湖南大学2013年高等代数真题
2013年湖南省高考数学试卷(理科)及解析

2013年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2013•湖南)某校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著C D2asinB=由正弦定理=2sinAsinB=sinA=A=.4.(5分)(2013•湖南)若变量x,y满足约束条件,则x+2y的最大值是()Dx=y=解:作出不等式组(﹣(,,)26.(5分)(2013•湖南)已知,是单位向量,,若向量满足,则的取值范围为()C D,,作出图象,根据图象可求出,,,共线时达到最值,最大值为[,7.(5分)(2013•湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不C D;当正视图为对角面时,其面积最大为皆有可能,而8.(5分)(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P 出发,经BC,CA反射后又回到点P(如图1),若光线QR经过△ABC的重心,则AP等于()D,),即k=,故直线y=的重心(,,或(AP=二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.(2013•湖南)在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为3.:,得.的右顶点为(10.(5分)(2013•湖南)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为12.c=c=时,11.(5分)(2013•湖南)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.的半径为==故答案为:12.(5分)(2013•湖南)若,则常数T的值为3.=913.(5分)(2013•湖南)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为9.14.(5分)(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2=30°的最小内角为30°,则C的离心率为.×c==.故答案为:15.(5分)(2013•湖南)设S n为数列{a n}的前n项和,,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.时,有,得时,.(=)故答案为﹣)因为,所以﹣,所以.故答案为16.(5分)(2013•湖南)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为{x|0<x≤1}.(2)若a,b,c是△ABC的三条边长,则下列结论正确的是①②③.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.的范围,解出函数变形为,所以,则,所以)因为,三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖南)已知函数,.(I)若α是第一象限角,且,求g(α)的值;(II)求使f(x)≥g(x)成立的x的取值集合.=,结合,利用同;x+)=sinxcos﹣cosxsin=cosx)+sinxsin=cosx+sinx∴(cosx(sinx)∵,∴sin==sinx移项,得x+x+,可得+2k≤+2k+2k18.(12分)(2013•湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.==,==,==51 48 45 42××+45×+42×=4619.(12分)(2013•湖南)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(I)证明:AC⊥B1D;(II)求直线B1C1与平面ACD1所成的角的正弦值.,最后在D=,由此即可得AB==,=.20.(13分)(2013•湖南)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.21.(13分)(2013•湖南)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(I)若k1>0,k2>0,证明:;(II)若点M到直线l的距离的最小值为,求抛物线E的方程.求出向量和的焦点为的方程为.,得.的坐标为,的坐标为,..,,的半径的方程为.的方程为的方程为.取最小值.由题设22.(13分)(2013•湖南)已知a>0,函数.(I)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(II)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.时,时,时,,时,;当,=∴•∴①∈,(∵,即,。
湖南大学高等代数2005--2009年考研真题

