材料物理性能标准答案
材料物理性能课后习题答案北航出版社田莳主编(供参考)

材料物理习题集第一章固体中电子能量结构和状态(量子力学基础)1.一电子通过5400V电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni晶体(111)面(面间距d=2.04×10-10m)的布拉格衍射角。
(P5)12341311921111o'(2)6.610=(29.1105400 1.610)=1.67102K 3.7610sinsin2182h hpmEmddλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22.有两种原子,基态电子壳层是这样填充的;;s s ss s s s2262322626102610(1)1、22p、33p(2)1、22p、33p3d、44p4d,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
(完整word版)材料物理性能A试卷答案及评分标准

材料物理性能A 试卷答案及评分标准一、是非题(1分×10=10分)1√;2×;3×;4√;5×;6√;7√;8√;9√;10×。
二、名词解释(3分×6=18分,任选6个名词。
注意:请在所选题前打“√”)1、磁后效应:处于外电场为H0的磁性材料,突然受到外磁场的跃迁变化到H1,则磁性材料的磁感应强度并不是立即全部达到稳定值,而是一部分瞬时到达,另一部分缓慢趋近稳定值,这种现象称为磁后效应。
2、塑性形变:是指在超过材料的屈服应力作用下产生形变,外应力移去后不能恢复的形变。
无机材料的塑性形变,远不如金属塑性变形容易。
3、未弛豫模量:测定滞弹性材料的形变时,如果测量时间小于τε、τσ,则由于随时间的形变还没有机会发生,测得的是应力和初始应变的关系,这时的弹性模量叫未驰豫模量。
4、介质损耗:由于导电或交变场中极化弛豫过程在电介质中引起的能量损耗,由电能转变为其他形式的能,统称为介质损耗。
5、光频支振动:光频支振动:格波中频率甚高的振动波,质点间的位相差很大,邻近质点的运动几乎相反时,频率往往在红外光区,称为“光频支振动”。
6、弹性散射:散射前后,光的波长(或光子能量)不发生变化的散射。
7、德拜T3定律:当温度很低时,即T<<θD,c v=1939.7(T/θD)3j.K-1.mol-1,即当T→0 K时,c v∝T3→0。
8、BaTiO3半导体的PTC现象:价控型BaTiO3半导体在晶型转变点附近,电阻率随温度上升发生突变,增大了3~4个数量级的现象。
三、简答题(5分×5=25分,任选5题。
注意:请在所选题前打“√”)1、(1)构成材料元素的离子半径;(2)材料的结构、晶型;(3)材料存在的内应力;(4)同质异构体。
2、(1)透过介质表面镀增透膜;(2)将多次透过的玻璃用折射率与之相近的胶将它们黏起来,以减少空气界面造成的损失。
(完整)材料物理性能答案

)(E k →第一章:材料电学性能1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料?用电阻率ρ或电阻率σ评价材料的导电能力.按材料的导电能力(电阻率),人们通常将材料划分为:)()超导体()()导体()()半导体()()绝缘体(m .104m .10103m .10102m .1012728-828Ω〈Ω〈〈Ω〈〈Ω〈---ρρρρ2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性?金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。
所有离子实的库仑场构成一个平均值的等势电场,自由电子就像理想气体一样在这个等势电场中运动.如果没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。
施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。
自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。
E J →→=σ,电导率σ= (其中μ= ,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式.缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。
(?把适用于宏观物体的牛顿定律应用到微观的电子运动中,并且承认能量的连续性)3、自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为?自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数;电子本证能量E 随波矢量的变化曲线 是一条连续的抛物线.4、根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数.n 决定,并且其能量值也是不连续的,能级差与材料线度L ²成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。
《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力Voigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
《材料物理性能》课后习题答案.doc

1-1 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:真应力OY = — = ―"°。
—=995(MP Q)A 4.524 xlO-6真应变勺=In — = In — = In^v = 0.0816/0 A 2.42名义应力a = — = ―4°°°_ 一= 917(MPa)A) 4.909x1()2名义应变£ =翌=& —1 = 0.0851I。
A由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1- 5 一陶瓷含体积百分比为95%的/\12O3(E = 380 GPa)和5%的玻璃相(E = 84 GPa), 试计算其上限和下限弹性模量。
若该陶瓷含有5%的气孔,再估算其上限和下限弹性模量。
解:令Ei=380GPa, E2=84GPa, V^O. 95, V2=0. 05o则有上限弹性模量=E]% +E2V2 = 380 X 0.95 +84 X 0.05 =365.2(GP Q)下限弹性模量战=(¥ +3)T =(?料+誓尸=323.1(GP Q)E]380 84当该陶瓷含有5%的气孔时,将P二0. 05代入经验计算公式E=E O(1-1. 9P+0. 9P2) 可得,其上、下限弹性模量分别变为331.3 GPa和293. 1 GPa。
1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0, t = oo和t二£时的纵坐标表达式。
解:Maxwell模型可以较好地模拟应力松弛过程:其应力松弛曲线方程为:b⑴=贝0光必则有:<7(0) = b(0);cr(oo) = 0;<7(r)= a(0)/e.Voigt模型可以较好地模拟应变蠕变过程:其蠕变曲线方程为:的)=火(1 -广")=£(00)(1 _g")E则有:£(0)=0; £(OO)= 21;冶)=%1-(尸).以上两种模型所描述的是最简单的情况,事实上山于材料力学性能的复杂性,我们会用到 用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
《材料物理性能》王振廷版课后答案106页教学内容

《材料物理性能》王振廷版课后答案106页1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。
a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度Mb、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。
c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B 开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。
Ms成为饱和磁化强度,Bs成为饱和磁感应强度。
d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。
e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。
M=χ·H,χ称为单位体积磁化率。
f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。
(Mr、Br分别为剩余磁化强度和剩余磁感应强度)g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3)h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。
磁晶各向异性能是磁化矢量方向的函数。
i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。
当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。
2、计算Gd3+和Cr3+的自由离子磁矩?Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么?Gd3+有7个未成对电子,Cr3+ 3个未成对电子.所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB.3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子磁矩低的原因是什么?4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。
材料物理性能课后习题答案

《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
如采用四元件模型来表示线性高聚物的蠕变过程等。
材料物理性能课后答案

材料物理性能课后答案【篇一:《材料物理性能》王振廷版课后答案106页】磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。
a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度mc、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度m或磁感强度b开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。
ms成为饱和磁化强度,bs成为饱和磁感应强度。
e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。
h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用ek表示。
磁晶各向异性能是磁化矢量方向的函数。
2、计算gd3+和cr3+的自由离子磁矩?gd3+的离子磁矩比cr3+离子磁矩高的原因是什么?gd3+有7个未成对电子, cr3+ 3个未成对电子.3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子磁矩低的原因是什么?4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场b=0的磁行为。
5、分析物质的抗磁性、顺磁性、反铁磁性及亚铁磁性与温度之间的关系?答:(1) 抗磁性是由外磁场作用下电子循轨运动产生的附加磁矩所造成的,与温度无关,或随温度变化很小。
(2) 根据顺磁磁化率与温度的关系,可以把顺磁体分为三类,一是正常顺磁体,其原子磁化率与温度成反比;二是磁化率与温度无关的顺磁体;三是存在反铁磁体转变的顺磁体,当温度高于一定的转变温度tn时,它们和正常顺磁体一样服从局里-外斯定律,当温度低于tn时,它们的原子磁化率随着温度下降而减小,当t→0k时,磁化率趋于常数。
(3) 反铁磁性物质的原子磁化率在温度很高时很小,随着温度逐渐降低,磁化率逐渐增大,温度降至某一温度tn时,磁化率升至最大值;再降低温度,磁化率又减小。
(4 ) 亚铁磁性物质的原子磁化率随温度的升高而逐渐降低。
6、什么是自发磁化?铁磁体形成的条件是什么?有人说“铁磁性金属没有抗磁性”,对吗?为什么?a、组成铁磁性材料的原子或离子有未满壳层的电子,因此有固有原子磁矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:材料电学性能
1.导电能力 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料?
用电阻率ρ或电阻率ζ评价材料的导电能力。
按材料的电阻率,人们通常将材料划分为:
(1)绝缘体 ρ > 108 (Ω⋅m )
(2)半导体 10-2 < ρ < 108 (Ω⋅m )
(3)金属 10-8 < ρ < 10-2 (Ω⋅m )
(4)超导体 ρ < 10-27 (Ω⋅m )
2.经典导电理论/欧姆定律 经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性?
金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。
所有离子实的库仑场构成一个平均值的等势电场,自由电子像理想气体一样在等势电场中运动。
