AM及SSB调制与解调详解
幅度调制(AM调制、DSB(双边带)调制、SSB、VSB)

幅度调制(AM调制、DSB(双边带)调制、SSB、VSB)幅度调制(线性调制)是由调制信号去控制⾼频载波的幅度,使之调制信号的频谱线性变化。
载波信号:c(t)=A cosωc t,基带信号为m(t),则已调信号为:(设基带信号m(t)的频谱为M(ω))s m(t)=Am(t)cosωc tS m(ω)=A2[M(ω+ωc)+M(ω−ωc)]可以看到,幅度调制就是把基带信号的频谱搬移到ωc处,再乘以1/2 。
是线性变换。
AM调制s AM(t)=[A0+m(t)]cosωc tS AM=πA0[δ(ω+ωc)+δ(ω−ωc)]+12[M(ω+ωc)+M(ω−ωc)]为使⽤包络检波的⽅式进⾏解调,要求 |m(t)|<=A0 clear all;%% AM调制fs = 800; % 采样速率,单位kHzdt=1/fs; % 采样时间间隔,单位msT = 200; % 采样的总时间。
频谱分辨率(df=1/T)。
t = 0 : dt : T-dt;fm = 1; % 调制信号的频率,单位kHzfc = 10; % 载波信号的频率,单位kHzm = cos(2*pi*fm*t); % 调制信号A = 3; %直流信号s = (m+A).*cos(2*pi*fc*t); %已调信号[f,sf] = T2F(t,s);figure(1)plot(t,s);axis([0,2,-4,4]);figure(2)plot(f,abs(sf));axis([-15,15,0,max(abs(sf))]);DSB调制s DSB(t)=m(t)cosωc t S DSB(ω)=12[M(ω+ωc)+M(ω−ωc)],只能⽤相⼲解调clear all;%% DSB调制% DSB(双边带)只需将调制信号m(t)与载波信号cos(wt)直接相乘即可dt=1/800;T = 200; % 采样的总时间。
频谱分辨率(df=1/T)。
AM及SSB调制与解调详解

通信原理课程设计设计题目:AM 及SSB 调制与解调及抗噪声性能分析班级:学生姓名:学生学号:指导老师:目录一、引言 (3)1.1概述 (3)1.2课程设计的目的 (3)1.3课程设计的要求 (3)二、A M调制与解调及抗噪声性能分析 (4)2.1AM 调制与解调 (4)2.1.1AM 调制与解调原理 (4)2.1.2调试过程 (6)2.2相干解调的抗噪声性能分析 (9)2.2.1 抗噪声性能分析原理 (9)2.2.2调试过程 (10)三、S SB调制与解调及抗噪声性能分析 (12)3.1 SSB 调制与解调原理 (12)3.2SSB 调制解调系统抗噪声性能分析 (13)3.3调试过程 (15)四、心得体会 (19)五、参考文献 (19)一、引言1.1概述《通信原理》是通信工程专业的一门极为重要的专业基础课,但内容抽象,基本概念较多,是一门难度较大的课程,通过MATLAB仿真能让我们更清晰地理解它的原理,因此信号的调制与解调在通信系统中具有重要的作用。
本课程设计是AM及SSB 调制解调系统的设计与仿真,用于实现AM及SSB 信号的调制解调过程,并显示仿真结果,根据仿真显示结果分析所设计的系统性能。
在课程设计中,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化,其他参数不变。
同时也是使高频载波的振幅载有传输信息的调制方式。
1.2课程设计的目的在此次课程设计中,我需要通过多方搜集资料与分析:(1)掌握模拟系统AM和SSB调制与解调的原理;(2)来理解并掌握AM和SSB调制解调的具体过程和它在MATLAB中的实现方法;(3)掌握应用MATLAB分析系统时域、频域特性的方法,进一步锻炼应用MATLAB进行编程仿真的能力。
通过这个课程设计,我将更清晰地了解AM和SSB的调制解调原理,同时加深对MATLAB这款《通信原理》辅助教学操作的熟练度。
1.3课程设计的要求(1)熟悉MATLAB的使用方法,掌握AM信号的调制解调原理,以此为基础用MATLAB编程实现信号的调制解调;(2)设计实现AM调制与解调的模拟系统,给出系统的原理框图,对系统的主要参数进行设计说明;(3)采用MATLAB语言设计相关程序,实现系统的功能,要求采用一种方式进行仿真,即直接采用MATLAB语言编程的静态方式。
AM及SSB调制与解调

通信原理课程设计设计题目:AM及SSB调制与解调及抗噪声性能分析班级:学生:学生学号:指导老师:目录一、引言..................................................................................................... 错误!未定义书签。
概述........................................................................................................................ 错误!未定义书签。
课程设计的目的.................................................................................................... 错误!未定义书签。
课程设计的要求.................................................................................................... 错误!未定义书签。
二、AM调制与解调及抗噪声性能分析 .................................................. 错误!未定义书签。
AM调制与解调 ..................................................................................................... 错误!未定义书签。
AM调制与解调原理 ..................................................................................... 错误!未定义书签。
实验3 SSB信号的调制与解调

实验3 SSB信号的调制与解调1、实验目的掌握单边带调制(SSB)的调制和解调技术,了解其实现原理;通过实验,学习利用AM、AGC、高通滤波器和频率合成技术实现SSB调制和解调;熟练掌握实验中使用的各种仪器的使用方法。
2、实验原理2.1 单边带调制(SSB)单边带调制(SSB),也称单边带抑制(SSB-SC),是通过在AM调制信号中去掉一个边带来实现压缩信息信号带宽的一种调制方式。
通过单边带调制技术可以实现带宽压缩、频谱效率高等优点。
将带宽压缩到原来的一半或更少,或增加频带的利用率,提高信号的传输品质。
单边带解调是指将带有单边带的信号,通过解调电路恢复出原始的AM调制信号。
在单边带解调电路中一般采用同相和正交相两路解调,最后合成成为原始AM调制信号。
3、实验器材和仪器信号源、AM调制解调装置、示波器、函数发生器、多用电表、高通滤波器、信号发生器、频率计等。
4、实验步骤步骤一:将信号源中的20 kHz正弦波经过3.5 kHz高通滤波器滤波后,接入AM调制解调装置中的输入端;步骤二:调节AM调制解调装置中的AM深度到40%,打开AGC自动增益控制电路;步骤三:调节AM调制解调装置中的LO频率为115.5 kHz,选择LSB单边带发射;步骤四:调节信号源中的20 kHz正弦波频率,使频率计读数达到19.5 kHz左右,观察示波器上的信号;步骤五:检查示波器上的波形是否满足LSB单边带的特点。
步骤一:将频率为115.5 kHz的SSB信号接入同相解调电路及正交解调电路中,将解调信号分别接入示波器观察;步骤二:调节同相解调电路中的LO频率为115.5 kHz,调节正交解调电路中的LO频率为115.505 kHz;步骤三:对示波器上的同相、正交解调信号分别进行滤波,将滤波后的信号再次输入AM调制解调装置中进行合成;步骤四:调节合成后的信号深度为40%,观察示波器上的波形,判断SSB解调是否成功。
5、实验注意事项5.1 保护好实验仪器和设备。
systemview通信系统仿真 AM、DSBSSB调制解调 数字调制方式仿真2ASK、2FSK、2PSK调制解调抽样定理、增量调制

1引言 (1)2 SystemView的基本介绍 (2)3模拟调制系统的设计与分析 (4)3.1 AM的调制解调 (4)3.1.1 AM的调制解调原理 (4)3.1.2 AM调制解调的仿真设计及分析 (5)3.2 DSB调制解调 (7)3.2.1 DSB调制解调原理 (7)3.2.2 DSB调制解调仿真设计及分析 (7)3.3 SSB的调制解调 (9)3.3.1 SSB的调制原理 (9)3.3.2 SSB的调制解调仿真设计及分析 (10)3.4三种幅度调制系统的比较 (13)4 数字调制解调系统 (14)4.1数字信号基带传输原理 (14)4.2 2ASK的调制解调 (14)4.2.1 2ASK调制与解调基本原理及其分析 (14)4.2.3 2ASK系统仿真设计及分析 (15)4.3 2FSK的调制解调 (18)4.3.1 2FSK调制与解调基本原理及其分析 (18)4.3.2 2FSK系统仿真设计及分析 (19)4.4 2PSK的调制解调 (20)4.4.1 2PSK调制与解调基本原理及其分析 (20)4.4.2 2PSK系统仿真设计及分析 (21)5信号的抽样与恢复 (24)5.1 抽样定理 (24)5.2 信号的采样与恢复仿真及分析 (24)6 增量调制与解调 (27)6.1增量调制原理 (27)6.2 增量调制仿真设计及分析 (28)7 结论 (30)参考文献 (31)在当今信息社会,通信已经成为整个社会的高级“神经中枢”,通信技术变得越来越重要,没有通信的人类社会将是不堪设想的。
通信按传统的理解就是信息的传递与交换。
一般来说,通信系统是由信源、发送设备、信道、接收设备、信宿组成,其系统组成如图1-1所示:(发送端) (接收端)图1-1 通信系统的组成一般发送端要有调制器,接收端要有解调器,这就用到了调制与解调技术。
调制可分为模拟调制和数字调制,模拟调制常用的方法有AM 调制、DSB 调制及SSB 调制等。
振幅调制电路(AM,DSB,SSB)调制与解调解读

高频电子线路——振幅调制电路(AM,DSB,SSB)调制与解调目录摘要 (1)引言 (2)原理说明 (3)实验分析 (5)总结 (18)参考文献 (19)摘要MATLAB是一个包含大量计算算法的集合。
其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。
函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。
在计算要求相同的情况下,使用MATLAB 的编程工作量会大大减少。
函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
本文介绍了利用MATLAB函数仿真信号,建立双边带(DSB)调制与解调模型,分析双边带(DSB)调制与解调特性,仿真结果与理论很好地吻合,验证了仿真结果的正确性。
引言我们知道,信号通过一定的传输介质在发射机和接收机之间进行传送时,信号的原始形式一般不适合传输。
因此,必须转换它们的形式。
将低频信号加载到高频载波的过程,或者说把信息加载到信息载体上以便于传输的处理过程,称为调制。
所谓“加载”,其实质是使高频载波信号(信息载体)的某个特性参数随信息信号的大小呈线性变化的过程。
通常称代表信息的信号为调制信号,称信息载体信号为载波信号,称调制后的频带信号为已调波信号。
标准振幅调制(AM)是一种相对便宜,质量不高的调制形式。
在普通调幅波(AM)信号中,有用信息只携带在变频带内,而载波本身并不携带信息,但它的功率却占用了整个调幅波功率的绝大部分,因而AM调幅波的功率浪费大,效率低。
而在双边带调制(DSB)中,将载波分量抑制掉,就可形成抑制载波的双边带信号,从而提高效率。
由于上下边带包含信息相同,两个边带的发射是多余的,为节约频带,提高系统的功率和频带利用率,常采用单边带(SSB)调制系统。
AM调制与解调

课程设计电子与信息工程学院信息与通信工程系振幅调制信号的解调过程称为同步检波。
有载波振幅调制信号的包络直接反应调制信号的变化规律,可以用二极管包络检波的方法进行检波。
而抑制载波的双边带或单边带振幅调制信号的包络不能直接反应调制信号的变化规律,无法用包络检波进行解调,所以要采用同步检波方法。
同步检波器主要适用于对DSB和SSB信号进行解调,也可以用于AM,但是一般AM调制信号都用包络检波来进行检波。
同步检波法是加一个与载波同调制系统和同步检波器的AM;Multisim;调制1 MC1496芯片设计 (2)1.1MC1496内部结构及基本性能 (2)2 信号调制的一般方法 (4)2.1模拟调制 (4)2.2数字调制 (5)2.3脉冲调制 (5)3 振幅调制.3.1基本原理3.2AM调制与仿真实现.3.3DSB调制与仿真实现4解调.4.1同步检波器原理框图 (14) (15)5 小结与体会 (16)6附录:总电路图 (16)1 MC1496芯片设计1.1 MC1496内部结构及基本性能在高频电子线路,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正式实现两个模CRT显所示图1.1 MC1496内部结构图MC1496是由互补双极性工艺制作而成,它包含有四个高精度四象限乘法单元。
温度漂移小于0.005%/℃。
0.3μV/Hz的点噪声电压使低失真的Y通道只有0.02%的总谐波失真噪声,四个8MHz通道的总静止功耗也仅为150mW。
MC1496的工作温度范围为-40℃~+85℃。
MC1496的其它主要特性如下:●四个独立输入通道;●四象限乘法信号;●电压输入电压输出;●乘法运算无需外部元件;●电压输出:W=(X×Y)/2.5V,其中X或Y●具有优良的温度稳定性:0.005%;●低功耗2 信号调制的一般方法调制就是对信号源的信息进行处理,使其变为适合于信道传输的形式的过程。
AM信号调制与解调1205

载波信号
调幅波数学表达式为:
s AM (t ) = (A 0 + u W(t ))?u c (t )
= (A0 + U Wm cos W t )? U cm cos wct 骣 U Wm ÷ = A 0 ?U cm ç 1 cos W t cos wc t ÷ ç A0 桫
调幅信号
2、AM调制信号表达式
17
6、AM调制信号的功率利用率
Ps hA = PAM
m 2 (t )
2 AM
基带信号功率
已调信号功率
通常假设基带 信号均值为0 即 m (t ) = 0
Ps =
2
2
PAM = s
2 A + m t cos wct (t ) = 轾 ( ) 臌0
= A 02 cos 2 wct + m 2 (t )cos 2 wc t + 2A 0 m (t )cos 2 wc t
包络:分为波形包络和频谱包络 波形包络:将一段时间长度的高频信 号的峰值点连线,就可以得到上方 (正的)一条线和下方(负的)一条 线,这两条线就叫包络线。包络线就 是反映高频信号幅度变化的曲线。对 于等幅高频信号,这两条包络线就是 平行线,。 频谱包络:将频谱中不同频率的振 幅最高点连结起来形成的曲线。
检波输出:
fc = 轾 A 0 + m (t ) cos wc t 臌
sd (t ) = A0 + m (t )
23
优点: 结构简单,解调输出是相干解调输出的两倍
思考
m (t ) = 0
相干解调适用于大小信号条件??
包络检波适用于大信号条件??
24
谢 谢
25
c (t ) = cos wct
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信原理课程设计设计题目:AM 及SSB 调制与解调及抗噪声性能分析班级:学生姓名:学生学号:指导老师:目录一、引言 (3)1.1概述 (3)1.2课程设计的目的 (3)1.3课程设计的要求 (3)二、A M调制与解调及抗噪声性能分析 (4)2.1AM 调制与解调 (4)2.1.1AM 调制与解调原理 (4)2.1.2调试过程 (6)2.2相干解调的抗噪声性能分析 (9)2.2.1 抗噪声性能分析原理 (9)2.2.2调试过程 (10)三、S SB调制与解调及抗噪声性能分析 (12)3.1 SSB 调制与解调原理 (12)3.2SSB 调制解调系统抗噪声性能分析 (13)3.3调试过程 (15)四、心得体会 (19)五、参考文献 (19)一、引言1.1概述《通信原理》是通信工程专业的一门极为重要的专业基础课,但内容抽象,基本概念较多,是一门难度较大的课程,通过MATLAB仿真能让我们更清晰地理解它的原理,因此信号的调制与解调在通信系统中具有重要的作用。
本课程设计是AM及SSB 调制解调系统的设计与仿真,用于实现AM及SSB 信号的调制解调过程,并显示仿真结果,根据仿真显示结果分析所设计的系统性能。
在课程设计中,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化,其他参数不变。
同时也是使高频载波的振幅载有传输信息的调制方式。
1.2课程设计的目的在此次课程设计中,我需要通过多方搜集资料与分析:(1)掌握模拟系统AM和SSB调制与解调的原理;(2)来理解并掌握AM和SSB调制解调的具体过程和它在MATLAB中的实现方法;(3)掌握应用MATLAB分析系统时域、频域特性的方法,进一步锻炼应用MATLAB进行编程仿真的能力。
通过这个课程设计,我将更清晰地了解AM和SSB的调制解调原理,同时加深对MATLAB这款《通信原理》辅助教学操作的熟练度。
1.3课程设计的要求(1)熟悉MATLAB的使用方法,掌握AM信号的调制解调原理,以此为基础用MATLAB编程实现信号的调制解调;(2)设计实现AM调制与解调的模拟系统,给出系统的原理框图,对系统的主要参数进行设计说明;(3)采用MATLAB语言设计相关程序,实现系统的功能,要求采用一种方式进行仿真,即直接采用MATLAB语言编程的静态方式。
要求采用两种以上调制信号源进行仿真,并记录各个输出点的波形和频谱图;(4)对系统功能进行综合测试,整理数据,撰写课程设计论文。
二、AM调制与解调及抗噪声性能分析2.1A M 调制与解调2.1.1AM 调制与解调原理幅度调制是由调制信号去控制高频载波的幅度,使正弦载波的幅度随着调制信号而改变的调制方案,属于线性调制。
AM信号的时域表示式:频谱:调制器模型如图所示:A0 cos c t图1-1 调制器模型AM的时域波形和频谱如图所示:图 1-2 调制时、频域波形AM 信号的频谱由载频分量、上边带、下边带三部分组成。
它的带宽是基带信号带宽的在波形上,调幅信号的幅度随基带信号的规律而呈正比地变化,在频谱结构上,它的频谱完全是基 带信号频谱在频域内的简单搬移。
所谓相干解调是为了从接受的已调信号中,不失真地恢复原调制信号,要求本地载波和接收信 号的载波保证同频同相。
相干载波的一般模型如下:c t cos c t将已调信号乘上一个与调制器同频同相的载波,得2S AM (t) cosw c t [A 0 m(t )] cos 2w c t112[A 0 m(t)] 2[A 0 m(t)]cos2w c t 由上式可知,只要用一个低通滤波器,就可以将第1 项与第 2项分离,无失真的恢复出原始的调制信号1M 0(T) [A 0 M(T)]2 相干解调的关键是必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满 足,则会破坏原始信号的恢复。
频sp tLPFsd t2.1.2调试过程t=-1:0.00001:1; % 定义时长A1=6; %调制信号振幅A2=10; %外加直流分量f=3000; %载波频率w0=2*f*pi; %角频率Uc=cos(w0*t); %载波信号subplot(5,2,1);plot(t,Uc); %画载波信号title(' 载波信号');axis([0,0.01,-1,1]); %坐标区间T1=fft(Uc); %傅里叶变换subplot(5,2,2);plot(abs(T1));%画出载波信号频谱title(' 载波信号频谱'); axis([5800,6200,0,200000]); % 坐标区间mes=A1*cos(0.002*w0*t); %调制信号subplot(5,2,3);plot(t,mes);% 画出调制信号title(' 调制信号');T2=fft(mes); % 傅里叶变换subplot(5,2,4);plot(abs(T2)); %画出调制信号频谱title(' 调制信号频谱');axis([198000,202000,0,1000000]); % 坐标区间Uam1=A2*(1+mes/A2).*cos((w0).*t); %AM 已调信号subplot(5,2,5);plot(t,Uam1);% 画出已调信号title(' 已调信号');T3=fft(Uam1); %已调信号傅里叶变换subplot(5,2,6);plot(abs(T3)); ;%画出已调信号频谱title(' 已调信号频谱');axis([5950,6050,0,900000]); % 坐标区间sn1=20; %信噪比db1=A1^2/(2*(10^(sn1/10))); % 计算对应噪声方差n1=sqrt(db1)*randn(size(t)); % 生成高斯白噪声Uam=n1+Uam1; %叠加噪声后的已调信号Dam=Uam.*cos(w0*t); % 对AM 已调信号进行解调subplot(5,2,7);plot(t,Dam);% 滤波前的AM 解调信号title(' 滤波前的AM 解调信号波形');T4=fft(Dam); % 求AM信号的频谱subplot(5,2,8);plot(abs(T4));% 滤波前的AM解调信号频谱title(' 滤波前的AM 解调信号频谱');axis([187960,188040,0,600000]);Ft=2000; %采样频率fpts=[100 120]; % 通带边界频率fp=100Hz 阻带截止频率fs=120Hz mag=[1 0];dev=[0.01 0.05]; %通带波动1%,阻带波动5%[n21,wn21,beta,ftype]=kaiserord(fpts,mag,dev,Ft);%kaiserord 估计采用凯塞窗设计的FIR滤波器的参数b21=fir1(n21,wn21,Kaiser(n21+1,beta));%由fir1 设计滤波器z21=fftfilt(b21,Dam); %FIR低通滤波subplot(5,2,9);plot(t,z21,'r');% 滤波后的AM 解调信号title(' 滤波后的AM 解调信号波形');axis([0,1,-1,10]);T5=fft(z21); %求AM 信号的频谱subplot(5,2,10);plot(abs(T5),'r');% 画出滤波后的AM 解调信号频谱title(' 滤波后的AM 解调信号频谱'); axis([198000,202000,0,500000]);运行结果:2.2 相干解调的抗噪声性能分析 2.2.1 抗噪声性能分析原理AM 线性调制系统的相干解调模型如下图所示。
图 3.5.1 线性调制系统的相干解调模型图中 Sm (t)可以是 AM 调幅信号,带通滤波器的带宽等于已调信号带宽 [10]。
下面讨论 AM 调制系统的抗噪声性能 [11]。
AM 信号的时域表达式为S AM (t) [A 0 m(t )] cosw c t通过分析可得 AM 信号的平均功率为22 (S )A 0 m 2(t)(Si )AMi AM2 2又已知输入功率Ni n0B, 其中 B 表示已调信号的带宽。
由此可得 AM 信号在解调器的输入信噪比为因此解调器的输出噪声功率为(S i N i ) AMA 02m 2(t) A 02m 2(t)2n 0B AM4n 0f HAM 信号经相干解调器的输出信号为1m 0(t) 12m(t)因此解调后输出信号功率为(S 0) AM21 2m 20 (t) m 2(t)4 变成窄带噪声 ni (t),经乘法器相乘后的输出噪声为在上图中输入噪声通过带通滤波器之后, n p (t) n i (t)cosw c t [n c (t)cosw c t-n (t)sinw t]cosw t11 n c (t) [n c (t)cos2w c t-经 LPF 后,n 0(t) 12n c (t)2N0 n20 (t) 1n c2(t) 1 N i 44可得AM信号经过解调器后的输出信噪比为(S0 N0 ) AM m2(t)n0Bm2(t)2n0f H由上面分析的解调器的输入、输出信噪比可得AM信号的信噪比增益为G AM2S0 N0 2m2(t) S i N i A2 m2(t)2.2.2 调试过程clf;t=0:0.01:2;fc=50;A=10;fa=5;mt=A*cos(2*pi*fa.*t); xzb=5;snr=10.^(xzb/10);db=A^2./(2*snr);nit=sqrt(db).*randn(size (mt));psmt=(A+mt).*cos(2*pi*fc .*t); psnt=psmt+nit; xzb1=30;snr1=10.^(xzb1/10);%清除窗口中的图形%定义变量区间%给出相干载波的频率%定义输入信号幅度%定义调制信号频率%输入调制信号表达式%输入小信躁比(dB)%由信躁比求方差%产生小信噪比高斯白躁声%输出调制信号表达式%输出叠加小信噪比已调信号波形%输入大信躁比(dB)db1=A^2./(2*snr1);nit1=sqrt(db1).*randn(size(mt) ) ; psnt1=psmt+nit1;subplot(2,2,1);plot(t,nit,'g');title(' 小信噪比高斯白躁声'); xlabel(' t');ylabel(' nit');subplot(2,2,2);plot(t,psnt,'b');title(' 叠加小信噪比已调信号波形'); %由信躁比求方差%产生大信噪比高斯白躁声%输出已调信号波形%划分画图区间%画出输入信号波形xlabel('时间 ');ylabel(' 输出调制信号 '); subplot(2,2,3); plot(t,nit1,'r');title(' 大信噪比高斯白躁声 ');xlabel(' t'); ylabel('nit'); subplot(2,2,4); plot(t,psnt1,'k');title(' 叠加大信噪比已调信号波形 '); xlabel('时间 ');ylabel(' 输出调制信号 ');运行结果:由上图可见,当输入信号一定时,随着噪声的加强,接收端输入信号被干扰得越严重。