概率论公式总结-都琳

合集下载

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是数学中的一门重要分支,用于研究随机事件的发生概率和规律性。

下面是概率论中的一些常用公式和定理,供参考:1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的情况数,n(S)表示样本空间中所有事件发生的情况数。

2.加法定理:P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B发生的概率。

3.乘法定理:P(A∩B)=P(B,A)×P(A)其中,P(B,A)表示在事件A已经发生的条件下,事件B发生的概率。

4.互斥事件的概率:若事件A和事件B互斥(即不能同时发生),则P(A∪B)=P(A)+P(B) 5.条件概率:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在事件B已经发生的条件下,事件A发生的概率。

6.贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B)其中,P(A,B)表示在事件B已经发生的条件下,事件A发生的概率;P(B,A)表示在事件A已经发生的条件下,事件B发生的概率。

7.全概率公式:P(A)=∑[P(A∩B_i)]其中,事件B_1,B_2,...,B_n互斥且构成样本空间,P(B_i)不为0,P(A∩B_i)表示事件A和事件B_i同时发生的概率。

8.期望值:E(X)=∑[x_i×P(X=x_i)]其中,X为随机变量,x_i为随机变量X的取值,P(X=x_i)为随机变量X取值为x_i的概率。

9.方差:Var(X) = E[(X - E(X))^2]其中,X为随机变量。

10.协方差:Cov(X, Y) = E[(X - E(X)) × (Y - E(Y))]其中,X和Y为两个随机变量。

11.独立事件的概率:若事件A和事件B独立,即P(A∩B)=P(A)×P(B)12.独立随机变量的期望值:E(XY)=E(X)×E(Y)其中,X和Y为独立随机变量。

概率论公式大全

概率论公式大全

1、随机变量的分布函数
文 (1)离散型随机变量的分布率
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取
度 各个值的概率,即事件(X=Xk)的概率为
F (+∞) = lim F (x) = 1; x→+∞ 4° F (x + 0) = F (x) ,即 F (x) 是右连续的;
百 P(X=xk)=pk,k=1,2,…,
(1) pk ≥ 0 , k = 1,2,Λ ,
x
∫ F(x) = −∞ f (x)dx ,

∑ pk = 1
(2) k =1

则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函 数或密度函数,简称概率密度。 f (x) 的图形是一条曲线,
称为密度(分布)曲线。
(2)分布函数
对于非离散型随机变量,通常有 P(X = x) = 0 ,不可 能用分布率表达。例如日光灯管的寿命 X ,P( X = x0) = 0 。
若事件 A 、 B 相互独立,且 P( A) > 0 ,则有
P(B | A) = P( AB) = P( A)P(B) = P(B)
P( A)
P( A)
所以这与我们所理解的独立性是一致的。
若事件 A 、B 相互独立,则可得到 A 与 B 、A 与 B 、
A 与 B 也都相互独立。(证明) 由定义,我们可知必然事件 Ω 和不可能事件 Ø 与任
b)。
分布函数为
0,
x<a,
x−a, b−a
a≤x≤b
Edited by 杨凯钧 2005 年 10 月
考研数学知识点-概率统计
∫x
F (x) = f (x)dx = −∞ 1,

概率论计算公式总结

概率论计算公式总结

概率论计算公式总结概率论是研究随机事件发生的可能性的数学分支,它在各个领域都有广泛的应用。

在概率论中,有一些重要的计算公式,它们能够帮助我们计算出某个事件发生的概率。

本文将总结一些常用的概率论计算公式,并解释其应用场景和计算方法。

1. 概率的定义概率是用来描述某个事件发生的可能性的数值。

在概率论中,概率的取值范围在0到1之间,0表示不可能发生,1表示必然发生。

对于一个随机事件A来说,其概率记为P(A)。

2. 加法法则加法法则是计算两个事件之和的概率的公式。

对于两个互斥事件A 和B来说,它们不能同时发生,因此它们的概率之和等于各自概率的和,即P(A∪B) = P(A) + P(B)。

3. 乘法法则乘法法则是计算两个事件同时发生的概率的公式。

对于两个独立事件A和B来说,它们的概率之积等于各自概率的乘积,即P(A∩B) = P(A) × P(B)。

4. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率的计算公式为P(A|B) = P(A∩B) / P(B)。

其中,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。

5. 全概率公式全概率公式是一种利用已知条件概率来计算事件A的概率的方法。

假设有一系列互斥且穷尽的事件B1、B2、...、Bn,那么事件A的概率可以表示为P(A) = P(A|B1) × P(B1) + P(A|B2) × P(B2) + ... + P(A|Bn) × P(Bn)。

6. 贝叶斯公式贝叶斯公式是一种利用条件概率来计算事件B的概率的方法。

根据条件概率的定义,可以得到贝叶斯公式为P(B|A) = P(A|B) × P(B) / P(A)。

其中,P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(B)和P(A)分别表示事件B和事件A发生的概率。

概率论与数理统计公式总结

概率论与数理统计公式总结

第一章P(A+B)=P(A)+P(B)-P(AB)特别地,当A 、B 互斥时,P(A+B)=P(A)+P(B)条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义●E(a)=a ,其中a 为常数●E(a+bX)=a+bE(X),其中a 、b 为常数●E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P kn kk n=-==-,1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badxx f b X a P)()(∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dxy x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkPx X E )(⎰+∞∞-⋅=dxx f x X E )()(∑=kkk p x g X g E )())((∑∑=ijiji p x X E )(dxdyy x xf X E ⎰⎰=),()(∑∑=ijijj i p yx XY E )()()('x f x F =方差定义式常用计算式常用公式当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)协方差与相关系数协方差的性质独立与相关独立必定不相关相关必定不独立不相关不一定独立第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P 一般正态分布的概率计算一般正态分布的概率计算公式第五章卡方分布t 分布F 分布正态总体条件下样本均值的分布:样本方差的分布:)()()(Y E X E Y X E +=+dxdyy x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y EX E XY E Y X Cov -=[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)()()(σμ-Φ=<=≤a a X P a X P (1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2nN X σμ)1,0(~/N n X σμ-)1(~)1(222--n S n χσ)1(~/--n t ns X μ则若),(~),1,0(~2n Y N X χ)(~/n t nY X两个正态总体的方差之比第六章点估计:参数的估计值为一个常数矩估计最大似然估计似然函数均值的区间估计——大样本结果正态总体方差的区间估计两个正态总体均值差的置信区间大样本或正态小样本且方差已知两个正态总体方差比的置信区间第七章假设检验的步骤1根据具体问题提出原假设H0和备择假设H12根据假设选择检验统计量,并计算检验统计值3看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。

概率与统计学公式集锦整理速查

概率与统计学公式集锦整理速查

概率与统计学公式集锦整理速查以下是概率与统计学领域中常见的公式集锦,方便您在需要时进行查阅和使用。

1. 概率公式1.1 事件的概率:P(A) = n(A) / n(S)1.2 互斥事件的概率:P(A ∪ B) = P(A) + P(B)1.3 两独立事件的概率:P(A ∩ B) = P(A) × P(B)1.4 随机事件的和:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)1.5 随机事件的差:P(A - B) = P(A) - P(A ∩ B)1.6 互补事件的概率:P(A') = 1 - P(A)2. 统计学公式2.1 定义方差:Var(X) = E[(X - E(X))^2]2.2 方差的性质:Var(aX) = a^2 × Var(X)2.3 协方差:Cov(X, Y) = E[(X - E(X))(Y - E(Y))]2.4 相关系数:ρ(X, Y) = Cov(X, Y) / (√(Var(X)) × √(Var(Y)))2.5 二项分布期望:E(X) = n × p2.6 二项分布方差:Var(X) = n × p × (1 - p)2.7 正态分布的标准差:Var(X) = σ^23. 概率函数与密度函数3.1 二项分布概率函数:P(X = k) = C(n, k) × p^k × (1 - p)^(n - k)3.2 二项分布累积概率函数:P(X ≤ k) = Σ(i=0 to k) C(n, i) × p^i × (1 - p)^(n - i)3.3 正态分布概率密度函数:f(x) = (1 / (σ × √(2π))) × exp(-(x - μ)^2 / (2σ^2))3.4 正态分布累积概率函数:P(X ≤x) = Φ((x - μ) / σ)4. 估计与假设检验4.1 样本均值的抽样分布:X ~N(μ, σ^2/n),其中 X 为样本均值,μ 为总体均值,σ 为总体标准差,n 为样本容量。

考研必备-概率论与数理统计公式大全

考研必备-概率论与数理统计公式大全

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A Y B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率论与数理统计核心公式汇总

概率论与数理统计核心公式汇总

概率论与数理统计核心公式汇总本文将介绍概率论与数理统计中的核心公式,这些公式在统计学和数据分析中起到至关重要的作用,帮助我们理解和处理各种随机现象和数据集。

通过掌握这些公式,我们可以更好地进行数据分析、推断和预测。

概率论核心公式1. 事件的概率计算公式事件的概率定义为:$P(A)=\\frac{n(A)}{n(S)}$,其中P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中的总次数。

2. 条件概率公式条件概率的计算公式为:$P(A|B)=\\frac{P(A \\cap B)}{P(B)}$,表示事件B发生的条件下事件A发生的概率。

3. 贝叶斯定理贝叶斯定理表示为:$P(A|B)=\\frac{P(B|A)P(A)}{P(B)}$,用于在给定相关事件的条件下计算其余事件的概率。

数理统计核心公式1. 样本均值和总体均值的关系样本均值$\\bar{X}=\\frac{\\sum_{i=1}^{n}X_i}{n}$,总体均值$\\mu=\\frac{\\sum_{i=1}^{N}X_i}{N}$。

当样本容量足够大时,样本均值接近于总体均值。

2. 样本方差和总体方差的关系样本方差$s^2=\\frac{\\sum_{i=1}^{n}(X_i-\\bar{X})^2}{n-1}$,总体方差$\\sigma^2=\\frac{\\sum_{i=1}^{N}(X_i-\\mu)^2}{N}$。

样本方差用于估计总体方差。

3. 中心极限定理中心极限定理表明,样本容量足够大时,样本均值的分布近似服从正态分布,不论总体分布是什么形式。

总结概率论与数理统计中的核心公式为我们提供了处理和分析数据的重要工具。

通过合理运用这些公式,我们可以更准确地理解数据背后的规律并做出有效的决策。

希望本文所介绍的核心公式对您有所帮助。

概率论基本公式

概率论基本公式

概率论与数理统计基本公式第一部分 概率论基本公式1、)(;A B A B A AB A B A B A -⋃=⋃-==--例:证明:成立。

得证。

成立,也即成立,也即(不发生,从而发生,则不发生,,知由(证明:(B A B A AB A B B A AB A B B B A B A B A AB A B B A --=-⋃-⋃-==-=-⋃--)).) 2、对偶率:.----⋃=⋂⋂=⋃B A B A B A B A ; 3、概率性率: 1)()()(212121A P A P A A P A A +=⋃为不相容事件,则、有限可加:2)()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-⊂-=-时有:特别,3)()()()(AB P B P A P B A P -+=⋃对任意两个事件有:)();();();()1(.4.0)(2.0)(5.0)(AB P B A P B A P AB P B P B A P A P ⋃-===--求:,,例:已知:.3.0)(1)(,7.0)()()()(3.0)()()(,5.0)(.,2.0)()()()(,=⋃-=⋃==-+=⋃=-=-∴===+∴=+---B A P B A P AB P AB P B P A P B A P AB P A P B A P A P AB P B P B A P AB P B A B B B A AB 又即是不相容事件,、且解:4、古典概型222n 2!)(n ,22)-n 2)!n 2(22nC n A P C A n n n ==!,则自成一双为:!!(解:分堆法:每堆自成一双鞋的概率只,事件堆,每堆为只,分为双鞋总共例: 5、条件概率称为无条件概率。

的条件概率,条件下,事件称为在事件)(,)()()|(B P B A A P AB P A B P =B)|P(B)P(A P(AB) A)|P(A)P(B P(AB)==乘法公式:)|()()(i i A B P A P B P i∑=全概率公式:)|()()|()()()()|(j j ji i i A B P A P A B P A P B P B A P B A P i ∑==贝叶斯公式:例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,1求取得红球的概率;2如果取得是红球,那么是从第一个罐中取出的概率为多少.348.0)()()|()|()2(.639.0)(31)()()(.21)|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴==========∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B ii 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机事件及其概率随机事件A ,样本空间Ω,概率空间F ,A A ⊂Ω∈,F 一、随机事件间的关系和运算1、 包含:A ⊂B ,表示A 发生必有事件B 发生2、 相等: 若A ⊂B 且B ⊃A ,即A=B ,则称事件A 与事件B 相等。

3、 互不相容(或互斥):A ∩B=Ф,表示A 与B 不可能同时发生。

对立一定互斥。

4、 对立(或互逆): A =Ω-A 。

表示A 不发生的事件。

互斥未必对立。

5、和事件/并:A ∪B ,或者A+B (A ∩B=Ø),表示A 、B 中至少有一个发生的事件。

6、 差事件:A B A AB AB −=−=,表示A 发生而B 不发生的事件。

7、 积事件/交:A ∩B 或者AB ,表示 A 、B 同时发生的事件。

二、运算定律1、交换律:A ∪B=B ∪A ;A ∩B =B ∩A 。

2、 结合律:A ∪(B ∪C )=(A ∪B )∪C ;A ∩(B ∩C )=(A ∩B ∩ C3、分配律:A ∪(B ∩C )=(A ∪ B )∩(A ∪C ); ()()()A B C A B A C =∩∪∩∪∩。

4、德摩根律(对偶率):B A ∪=A ∩B ;B A ∩=A ∪B ;。

z 常用结论:A A =Φ; A ∪A =Ω; ()()AB A B AB A B B A AB =+−=−+−+∪第二章 随机变量及其分布一、一维随机变量及其分布 1、分布函数:(){}F x P X x =≤ 分布函数性质:(1)0()1,;F x x R ≤≤∈(2)()F x 是单调不减的;(3)()lim ()0;x F F x →−∞−∞==()lim ()1;x F F x →+∞+∞==(4)()F x 为右连续,即000lim ()(),.x x F x F x x R +→=∈分布函数重要公式:(1){}();P X b F b ≤=(2){}()();P a X b F b F a <≤=−(3){}1();P X a F a >=−(4){}();P X b F b −<=(5)()()(),.P X b F b F b b R −==−∈ 2、离散型随机变量: (){}{}()k kx xF x P X x P X x x R ≤=≤==∈∑¾ 典型离散型随机变量的分布:(1) 退化分布(单点分布):()1P X C == (2) 两点分布B (1,p ) :1{}(1)(0,1)k k P X k p p k −==−=(3) 离散型均匀分布:1{}(1,2,,)k P X x k n n=== (4) 二项分布(,)B n p :{}(1)k k n k n P X k C p p −==− (5) 泊松分布()P λ:{}e (0,1,)!kP X k k k λλ−===(6) 几何分布:1{}(1)(1,2,)k P X k p p k −==−=(7) 超几何分布:{}(0,1,2,,min{,})k n k M N MnNC C P X k k M n C −−=== 3、连续型随机变量:()()d xF x p t t −∞=∫¾ 密度函数的性质:(1)()0,;p x x R ≥∈(2)()d 1;p x x +∞−∞=∫(3){}()()()d ;baP a X b F b F a p x x <≤=−=∫ (4){}0.P X c ==¾ 典型连续性随机变量的分布: (1) 均匀分布 X ~ U [a ,b ]1,,()0,,a x b p x b a ⎧≤≤⎪=−⎨⎪⎩其它; 0,,(),,1,.x a x a F x a x b b a x b <⎧⎪−⎪=≤<⎨−⎪≥⎪⎩1{}{}0;P X a P X b <=>= 性质:2{}.d cP c X d b a−≤<=− (2) 正态分布 2~(,)X N μσ22()2(),.xμσp x x−−=−∞<<∞;22()2()dtμxσF x e t−−−∞=∫(3)标准正态分布~(0,1)X N22()xxφ−=;22()d.txx t−Φ=∫(1)()1(),x xΦ−=−Φ性质:(0)0.5Φ=;22(2)xe dx+∞−−∞=∫(4)指数分布~()X Expλ,0,()0,0.xe xp xxλλ−⎧>=⎨≤⎩;1,0,()0,0.xe xF xxλ−⎧−>=⎨≤⎩二、 二维随机变量及分布:1、联合分布函数:(,)F x y{,}P X x Y y=≤≤2、二维离散型随机变量的分布:{,},i j ijP X x Y y p===(,) ,i jijx x y yF x y p≤≤=∑∑3、二维连续型随机变量的分布:(,)(,)d dx yF x y p u v u v−∞−∞=∫∫¾联合密度函数性质:(1)(,)0;p x y≥(2)(,)d d(,)1;p x y x y F+∞+∞−∞−∞=+∞+∞=∫∫2(,)(3)(,)(,),(,);F x yp x y x y p x yx y∂=∂∂若在连续则有(4){(,)}(,)d d.GP X Y G p x y x y∈=∫∫¾典型二维随机变量的分布:(1) 均匀分布:1,(,),(,)0,.x y Dp x y S⎧∈⎪=⎨⎪⎩其它(2) 二维正态分布221212(,)~(,,,,)X Y Nμμσσρ:2211222221212()2()()()12(1)(,)xμρxμyμyμσσρσσp x y⎡⎤−−−−−−+⎢−⎢⎥⎣⎦=(,),x y−∞<<∞−∞<<∞4、边缘分布:()(,){,}{}XF x F x P X x Y P X x=+∞=<≤+∞=≤;()(,){,}{}YF y F y P X Y y P Y y=+∞=<+∞≤=≤(1) 离散型随机变量:边缘分布函数 1()(,),i X ij x x j F x F x p ∞≤==+∞=∑∑1()(,).j Y ijy y i F y F y p ∞≤==+∞=∑∑边缘分布律 1{},1,2,,i ij i j p p P X x i ∞•=====∑ 1{},1,2,,j ij j i p p P Y y j ∞•=====∑(2) 连续型随机变量:边缘分布函数 {}()(,)(,)d d xX F x F x p x y y x +∞−∞−∞=+∞=∫∫边缘密度 ()(,)d ;X p x p x y y +∞−∞=∫()(,)d Y p y p x y x +∞−∞=∫(3) 结论:二元正态分布的边缘分布是一元正态分布.221212(,)~(,,,,)X Y N μμσσρ即若,则221122~(,),~(,).X N Y N μσμσ5、独立性:(,)()().X Y X Y F x y F x F y ⇔=和相互独立(1):{,}{}{}i j i j X Y P X x Y y P X x P Y y ⇔=====、离散型与相互独立(2):(,)()()X Y X Y p x y p x p y ⇔=、连续型与相互独立常用结论:(1)()().X Y f X g y 若和相互独立,则与也相互独立 1212(2)(,),,X Y N u u σσρ∼(,,),0X Y ρ⇔=与相互独立 6、条件分布(1)离散型:条件分布律{;}{|};{}i j ij i j j j P X x Y y p P X x Y y P Y y p ⋅======= {,}{|}{}i j ij j i i i P X x Y y p P Y y X x P X x p ⋅=======(2)连续型:条件概率密度 (,)();()X Y Y p x y p x y p y =|(x,)(|)()Y X X p y p y x p x = 条件分布函数 ||(|)(|)d (x,)/()d xx X Y X Y Y F x y p x y x p y p y x −∞−∞==∫∫||(|)(|)d y Y X Y X F y x p y x y −∞=∫(x,)/()d yX p y p x y −∞=∫(3)常用结论:二元正态分布的条件分布仍为正态分布。

三、 随机变量的函数及其分布1、一维随机变量函数的分布 ()Y f X =(1)离散型:{}{()}k k P Y y P f X y ===()k i i y f x p ==∑(2)连续型:方法一:分布函数法:()(){}{()}()d ()().Y X f x yY F y P Y y P f X y p x xx F y Y ≤=≤=≤=−∞<<∞∫再对求导得到的密度函数方法二:公式法:11[()][()],,() 0, .X Y p f y f y y p y αβ−−⎧′<<⎪=⎨⎪⎩注意条件其它常用结论:(1) 随()~[0,1]X F x U 机变量的分布函数(2) 若22~(,)~~(,()).X N μσY aX b N a μb a σ=++,则 2、二维随机变量函数的分布 (,)Z f X Y =(1)和的分布Z X Y =+()(,)d Z p z p z y y y +∞−∞=−∫(,)d p x z x x +∞−∞=−∫;X Y 当与独立,()()()d Z X Y p z p z y p y y +∞−∞=−∫()()d X Y p x p z x x +∞−∞=−∫(2)差的分布Z X Y =−()(,)d Z p z p z y y y +∞−∞=+∫(,)d p x x z x +∞−∞=−∫;X Y 当与独立,()()()d Z X Y p z p z y p y y +∞−∞=+∫()()d X Y p x p x z x +∞−∞=−∫(3)商的分布XZ Y=()||(,)d Z p z y p yz y y +∞−∞=∫;X Y 当与独立,()||()()d Z X Y p z y p yz p y y +∞−∞=∫ (4)极值分布max{,},M X Y =min{,}.N X Y =的分布X Y 当,相互独立,()()()M X Y F z F z F z =;()1[1()][1()]N X Y F z F z F z =−−− X Y 当,相互独立且同分布,2()()M F z F z =;2()1[1()]N F z F z =−−3、常用结论(1) 若1122121212~(),~(),~()X P X P X X X X P λλλλ⇒++且相互独立2211222,~(,),~(,)X Y X N Y N μσμσ()相互独立且,221212~(,)Z X Y N μμσσ=+++则(3) 若,~(0,1),~(0,1)/X Y X N Y N Z X Y =相互独立且,则服从柯西分布:211()1Z p z z π=+。

相关文档
最新文档