高等代数——2005年真题一.(20分)证明:数域F 上的一个n 次多项式()f x 能被它的导数整除的充要条件是()()nf x a x b =-,(),a b F 其中是中的数.二.(20分)设120n a a a ≠ ,计算下面的行列式:12311111111111111111111na a a a ++++三.(15分)已知矩阵A PQ =,其中2431P ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,2121Q ⎛⎫⎪- ⎪= ⎪- ⎪-⎝⎭,Q ',求矩阵2100,A A A 和。
四.(20分)给定线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 当1234,,,a a a a 满足什么条件时,方程组(1)有惟一解?无穷多解?无解? 五.(20分)设()fX XA X '=是一实二次型,若有实n 维向量1X ,2X 使得()()12f X f X >0,<0,证明:必存在实n 维向量00X ≠使()00f X =。
六.设W 是齐次线性方程组1234512352300x x x x x x x x x +-+-=⎧⎨+- +=⎩ (2)的解空间。
1.W 中的向量与方程组(2)的系数矩阵的行向量有何关系?2。
求W 的一组标准正交基。
七.(15分)求复矩阵131616576687⎛⎫ ⎪--- ⎪ ⎪---⎝⎭的不变因子,初等因子及Jordan 标准形。
八.(10分)设整系数线性方程组1nij ji j a xb ==∑,()1,2,,i n = 对任意整数12,,,n b b b 均有整数解。
证明该方程组的系数矩阵的行列式必为1±。
九.(15分)设,,A B C 为复数域上n 维空间V 的线性变换,AB BA C -=,并且C 可以与,A B 交换。
考研数学-湖南大学高等代数2005--2009年考研真题[1]
![考研数学-湖南大学高等代数2005--2009年考研真题[1]](https://img.taocdn.com/s3/m/a45fe95df111f18582d05a54.png)
高等代数——2005年真题一.(20分)证明:数域F 上的一个n 次多项式()f x 能被它的导数整除的充要条件是()()nf x a x b =-,(),a b F 其中是中的数.二.(20分)设120n a a a ≠,计算下面的行列式:12311111111111111111111na a a a++++三.(15分)已知矩阵A PQ =,其中2431P ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,2121Q ⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭,Q ',求矩阵2100,A A A 和。
四.(20分)给定线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 当1234,,,a a a a 满足什么条件时,方程组(1)有惟一解?无穷多解?无解? 五.(20分)设()fX XA X '=是一实二次型,若有实n 维向量1X ,2X 使得()()12f X f X >0,<0,证明:必存在实n 维向量00X ≠使()00f X =。
六.设W 是齐次线性方程组1234512352300x x x x x x x x x +-+-=⎧⎨+- +=⎩ (2)的解空间。
1.W 中的向量与方程组(2)的系数矩阵的行向量有何关系?2。
求W 的一组标准正交基。
七.(15分)求复矩阵131616576687⎛⎫ ⎪--- ⎪ ⎪---⎝⎭的不变因子,初等因子及Jordan 标准形。
八.(10分)设整系数线性方程组1nij ji j a xb ==∑,()1,2,,i n =对任意整数12,,,n b b b 均有整数解。
证明该方程组的系数矩阵的行列式必为1±。
九.(15分)设,,A B C 为复数域上n 维空间V 的线性变换,AB BA C -=,并且C 可以与,A B 交换。
2013年湖南高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试(湖南卷)数 学(文史类)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i(1i)z =+(i 为虚数单位)在复平面上对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【测量目标】复数代数形式的四则运算及复平面.【考查方式】给出复数的乘法形式,间接地考查了复数的代数与几何之间的关系. 【参考答案】B【试题解析】 i(1i)1i z =+=-+,∴复数z 对应复平面上的点是(1,1)-,该点在第二象限.2.“1<x <2”是“x <2”成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【测量目标】命题的基本关系,充分、必要条件. 【考查方式】主要考查命题的基本关系以及充分必要条件. 【参考答案】A【试题解析】设{|12}A x x =<<,{|2}B x x =<,∴A B Ü,即当0x A ∈时,有0x B ∈,反之不一定成立.因此“12x <<”是“2x <”成立的充分不必要条件.3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n = ( ) A .9 B .10 C .12 D .13 【测量目标】分层抽样.【考查方式】根据分层抽样的特点,结合实际问题用比例法求解样本容量的多少. 【参考答案】D 【试题解析】3=601208060n++,13n ∴= 4.已知()f x 是奇函数,()g x 是偶函数,且(1)(1)2f g -+=,()()114f g +-=,则g (1)等于( )A .4B .3C .2D .1【测量目标】函数的奇偶性、函数的求值.【考查方式】给出两个奇、偶函数的关系式,结合奇、偶函数的性质求解g (1). 【参考答案】B【试题解析】根据奇、偶函数的性质,将(1)f -和(1)g -转化(1),(1)f g -为列方程再求解. (f x )是奇函数,(1)(1).f f ∴-=-又()g x 是偶函数, (1)(1)g g ∴-=,(步骤1) (1)(1)2,(1)(1)2f g g f -+=∴-= . ①(步骤2)又(1)(1)4,(1)(1)4f g f g +-=∴+=. ②(步骤3) 由①②,得(1)3g =.(步骤4)5.在锐角三角形ABC 中,角,A B 所对的边长分别为a ,b .若2sin a B =,则角A 等于( ) A .π3 B .π4 C .π6 D .π12【测量目标】正弦定理.【考查方式】给出三角形的边角之间的关系,根据正弦定理,求出其中一个角的大小. 【参考答案】A【试题解析】在△ABC 中,2sin ,2sin a R A b R B ==(R 为△ABC 的圆半径),2sin ,2sin sin a B A B B =∴=sin A ∴=,又△ABC 为锐角三角形,π3A ∴=.6.函数()ln f x x =的图象与函数2()44g x x x =-+的图象的交点个数为 ( ) A .0 B .1 C .2 D .3【测量目标】函数的图像与性质,数形结合思想.【考查方式】给出对数函数和二次函数,考查了两个函数的图像与交点. 【参考答案】C【试题解析】22()44(2)g x x x x =-+=-在同一平面直角坐标系内画出函数()ln f x x =与2()(2)g x x =-的图象(如图).由图可得两个函数的图象有2个交点. 第6题图7.已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于 ( )A B .1 C D 【测量目标】空间几何体三视图的判断,柱、锥、台、及简单组合体的表面积、体积的求法.【考查方式】给出正方体的三视图面积,间接地考查了对正方形三视图的认识,并求出正视图的面积. 【参考答案】D【试题解析】由于该正方形的俯视图是面积为11的矩形,所以8.已知,a b 是单位向量,0∙=a b ,若向量c 满足0--=c a b ,则c 的最大值为 ( )A 1-BC 1D 2 【测量目标】向量的运算律、向量的数量积及模.【考查方式】给出模为零的向量,间接地考查了向量的运算律、数量积及模的综合应用,并求出其中一个向量的模. 【参考答案】C【试题解析】 ,a b 是单位向量, ∴1==a b ,(步骤1)又0∙=a b ,∴⊥a b ,(步骤2)∴+=a b .(步骤3) ∴22222()+21--=-∙+∙++=c a b c c a b αb a b .22()10∴-∙++=c c a b ,22()1∴∙+=+c a b c .(步骤4) ∴21+c 2cos θ=+c a b (θ是c 与+a b 的夹角).(步骤5)∴21+c cos θ=…,∴210-+c ….(步骤6)∴11c 剟,∴c 1.(步骤7) 9.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB= ( )A .12 B .14C D【测量目标】几何概型.【考查方式】给出事件发生的概率并与代数相结合,求出几何概型的概率. 【参考答案】D【试题解析】由于满足条件的点P 发生的概率为12,点P 在边CD 上运动,根据图形的对称性当点P 在靠近点D 的CD 边的14分点时,EB AB =(当P 点超过点E 向点D 运动时,PB AB >).设AB x =,过点E 作EF AB ⊥交AB 于点F ,则34BF x =.在Rt FBE △中,222222716EF BE FB AB FB x =-=-=,即EF x =,AD AB ∴=第9题图 二、填空题:本大题共6小题,每小题5分,共30分.10.已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B ð= . 【测量目标】集合的表示、集合的基本运算,数形结合思想.【考查方式】考查了集合的表示法(描述法)、集合的补集、交集运算. 【参考答案】{6,8}【试题解析】因为{2,3,6,8},{2,3}U A ==,所以{6,8}U A =ð,所以(){6,8}{2,6,8}{6,8}U A B == ð. 11.在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为 .【测量目标】参数方程、两直线的位置关系,转化思想的应用.【考查方式】参数方程与直角坐标方程的互化,间接考查了直线方程与直线位置的关系. 【参考答案】4 【试题解析】由21,x s y s=+⎧⎨=⎩消去参数s ,得21x y =+.由,21x at y t =⎧⎨=-⎩消去参数t ,得2x ay a =+.12l l ∥,21, 4.2a a ∴=∴=12.执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为 . 【测量目标】循环结构的程序框图.【考查方式】程序框图的逻辑关系,并根据程序框图求出a 的值. 第12题图【参考答案】9【试题解析】当1,2a b ==时,8a >不成立,执行a a b =+后a 的值为3.当3,2a b ==时,8a >不成立,执行a a b =+后a 的值为5.当5,a =2b =时,8a >不成立,执行a ab =+后a 的值为7.当7,a =2b =时,8a >不成立,执行a a b =+后a 的值为9.由于98>成立,故输出的a 值为9.13.若变量,x y 满足约束条件28,04,03x y x y +⎧⎪⎨⎪⎩…剟剟则x y +的最大值为______.【测量目标】线性规划知识求最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最大值. 【参考答案】6【试题解析】根据不等式组出其平面区域,令z x y =+,结合直线z x y =+的特征求解.如图,画出不等式组表示的平面区域,平行移动z x y =+经过点(4,2)A 时,z 取最大值6. 第13题图14.设12,F F 是双曲线C 22221x y a b-= ()0,0a b >>的两个焦点.若在C 上存在一点P .使12PF PF ⊥,且1230PF F ∠=,则C 的离心率为___________. 【测量目标】双曲线的定义及其相关性质.【考查方式】给出双曲线上的点到两焦点之间直线的关系,根据双曲线的定义及性质求解其离心率.1【试题解析】如图,利用12PF PF ⊥及1230PF F ∠=,求出a ,c 的关系式. 设点P 在双曲线右支上. 12PF PF ⊥,122F F c =,且1230PFF ∠= ,∴2PF c =,1PF =.又点P 在双曲线右支上,∴12PF PF-1)c =2a =.∴c e a==1=. 第14题图 15.对于12100{,,,}E a a a = 的子集12{,,,}k i i i X a a a = ,定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ==== .其余项均为0,例如子集23{,}a a 的“特征数列”为0,1,0,0, 0⑴子集135{,,}a a a 的“特征数列”的前三项和等于___________;⑵若E 的子集P 的“特征数列”12100,,,p p p ⋅⋅⋅ 满足11p =,11i i p p ++=,199i剟;E 的子集Q 的“特征数列” 12100,,,q q q ⋅⋅⋅满足11q =,121j j j q q q ++++=,198j剟,则P Q 的元素个数为_________.【测量目标】集合的子集、交集定义的理解以及数列中项、项数概念的理解及应用. 【考查方式】根据给定“特征数列”的新定义,明确其性质,结合集合及数列性质求解. 【参考答案】⑴2 ⑵17【试题解析】子集中元素的个数为“特征数列”中项1的个数,并且1所在的项记为“特征数列”中的第i 项. ⑴子集{}135,,a a a 的“特征数列”中共有3个1,其余均为0,该数列为1,0,1,0,1,0,0,,0. 故该数列前3项的和为2.⑵E 的子集P 的“特征数列”12100,,,p p p 中,由于11p =,11(199)i i p p i++=剟,因此集合P 中必含有元素1a .又当1i =时,121p p +=,且11p =,故20p =同理可求得31p =,40p =,51p =,60p =,….故E 的子集P 的“特征数列”为1,0,1,0,1,0,1,0,,1,0 ,即{}1,35799,,,,.P a a a a a =⋅⋅⋅E 的子集Q 的“特征数列”12100,,,q q q ⋅⋅⋅中,由于11q =,121j j j q q q ++++=(198)j剟,因此集合Q 中必含有元素1a .当1j =时,1231q q q ++=,当2j =时,2341q q q ++=,当3j =时,3451q q q ++=,…故11q =230q q ==,41q =,560q q ==,71q =,….故,所以E 的子集Q 的“特征数列”为1,0,0,1,0,0,1,0,0,,0,1⋅⋅⋅,即{}14710100,,,,,Q a a a a a =⋅⋅⋅.因为1001(1)3n =+-⨯,故34n =,所以集合Q 中有34个元素,其下标为奇数的有17个.因此,P Q {}17131997,,,,,a a a a a =⋅⋅⋅共有17个元素. 三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数π()cos cos()3f x x x =⋅-.⑴求2π()3f 的值; ⑵求使 1()4f x <成立的x 的取值集合.【测试目标】三角函数的定义及性质,三角函数的恒等变换.【考查方式】利用三角函数的恒等变换将函数转化成正弦函数,根据三角函数图像的性质求出x 的范围.【试题解析】(1)ππ()cos (cos cossin sin )33f x x x x =⋅⋅+⋅111(sin 2cos 2)2224x x =⋅+⋅+ 1π1sin(2)264x =++2π13π1()sin3224f ⇒=+14=-,所以2π1()34f =-. (2)由(1)知,1π11()sin(2)2644f x x =++<1π11cos(2)2344x ⇔-+<,即πcos(2)03x -<于是ππ3π2π22π232k x k +<-<+5π11π(π,π),1212x k k k ⇒∈++∈Z .故使1()4f x <成立的x 的取值集合为5π11π,1212x kx x kx k ