概率论基本公式
概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
概率论与数理统计公式

概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率论公式大全

第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
概率论公式

第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badxx f b X a P )()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=)(1)(b x a ab x f ≤≤-=分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布 分布规律的描述方法联合密度函数 联合分布函数联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数)0(1)(/≥=-x e x f x θθ∑≤==≤=x k k X P x X P x F )()()(⎰∞-=≤=x dtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dxy x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k kP xX E )(⎰+∞∞-⋅=dxx f x X E )()()()('x f x F =E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式方差 定义式常用计算式常用公式当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数∑=kkk p x g X g E )())((∑∑=ijiji p x X E )(dxdyy x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=ijijj i p y x XY E )(dxdyy x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dxx f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--协方差的性质独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章正态分布标准正态分布的概率计算 标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P ()()(σμσμ-Φ--Φ=≤≤a b b X a P卡方分布t 分布F 分布正态总体条件下 样本均值的分布:样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数 矩估计最大似然估计 似然函数均值的区间估计——大样本结果)(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2n N X σμ)1,0(~/N n X σμ-)1(~)1(222--n S n χσ)1(~/--n t n s X μ)1,1(~//2122212221--n n F S S σσ);(1θi ni x f L ∏==);(1θi ni x p L ∏==⎪⎭⎫ ⎝⎛±n z x σα2/正态分布的分位点—大样本要求样本容量—代替准差通常未知,可用样本标标准差—样本均值—2/)50()(ασz n ns x >⎪⎪⎭⎫ ⎝⎛-±n p p z p )1(2/α正态分布的分位点—大样本要求样本容量—样本比例—2/)50(αz n np >则若),(~),1,0(~2n Y N X χ)(~/n t nY X正态总体方差的区间估计两个正态总体均值差的置信区间大样本或正态小样本且方差已知 两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1 ② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
全概率论公式

全概率论公式总结概率公式整理1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=ni ini iA A 11=== ni ini iA A 11===2.概率的定义及其计算:)(1)(A P A P -= 若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P)()(A P AB P 乘法公式 ())0)(()()(>=A P A B P A P AB P ()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()( 4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n kk n ,,1,0,)1()( =-==- *Possion 定理 0lim >=∞→λn n np 有,2,1,0!)1(l i m ==---∞→k k ep p C kkn n k nkn n λλ(3) Poisson 分布 )(λP ,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U ⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE ⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 ) +∞<<∞-=--x e x f x 222)(21)(σμσπ ⎰∞---=xt t ex F d 21)(22)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x tex xt d 21)(22π7.