若没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。
施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。
自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。
J E σ= 电导率22e m e ==σητημ(其中2e m v E μτ==-,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式。
缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。
(把适用于宏观物体的牛顿定律应用到微观的电子运动中,并承认能量的连续性)
3.自由电子近似 自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 能量:自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数; 行为:电子本证能量E 随波矢量的变化曲线是一条连续的抛物线。
4.自由电子近似概念 根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数。
准连续能级:电子的本征能量是量子化的,其能量值由主量子数n 决定,并且其能量值也是不连续的,能级差与材料线度L²成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。
能级简并状态:把同一能级下具有多种能态的现象称为能级的简并状态。
简并度:同一能级下的能态数目称为简并度。
能态密度:对某个电子体系,在k 空间内单位体积内能态的数量或倒易节点数称为波矢能态密度ρ。
ρ=V/(2π) ³,含自旋的能态密度应为2ρ
K 空间:若使用波矢量 k 的三个分量 k x , k y , k z 为单位矢量构筑坐标系,则每个能态在该坐标中都是一个整数点, 对于准连续的能级,此坐标系中的每个整数点都代表一个能态。
人们把此坐标系常数称为k 空间或状态空间。
等幅平面波:量子导电理论中,在自由电子近似下用于描述电子运动行为的本征波函数,其波幅保持为常数。
能级密度函数:电子的波失能态函数对其能量的分布函数,即在单位能量宽度上的能态分
布。
表达式为()312222
()(4)2V N E dZ dE V m E π==
5.等能面 自由电子近似下的等能面为什么是球面?倒易空间的倒易节点数与不含自旋的能态数是何关系?为什么自由电子的波矢量是一个倒易矢量?
①因为在k 空间内,能量的大小仅与波矢k 的长度有关,而与波矢的方向无关,所以所有等长的波矢均代表一个相同的能级,因此代表同一能级的所有状态点在k 空间中应分布在以坐标原点为中心、以k 为半径的球面(等能面)上。
②倒易空间的倒易节点数=不含自旋的能态数 ③在波矢的计算中利用周期性边界条件、欧拉公式以及倒易矢量关系式得到如下关系式1112223330k N a k N a k N a ++= 如果令i 为任意整数,令2i i b a π=,则波矢量可写成
123112233222l l l k N a N a N a πππ=++123123123l l l b b b N N N =++,证明了电子波的波矢量 k 就是倒易矢量。
6.费米概念 自由电子在允许能级的分布遵循何种分布规律?何为费米面和费米能级?何为有效电子?价电子与有效电子有何关系?如何根据价电子浓度确定原子的费米半径? ①允许能级中的电子在各能态的分布遵循费米--狄拉克统计分布规律。
其分布函数为:
[]1()exp ()1F B f E E E k T =-+,其中E 为电子的能量,E F 为费米能量或化学势,k B 为玻尔
兹曼常数,T 为绝对温度。
分布函数的物理意义表示:T 温度下,能量为E 的能态被电子占据的概率为f (E ),如图:
绝对零度时(基态),E<EF 的能级的各能态被电子占据,
f(E)=1;E<EF 的能级能态则全空着, f(E)=0;E<EF 时,f (E )发生陡直的变化。
T 温度下(T>0的激发态),分布函数在费米能量附近的
陡直程度下降了,分布对应的能量范围约为E F 附近±区间。
可见温度越高,分布变化所对应的能量范围越宽。
但E=EF 时,f(E)恒等于1/2.这种变化的物理本质为:原来处于费米面以下临近费米能级的一部分电子。
由于受到k B T 能量的热激发而可以跃迁到费米面以上能区。
②费米面和费米能:按自由电子近似,电子的等能面k 空间是关于原点对称的球面。
特别有意义的是E=EF 的等能面,它被称为费米面,相应的能量成为费米能。
③有效电子:能量位于费米面附近的部分价电子,当它们受到某种能量的激发而跃迁到允许电子存在的不满态能区时,才能成为真正意义上的自由电子,这些自由电子为有效电子。
④价电子:有可能越过费米面而参与导电的所有电子的集合,属于原子中比较活跃的电子,有效电子属于价电子,只是它越过了费米面而进入了未满能带而能够参与导电。
⑤费米半径和价电子浓度N 的关系:费米半径:费米球面的球半径,即k 空间
k F =πN (一维空间) k F =(2πN )1/2(二维空间) k F =(3π2N )1/3(三维空间)
7.温度影响 自由电子的平均能量与温度有何种关系?温度如何影响费米能级?根据自由电子近似下的量子导电理论,试分析温度如何影响材料的导电性。
①温度升高,自由电子的平均能量升高。
②温度升高时,因为部分电子被激发,费米半径减小,材料原子的费米面略微下降,但在很大的温度范围内,可近似认为不受温度影响。
③对于自由电子,温度上升使其能量提高,运动速度加快,但均匀的温度场只能使其作方向随机的热运动,只有不均匀的温度场才能使其产生定向漂移;对于费米面以下靠近费米面的价电子,温度场能促进其激发,能增加材料的有效电子数量;对于离子,增加温度则显著提高其热振动的振幅和频率,即增加声子的数量,其效果是极大地增加了离子实对电子的散射几率;另外还可能改变晶格周期场和电子的有效质量。
总体上材料的电阻率随温度增加而增加,但材料不同,温度范围不同,二者的相关规律不同。