所有相图
三元相图教程ppt课件

6
确定一点的组成
1、平行线法(三线法)
7
2、双线法确定三元组成
b
c
a
8 8
• 如果三元相图的组分已知就可以在浓度三 角形中确定相应的位置。
O的组成为: A——30% B——60% C——10% 那么O点应该 在哪里呢?
9
三、三元系统组成
C
中的一些关系
1、等含量规则
在等边三角形
B
M1+M2-M3=M
从M1+M2中取出M3愈多,则M点离M3愈远。 16
(3) 共轭位置规则
在三元系统中,物质
组成点M在的一个角顶
之外,这需要从物质M3中 取出一定量的混合物质M1 +M2,才能得到新物质M, 此规则称为共轭位置规则。
由重心规则:
M1+M2+M=M3 或:M= M3 -(M1+M2)
液相点
固相点
49
C
D
F
C .G
e4
3 E Pm
A
S
A
e1
Q
析晶路程:
液相点
e3
.B
S
(3).分析:3点在C的初晶区内,开始
析出的晶相为C,在ASC内,最终析 晶产物为A、S、C,析晶终点在E点, 结晶终产物是A、S、C。途中经过P 点,P点是转熔点,同时也是过渡点。 B L+B S+C
固相点
50
Q/
S/
A/
L+B
B/ 29
1) 几条重要规则
(1)连线规则:用来判断界线的温度走向;
定义:将界线(或延长线)与相应的组成点的连线
相交,其交点是该界线上的温度最高点;温度走
向是背离交点。在连线的同时也就划出了副三角
物理化学相图知识总结 包含所有相图

单组分系统一、水的相图水的相图考点:水的冰点与三相平衡点:三相点比冰点高约0.01K二组分系统一、理想液态混合物1.定温下的P-X图系统点: 相图上表示系统总状态(总组成)的点;相点:表示各个相的状态(组成)的点.结线:两个平衡相点的连结线.系统点总是在结线上2.定压下的T-X图泡点: 液相升温至开始起泡沸腾的温度;露点: 气相降温至开始凝结的温度.两点之间为相变温度区间, 与系统总组成有关.精馏原理:将液态混合物同时经多次部分气化和部分冷凝而使之分离的操作称为精馏。
同一层隔板上, 自下而上的有较高温度的气相与反方向的较低温度的液相相遇. 通过热交换,气相部分冷凝, 液相则部分气化.二、非理想液态混合物1.二组分真实液态混合物的4种类型的P-X图关于正偏差:若两组分分子间的吸引力小于各纯组分分子间吸引力,形成混合物后,分子就容易逸出液面而产生正偏差.若纯组分有缔合作用,在形成混合物后发生离解,因分子数增多而产生正偏差.混合时常有吸热及体积增大现象.关于负偏差:若两组分分子间的吸引力大于各纯组分分子间吸引力,形成混合物后,分子就较难逸出液面而产生负偏差.若形成混合物后分子发生缔合,因分子数减少而产生负偏差.混合时常有放热及体积缩小现象.2. 二组分真实液态混合物的4种类型的T-X图恒沸点处气相组成和液相组成相同。
此点对应的自由度数为0.一般正偏差和一般负偏差系统的温度-组成相图与理想系统的类似.3.部分互溶系统部分互溶的情况:系统会以两个饱和溶液平衡共存,这两个液层称为共轭溶液. 当混合物组成未达到两组分的相互溶解度时, 系统都以均相存在。
将具有两个液层的系统升高或降低至某个温度,两个液层的界面消失而成为一个液相,这个温度叫做最高或最低会溶温度。
4. 二组分液态完全互溶向部分互溶过渡5. 二组分液态部分互溶向完全不互溶过渡6. 完全不互溶三、二组分固-液平衡体系1.固态完全不互溶系统2.热分析法冷却曲线出现平台的原因:释放的凝固热抵消了因冷却而散失的热量出现最低点:因最初非常微细的晶体难以析出,过冷现象导致斜率变小的原因:固态Bi析出所释放的凝固热部分抵消了降温过程散失的热量低共熔温度、低共熔混合物3.溶解度法4.固态部分互熔系统5.固态完全互熔系统晶内偏析:退火:淬火:6.生成稳定化合物的系统注:若化合物数目有N种,则其相图就被看作是由(N+1)个简单低共熔点的固态不互溶系统的相图组合而成。
相图基础

④ 干冰的升华条件。
§5-10 二组分理想液态混
掌握
合物的气-液平衡相图
1 理想的完全互溶双液系 2 非理想的完全互溶双液系 3 部分互溶双液系 4 不互溶双液系
§5-10 §5-11 §5-12 §5-13
p-xB, T-xB 图 杠杆原理
Pa 1.575108 Pa
dp dT
Δβα Η m TΔβαVm
p2 dp
p1
T2 T1
dT
Δ
β α
Η
m
TΔβαVm
,
即
p2
p1
Δ
β α
Η
m
ΔβαVm
ln
T2 T1
ΔβαVm Vm lVm s 0.018 1 10001 920m3 mol1
1.565106 m3 mol1
T1 273 .2 K
③
ln
p p
gl H m R
1 383K
1 300 K
1.1587
,
p 31.8 kPa
④
S体
gl Sm
gl H m 383K
34.8 kJ mol1
Q环 glU m ,
S环
glU m T
S总
gl H m T
glU m T
nRT T
nR 0
3.水的相图
p/kPa
l (水)
A
ln(
p /[
p])
vap
H
* m
C
RT
不定积分形式
ln(
p /[
p])
vap
H
* m
C
第四章:二元相图

2.杠杆定律: 问题提出: ①当二元合金(成分已知)由两相组成时两相的相对重量是多少?
