两点t1,t2,使t1< t2,若(t1) (t2 ) 则a, t2
是 (t) 极小点的一个搜索区间;若(t1) (t2 ) ,则t1, b
(t0 (2k 1)h), k 1,2,... , 直到有某个m(≥1)使 (t 0(2m1 1)h) (t0 (2m 1)h) (t0 (2m1 1)h)
最优化计算方法(工程优化)第1章

最优化在物质运输、自动控制、机械设计、采矿冶金、经 济管理等科学技术各领域中有广泛应用。下面举几个简单的实 例。
例1:把半径为1的实心金属球熔化后,铸成一个实心圆柱体, 问圆柱体取什么尺寸才能使它的表面积最小?
解:决定圆柱体表面积大小有两个决策变量:圆柱体底面半 径r、高h。
问题的约束条件是所铸圆柱体重量与球重相等。即
优化模型的分类
根据问题的不同特点分类
一般的约束优化问题
标准形式
min
xRn
f
x
s.t. gi x 0, i 1, 2, , m
1) gi x 0 -gi x 0
2)
hi
x
0
hi x 0
-hi
x
0
优化模型的分类
根据函数类型分类
线性规划:目标函数、约束条件都是线性的 非线性规划:目标函数、约束条件中的函数不全是线性
yi
a1
1
a3
ln 1
a2 exp
xi
a4 a5
最优化问题举例
例3已:知有从一v旅i 到行团v j从的v旅0费出为发要cij遍,游问城应市如何v1安, v排2 行,..程.,使vn总 ,
费用最小?
模型:
变量—是否从i第个城市到第j个城市
xij 1, 0;
约束—每个城市只能到达一次、离开一次
因此,我们在学习本课程时要尽可能了解如何 由实际问题形成最优化的数学模型。
数学模型: 对现实事物或问题的数学抽象或描述。
最优化问题的数学模型与分类
数学模型的建立
建立数学模型时要尽可能简单,而且要能完整地描 述所研究的系统。
过于简单的数学模型所得到的结果可能不符合实际情 况;而过于详细复杂的模型又给分析计算带来困难。
基于随机程序优化的最优化搜索算法研究

基于随机程序优化的最优化搜索算法研究随机程序优化算法(Stochastic Optimization Algorithm,SOA)是指在概率论的基础上,通过一定的随机性生成搜索点,并利用产生的搜索点来解决最优化问题的一类求解算法。
基于此,结合最优化搜索的研究,本文将探究基于随机程序优化的最优化搜索算法。
一、概述最优化搜索算法是一种经典的求解最优化问题的方法。
而SOA则是建立在优化算法上的一种新型概率型寻优方法。
相比其他优化方法,其具有寻优速度快,局部最优解碳化概率低的优点,适用于许多传统方法无法解决的问题。
因此,基于SOA的最优化搜索算法被广泛应用于复杂多变的工程实践中。
二、基本原理SOA中随机性体现在搜索点的生成中,即搜索点的位置不是由优化算法决定的,而是通过随机过程生成的。
这样,搜索过程有其随机性,从而避免了落入局部最优解的风险。
SOA的基本思想是利用随机过程生成一批搜索点,然后根据一定的仿真和评价方法对这些点进行探测、筛选和改进,最终得到全局最优解。
通常,SOA算法依赖于种群,其搜索过程以种群作为单位进行进化。
每个个体都由一组参数表示,在每一次进化中,种群中的每一个个体根据一定的概率互相交叉、变异或选择,从而模拟自然界中生物进化过程。
在SOA中,通常使用适应度函数作为评价函数,以在搜索过程中对个体进行筛选和改进。
适应度函数评价每个搜索点的好坏程度。
通过这样的经过筛选后,留下更适合解决问题的点,并从中产生新的搜索点。
这样不断重复迭代,最终找到全局最优解。
三、常用算法在随机程序优化的最优化搜索算法中,遗传算法(GA)和模拟退火算法(SA)是两种应用广泛的方法。
1、遗传算法(GA)遗传算法是模拟生物进化规律,通过模拟交叉、变异等生物遗传学的基本操作,人工地将优秀个体的基因遗传到下一代中,并改变其中部分基因的目标函数值。
从而实现种群的进化性质,最终选取进化完成的个体,得到全局最优解。
2、模拟退火算法(SA)模拟退火算法是一种类似于物理退火过程的优化算法。
基于最优化方法的结构可靠度计算及matlab程序实现

基于最优化方法的结构可靠度计算及matlab程序实现一、引言随着科技的飞速发展,现代化的工程、机械、技术装备等趋于复杂,对其结构可靠性提出了更高的要求。
结构可靠度分析是为了确保这些工程在设计、施工、管理、应用等环节能够安全、可靠地运行。
最优化方法作为一种求解问题的有效手段,在结构可靠度计算中得到了广泛的应用。
本文将探讨基于最优化方法的结构可靠度计算及MATLAB程序实现,以期为相关领域的研究和工程实践提供参考。
二、最优化方法的理论基础1.优化算法的选择在结构可靠度计算中,优化算法主要用于求解最优化问题。
常见的优化算法有梯度下降法、牛顿法、拟牛顿法、信赖域反射算法等。
针对结构可靠度计算的特点,本文选取一种适用于求解非线性规划问题的优化算法——梯度下降法。
2.适应度函数的构建适应度函数是衡量优化算法搜索过程中解的质量的重要依据。
在结构可靠度计算中,适应度函数应包含结构参数、载荷、材料性能等因素,以反映结构的可靠度水平。
构建适应度函数时,需考虑以下几个方面:(1)极限状态方程:根据结构设计要求,建立极限状态方程,用以描述结构在承受载荷时的应力、应变关系。
(2)失效概率:根据极限状态方程,计算结构在不同条件下失效的概率。
(3)可靠度指标:结合失效概率,构建结构可靠度指标,用于评价结构的可靠度水平。
三、结构可靠度计算的最优化方法1.极限状态方程的建立根据结构设计要求和相关规范,建立极限状态方程,用以描述结构在承受载荷时的应力、应变关系。
极限状态方程一般形式为:σ= F(x)其中,σ表示结构应力,x表示结构参数,F(x)为应力函数。
2.失效概率的计算根据极限状态方程,计算结构在不同条件下失效的概率。
失效概率可通过以下公式计算:P(σ > σ_0) = 1 / (1 + k)其中,P(σ > σ_0)表示失效概率,k为安全系数,σ_0为极限应力。
3.可靠度指标的求解结合失效概率,构建结构可靠度指标:β= ∫(1 / (1 + k)) dx其中,β为可靠度指标,积分范围为结构参数x的取值范围。