多维随机变量及其分布 二维随机变量( X ,Y )的分布函数 ⎰⎰∞-∞-=x yd v d uv u f y x F ),(),(边缘分布函数与边缘密度函数 ⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( ⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量 (1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布 +∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222121121)())((2)()1(21221σμμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()( ⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X = 10.随机变量的数字特征 数学期望∑+∞==1)(k k k p x X E ⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩 )(k X E X 的 k 阶绝对原点矩 )|(|k X EX 的 k 阶中心矩 )))(((k X E X E - X 的 方差 )()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩 )(l k Y X E X ,Y 的 k + l 阶混合中心矩 ()l k Y E Y X E X E ))(())((-- X ,Y 的 二阶混合原点矩 )(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数 XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) = E ((X - E (X ))2) )()()(22X E X E X D -= 协方差 ()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ。
概率论基本公式

概率论与数理统计基本公式第一部分 概率论基本公式1、A BA B AAB; A BA(B A) 2、对偶率: AB A B ;ABA B .3、概率性率:P ( A B ) P( A) P(AB ), 特别, BA 时有:P( A B) P( A) P(B); P(A) P(B)有限可加: A 1、 A 2 为不相容事件,则 P( A 1A 2 ) P( A 1)P(A 2 )对任意两个事件有:P( AB)P( A) P( B)P( AB)4、古典概型例: n 双鞋总共 2n 只,分为 n 堆,每堆为 2只,事件 A 每堆自成一双鞋的概率 解:分堆法: C 22 n( (2n)!,自成一双为: n !,则 P( A)n!!!22n - 2) 2C2n5、条件概率P(B | A)P( AB), 称为在事件 A 条件下,事件 B 的条件概率, P( B)称为无条件概率。
P( A)乘法公式: P(AB)P(A)P(B | A) P(AB)P(B)P(A | B)全概率公式: P(B)P(A i )P(B | A i )i贝叶斯公式: P(A i | B)P( A i B)P( A i )P(B | A i )P( B) P( A j )P( B | A j )j例:有三个罐子, 1 号装有 2 红1黑共 3个球,2号装有 3红1黑 4个球,3 号装有 2 红 2黑 4 个球,某人随机从其中一罐,再从该罐中任取一个球, ( 1)求取得红球的概率; ( 2)如果取得是红球,那么是从第一个罐中取出的概率为多少?解: 设B i { 球取自 i 号罐 } , i。
{ 取得是红球 } ,由题知、、是一个完备事件(1) 1,2,3 AB 1B 2B 3由全概率公式 P( B)P( A i )P( B | A i ),依题意,有: P( A | B 1 )2;P(A|B 2)3;P(A|B 3) 1 .i342P( B 1)P(B 2 ) P( B 3 )1, P( A) 0.639.3(2)由贝叶斯公式: P(B 1 | A)P( A | B 1)P(B 1)0.348.P( A)6、独立事件( 1) P(AB)=P(A)P(B), 则称 A 、 B 独立。
(完整版)概率论公式总结

第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章 二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ∑≤==≤=xk k X P x X P x F )()()(概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp ()对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤b adx x f b X a P )()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )(1)(b x a a b x f ≤≤-=联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k k P x X E )(⎰+∞∞-⋅=dx x f x X E )()(∑=kk k p x g X g E )())((方差定义式 常用计算式常用公式 当X 、Y 相互独立时: 方差的性质D(a)=0,其中a 为常数D(a+bX)= abD(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)协方差与相关系数协方差的性质∑∑=i j iji p x X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关独立必定不相关、相关必定不独立、不相关不一定独立第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P (1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P。
概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。
在概率论与数理统计的学习中,有许多重要的公式需要掌握。
以下是概率论与数理统计的完整公式。
一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。
4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。
2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计基本公式第一部分概率论基本公式1、A -B =AB 二A -AB; A B = A 一(B -A)2、对偶率:A 一 B =B ;A ' B = A 一 B.P(A - B) = P(A) - P(AB),特别,B A 时有:P(A _ B)二 P(A) _ P(B); P(A) _ P(B)对任意两个事件有:P(A B) = P(A) - P(B) - P(AB)4、古典概型例:n 双鞋总共2n 只,分为n 堆,每堆为2只,事件A 每堆自成一双鞋的概率5、条件概率P(B | A) =P(AB ),称为在事件A 条件下,事件B 的条件概率,P(B)称为无条件概率。
P(A) 乘法公式:P(AB) = P(A)P(B |A) P(AB) = P(B)P(A | B)全概率公式:P(B)=5: P(A)P(B|A i )i贝叶斯公式:P(A|B)=P^= P(A i )P(B|A) P(B) Z P(A j )P(B|A j )j例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2 黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率 (2)如果取得是红球,那么是从第一个罐中取出的概率为多少?解:分堆法:C ;n島!,自成一双为:n !,则 P(A) = n*.C2n3、概率性率解:1)设B i={球取自i号罐}, i =1,2,3。
A ={取得是红球},由题知B1> B2、B3是一个完备事件2 3 1 由全概率公式P(B)=v P(A)P(B|A) 依题意,有:P(A|B i) ;P(A|B2); P(A| B3) .i 3 4 21P(BJ =P(B2) = P(B3) ,P(A) :0.639.3(2)由贝叶斯公式:P(B1 | A)二P(A| B1)P(B1):. 0.348.P(A)6、独立事件(1)P(AB)=P(A)P(B),则称A、B 独立。
(2)伯努利概型如果随机试验只有两种可能结果:事件A发生或事件A不发生,则称为伯努利试验,即:P(A)=p, P( A) =1 - p = q (0<p<1,p+q=1)相同条件独立重复n次,称之为n重伯努利试验,简称伯努利概型。
伯努利定理:b(k; n, p)二C:p k(1 - p)n* ( k=0,1,2 ……)事件A首次发生概率为:P(1-P)2例:设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号,(1)进行5次重复独立试验,求指示灯发出信号的概率;(2)进行了7次重复独立试验,求指示灯发出信号的概率。
解:(1)设B二“5次独立试验发出指示信号”,则由题意有:5P(B)二、C5 p k(1 - p)5」,代入数据得:P(B)二0.163(2)设C二“7次独立试验发出指示信号”,则由题意有:7 2P(C)二 ' C:p k(1 - P)7' =1 -、C;p k(1 - p)z,代入数据,得:P(C)二0.353i =3 i =0第二章7、常用离散型分布(1)两点分布:若一个随机变量X只有两个可能的取值,且其分布为:P{ X =xd = p;P{X = X2} =1-p (0<p<1 )则称X服从X1、X2处参数为p的两点分布。
其中期望 E (X) =p,D(X)=p(1-p)(2 )二项分布:若一个随机变量X的概率分布由P{X二k}二C:p k(仁p)n±(k=0,1,2 ...... )给出,则称X服从参数为n , p的二项分布,记为:X~b(n,p)(或B(n,p)n其中P{X =k} =1,当n=1时为0 —1分布。
其期望E( X)=np,方差k卫D(X)=np(1-p)k(3)泊松分布:若一个随机变量X概率分布为:P{X二k}二e / 0, 0,1,2k!则称X服从参数为■的泊松分布,记为:X ~ PC )(或X —:(■),其中J P{ X = k} = 1.k=0泊松定理:在n重伯努利试验中,事件A在每次试验中发生的概率为P n,如果n》::时,nP n——(・0的常数),则对任意给定的k,有lim b(k;n, p) = lim C:P:(1 - P)k!e—',这表明,当n很大时,p接近0或1时,有臨“汀-亍一*") N >20 , p <0.05时用泊松分布。
其期望方差相等,即:E(X)=D(X)= ■。
&常用连续型分布(1)均匀分布:若连续随机变量X的概率密度为f(x) = ;1/(ba)a x b0其他则称X在区间(a, b)上服从均匀分布,记为X~U(a,b)。
其中-bef (x)d^ 1,分布函数为0, x v aF(x)=」(x _a)/(b _a), a 兰x < b.1,x沁\ 2 二2 X —卩定理:设X~N(〜;「2),则Y~ N(0,1)a其期望 E(X)= g D(X)=二2 o9、随机变量函数的分布 (1)离散型随机变量函数分布一般方法 :先根据自变量 X 的所有 可能取值确定因变量 Y 的所有可能值,然后通过Y 的每一个可能的取值 y j (i=1,2, ••…)来确定 Y 的概率分布。
(2)连续型随机变量函数分布方法:设已知X 的分布函数F X (x)或者概率密度f X (x),2 其期望 E (X ) =a b,方差 D(X)= ©’。
2 12■e ,x(2)指数分布:若随机变量的概率为f(、“ ・,x>0、o f (x丿一 | o 其他,扎> 0,则称X 服从参数为■的指数分布,简记为X~e( ■).其分布函数:F(x) I 其他〉0 “0 0,其他,其期望E(X)= 1,方差D(X)= $ .(3)正态分布:若随机变量X 的概率密度为f(x)二(x 」)2-: 2~e2:二, x服从参数为卩和二2的正态分布,记为X~N( (1, c 2 ),其中口和二(二>0 )都是常数。
分布函1 x 数为:F (沪,2= ‘ (t 「l)22、孑dti x< "-o 当"=o,;「=1时,称为标准正态分2t2丄1 X — e2 ,分布函数为:门(x) ---- ------ e 2 dt.布,概率密度函数为::(x)则随机变量Y=g(X)的分布函数F Y(y)二P{Y <y}二P{ g(X)乞y} = P{ X • C Y},其中C y ={x | g(x)三y} , FY ( y)二P{ X C Y}二C f x(X)dx ,进而可通过丫的分C y布函数F Y(y),求出Y的密度函数。
"1_ | x |_1 < X < 1例:设随机变量X的密度函数为f X(x) = J ' ,求随机变量、、0,其他Y=X2的分布函数和密度函数。
解:设F Y(y)和f Y(y)分别是随机变量丫的分布函数和概率密度函数,则由—1:::x:::1得:1 ::: y <2,那么当y ::1 时F Y(y)二P{Y 乞y}二P{X21乞y}二P()二0,当1 ::y : 2时,得:2.---------- I --------------------------- J口1 (y) = P{Y 兰y} =P{X2+1 兰y} =P{—p y—1 兰x E^y—1 = ^^(^|x|)dx= fy _1 _____0(1 —x)dx =2^y —1 —(y —1),当y 兰2 时,F Y(y) = P{Y W y} = P{ X 2+1 W y}=I 0,y 兰1=1,所以,F Y(y) = (y—1),1 cy c2,L1,心210、设随机变量X~N(讥二),Y= aX b也服从正态分布.即丫=aX b ~ N(ab,(a二))。
o (1 x)dx -yJ10dx-::1」(1-|x|)dX J -He0dxf x(x)二F Y(y)'二”一1,1"2 0,其他11、联合概率分布(1)离散型联合分布•・'、'、R j =1i j(2)连续型随机变量函数的分布:1 • • • •(X , 丫)的密度函数«)』8以+ *°处兰2g y 兰2[o,其他 求 f(x), f(y),E(X),E(Y),cov(X,Y), *,D(X+Y).x解:①当 0W x W 2 时由 f X (x) = j [1/8(x y ) dy ,得:co或 x>2 时,由 f X (x) Ody 亠 i Ody = 0 ,所以,例:设随机变量2f x (x ) = 1/8x 1/4x ,当 x<0f x (x)二:1/8x 2 1/4x,0乞x_2 0,其他同理可求得: fY(y )1/8y 2 1/4 y,0 乞y 乞2 0,其他2 2 2 22 2④ D(X)二 E(X 2) -[E(X)]2 二 0 0 x 2f (x ,7 211 y)dxr w同理得D(Y)= 所以,36 cov(X,Y)XY = _ -----------------------------D(X)D(Y) 112②E (X )= 0 xf X (x ) dx=7/6,由对称性同理可求得,E(Y)=7/6。
③因为 E(XY)= I I xyf (x, y)dxdy : I i 1/8xy(x y)dxdy =4/3.2所以,cov (X,Y ) = E(XY)- E(X) E(Y)=4/3-(7/6)=-1/36。
⑤ D(X+Y)=D(X)+D(Y)+2cov(X,Y)= -912 、条件分布:若F(x| A) = P{X 沁| 二P{ A},称F(x| A)为在A 发生条件下,X的条件分布函数13、随机变量的独立性:由条件分布设A={Y w y},且P{Y W y}>0,贝,F(x —八坐x_Y yU3),设随机变量(X,Y)的联合分布概率为FP{YEy} F Y(y)(x,y),边缘分布概率为F X (x)、F Y (y),若对于任意x、y有:P{X Ex,Y 乞y} =P{X 乞x}P{Y 乞y},即:F(x, y^F X (x)F Y(y),则称X 和Y 独立。
14、连续型随机变量的条件密度函数:设二维连续型随机变量(X,Y)的概率密度为f (x, y),边缘概率密度函数为f X(x)、f Y(y),则对于一切使f X(x)>0的x,定义在X=x的条件下Y的条件密度函数为:f Y|X (y | x)二f (x, y),同理得到定义在Y=y条件下X的条f x(X)件概率密度函数为:f X|Y(x | y) = f (x, y),若f (x,y) = f X(x) f Y(y)几乎处处成立,则f y(y)称X,Y相互独立。