例:45钢(含C=0.45%),铁素体(F)和Fe3C两相各占多少? ②当二元合金两相相对重量已知时,合金成分是多少?
例:金相观察:F:95%; Fe3C:5%;求钢的含碳量? 杠杆定律可以解决此类问题。
纯金属结晶:在负的温度梯度下---------树枝晶。 在正的温度梯度下------平滑界面(平面长大)
固溶体合金,即使在正的温度梯度下,也会形成树枝晶-------是由于 成分过冷造成的。 (1)成分过冷概念:固溶体合金结晶时,由于液固界面前沿存在溶质 浓度梯度而改变了过冷情况,称为成分过冷。
(2) 产生原因: 以K0<1为例(图示说明) 过冷度:界面前沿液相实际温度<液相平衡结晶温 度 (3) 产生成分过冷的条件: (讨论成分过冷的影响)
④具有共晶转变的二元合金: Pb-Sn Pb-Sb Fe-C(C>2.11%) Al-Si Al-Cu Ag-Cu
第四章:二元相图
4.2.2共晶相图
1.相图分析
以Pb-Sn二元合金相图为例:
三个单相区:L、α、β α:Sn溶入Pb中固溶体 β: Pb溶入Sn中固溶体
AEB-液相线 E点:共晶合金 AMNB-固相线 ME之间:亚共晶 ; EN之间:过共晶合金 MF-Sn在Pb中溶解度曲线,随T↓,溶解度↓ NG- Pb在Sn中溶解度曲线
第四章:二元相图
4.2.2共晶相图
2.典型合金平衡结晶及组织
(2)共晶合金结晶过程(61.9%Sn) 在183℃,由61.9%Sn的液相,同时结 晶出α(19%Sn)和β(97.5%Sn)两 种固溶体。
三元相图(2)

是三元系中的杠杆定律。
由直线法则及杠杆定律可作出下列推论:当给定材料在一定温度下处于两相平衡 状态时,若其中一相的成分给定,另一相的成分点必在两已知成分点连线的延长线 上;若两个平衡相的成分点已知,材料的成分点必然位于此两个成分点的连线上。
三元相图与二元相图比较。组元数增加了一个,即成分变量为两个,故表示成分的坐标轴 应为两个,需要用一个平面来表示,再加上一个垂直该成分平面的温度坐标轴,这样三元相 图就演变成一个在三维空间的立体图形。这里,分隔每一个相区的是一系列空间曲面,而不 是平面曲线。
要实测一个完整的三元相图,工作量很繁重,加之应用立体图形并不方便。因此,在研究 和分析材料时,往往只需要参考那些有实用价值的截面图和投影图,即三元相图的各种等温 截面、变温截面及各相区在浓度三角形上的投影图等。立体的三元相图也就是由许多这样的 截面和投影图组合而成的。
2.截面图 rs和At垂直截面如下图所示。rs截面的成分轴与浓度三角形的AC边平行,图中re
和es是液相线,相当于截面与空间模型中液相面Ae1Ee3A和Ce2Ee3C的截线;曲线 r1d′是截面与过渡面fe1Emf的截痕,de,ei和isl分别是截面与过渡面le3Eml, ke3Epk和je2Epj的交线;水平线r2s2是四相平衡共晶平面的投影。 利用这个垂直截面可以分析成分点在rs线上的所有合金的平衡凝固过程,并可确定 其相变临界温度。以合金O为例。当其冷到1点开始凝固出初晶A,从2点开始进入L +A+C三相平衡区,发生L→A+C共晶转变,形成两相共晶(A+C),3点在共晶 平面mnp上,冷至此点发生四相平衡共晶转变L→A+B+C,形成三相共晶(A+B +C)。继续冷却时,合金不再发生其他变化。其室温组织是初晶A十两相共晶(A +C)十三相共晶(A+B+C)。
三元相图

两相区
三相区 四相区
同析三角台
单相区(1个液相区,固溶体相、、的单相区)
液相面
相单相区为afmk与Aa之间的区域
a1aa0a0’a1为B 组元在相中的固溶度面 b1bb0b0’b1为A 组元在相中的固溶度面
两相区
三元共晶转变前 三元共晶转变后
4)三个固相平衡三棱台 A)三条棱为三条单变量线;也称同析线,即有一相同时析 出另两相,从而由单相区直接进入三相区; B) 顶面与四相平衡面重合,底面与成分三角形重合; C) 三个侧面是三相区和两相区(均为固相)的分界面; D)合金进入该相区后,随温度的下降,三相的相对量随之 发生改变(由重心定理可知)。 (
8.3 固态有限互 溶的三元共晶相 图
1. 空间模型
组元在固态有限互 溶的三元共晶相图的
空间模型,如图8.17 所示。
1)液相面和固相面
图中每个液、固两相平衡区和单相固溶体区之间都存 在一个和液相面共扼的固相面,即
固相面afmla和液相面ae1Ee3a共扼;
固相面bgnhb和液相面be1Ee2b共扼;
3)三元共晶转变面
成分为E的液相在水平面mnp(三元共晶转变面)发
生四相平衡的共晶转变:
Le1 ~ E f ~ m g ~ n Le2 ~ E h~ n i ~ p LE m n p Le3 ~ E k ~ p i ~ m
2.
投影图
图8.19 为三元共晶相图的 投影图。
从图中可清楚看到3条共晶转变线的投影e1E,e2E 和e3E把浓 度三角形划分成3个区域Ae1Ee3A , Be1Ee2B和C e2Ee3 C, 这是3个液相面的投影。 投影图中间的三角形mnp为四相平衡共晶平 面。
三元相图
三元系统相图一、相律及组成表示法根据吉布斯相律 f = c-p+2p -相数c -独立组分数f -自由度数2 -温度和压力外界因素凝聚态系统不考虑压力的影响,相律为:f = c-p + 1(温度)(一)相律三元相图比二元相图多一个组元,根据相律,三元凝聚系统:f =c -p +1=4 -p,当p=1 时,f max=3 ( 即两个成分变量x1、x2和温度的变化)当f=0时,体系具有做多的平衡相P=4 (四相共存)在硅酸盐系统中经常采用氧化物作为系统的组分。
一元系统如:SiO2Al2O3-SiO2二元系统CaO-Al2O3-SiO2三元系统注意区分:2CaO.SiO2(C2S) ;CaO-SiO2;K2O.Al2O3..4SiO2 -SiO2f =c -p +1=4 -p•最大自由度f max=3是指两个独立的浓度变量和一个温度变量•如何用相图表示?•一般用正三棱柱•三个顶点表示三个纯组分•纵坐标表示温度•三角形中表示各种配比的混合物•由于A+B+C为一恒定值,所以三者中只有两个是独立的变量三坐标的立体图平面投影图相图图1 三元匀晶相图图2 三元共晶相图(二)三元系统组成的表示方法浓度三角形:在三元系统中用等边三角形来表示组成。
(组成的百分含量可以是质量分数,亦可是摩尔分数)。
顶点:单元系统或纯组分;边:二元系统;内部:三元系统。
图3 浓度三角形909090808080707070606060505050404040303030202020101010cEM DaABCa图4 双线法确定三元组成CABMbc a一个三元组成点愈靠近某一角顶,该角顶所代表的组分含量必定愈高。
例题1:在浓度三角形中:•定出P 、R 、S 三点的成分。
•若有P 、R 、S 三点合金的质量分别为2,4,7Kg ,将其混合构成新合金,求混合后该合金的成分。
•定出Wc=0.80,W A /W B 等于S 中的W A /W B 时的合金成分。
四元相图简介
方法:初晶空间的顶点为光源,
向其它三个顶点所组成的平面发
射光线,将包Leabharlann 该初晶空间的三个界面上的所有几何要素都投影
到底面上去,便构成类似三元相
图的四元系的一个锥形投影图,
称这种投影图为A—B—C—D四
元系统中与D初晶区临接的各界
限曲线在A—B—C底面上的锥 形投影图。
共熔点、共熔线、相区和 等温线(三相共熔面上等温线的投影)
2,等组成截面图 根据:等含量规则 某一组元含量(D)被固定的四元相图。 a 是指D的含量很高 b 是指D含量很低,c 介于二者之间
不用箭头表示温度的下降方向
不能分析析晶过程的相关系变化
在两相界限上,不沿界限析出 在三相汇聚点,不在这点的温度析晶结束
D=50%
谢谢
• 三元系: 三个组元组成的合金系 (C=3)
• 相律: f=C-P+1 • f=0 时, P=4最多是四相平衡 • P=1时 自由度f=3 • 独立变量:温度 T • 组元浓度 Xa、Xb
(Xc=1-Xa-Xb)
成分表示方法:
A
b a’
C’ Oa
Bc
b' C
Xa=Ca, Xb=Ab, Xc=Bc
杠杆定律 重心法则
三元相图的几何形状 : 空间三维模型 浓度三角形综合投影图 (相界面)
实用平面图:等温截面图 变温(垂直)截面图
四元相图的组成表示法
四元体系中 C=4, f=C-P+1=5-P f=0,五相共存 P=1,f=4(温度,三个 浓度组成)
浓度四面体表示法
四元相图的组成表示法
过P点作ADC
的平行面,交AB
上的各点,其它三个组分含量之
比相等。
相图平衡相图Phase
44.5
65
35
67.5
32.5
73.6
26.4
73.6
26.4
51.8
48.2
65
35
65
35
温度 (°C) 2570 1723 1705 1705 1436 1544 1460 1464 2130 2050 2150 1250 1125 319450 725
硅砖中用CaO作矿化 剂
二液区
SiO2中加入1%CaO,在低共熔温 度1436 °C下能产生2.7%的液相 量(根据杠杆规则:1:37=2.7%) 液相 线从C点往左上升得很陡, 所以温度升高很多时,液相量增
盐水溶液:NaCl、H2O组分 Na+、Cl-、H+、OH-不是组分
组分:系统中每一个能单独分离出来 并能独立存在的化学均匀物质。
独立组分数(c):决定一个相平衡系 统成分所必需的最少的组分数。
C=1,单元系统 C=2,二元系统 C=3,三元系统
5
• 组分数和独立组分数只有在特定的条件 下,其含义才相同。
固相线
4个相区:
L、L+A、 L+B、A+B
特点: 两个组分在液态时能以任何比例互溶,形成单相溶液;但在
固态时则完全不互溶,二化合物
22
• 以组成为M的配料加热到高温完全熔融,然后平衡冷却析晶。
M的熔体M’
T=T,L p=1, f = 2
FLASH
°C平
45
5.5 三元相图的基本知识
三元系统:c = 3
相律 f c p 1 4 p
pmin 1, fmax 3
温度、浓度
fmin 0, pmax 4
不可能出现5相 或更多相平衡
物理化学相图知识总结(包含所有相图)
一、 水的相图
水的相图考点:水的冰点与三相平衡点:三相点比冰点高约 0.01K
二组分系统 一、 理想液态混合物
1.定温下的 P-X 图
系统点: 相图上表示系统总状态(总组成)的点; 相点:表示各个相的状态(组成)的点.
1
结线:两个平衡相点的连结线.系统点总是在结线上 2.定压下的 T-X 图
泡点: 液相升温至开始起泡沸腾的温度; 露点: 气相降温至开始凝结的温度. 两点之间为相变温度区间, 与系统总组成有关. 精 馏 原 理:将液态混合物同时经多次部分气化和部分冷凝而使之分离的操作 称为精馏。 同一层隔板上, 自下而上的有较高温度的气相与反方向的较低温度的液相相遇. 通过热交换,气相部分冷凝, 液相则部分气化.
5
4.固态部分互熔系统
5.固态完全互熔系统
晶内偏析: 退火: 淬火: 6.生成稳定化合物的系统
6
注:若化合物数目有 N 种,则其相图就被看作是由(N+1)个简单低共熔点的固 态不互溶系统的相图组合而成。 7.生成不稳定化合物的系统
书写方程式是重点。
7
二、 非理想液态混合物
1. 二组分真实液态混合物的 4 种类型的 P-X 图
关于正偏差: 若两组分分子间的吸引力小于各纯组分分子间吸引力,形成混合物后,分子就容 易逸出液面而产生正偏差. 若纯组分有缔合作用,在形成混合物后发生离解,因分子数增多而产生正偏差.混 合时常有吸热及体积增大现象. 关于负偏差: 若两组分分子间的吸引力大于各纯组分分子间吸引力,形成混合物后,分子就较
4
三、 二组分固-液平衡体系
1.固态完全不互溶系统
2.热分析法
冷却曲线出现平台的原因:释放的凝固热抵消了因冷却而散失的热量 出现最低点:因最初非常微细的晶体难以析出,过冷现象导致 斜率变小的原因:固态 Bi 析出所释放的凝固热部分抵消了降温过程散失的热量 低共熔温度、低共熔混合物 3.溶解度法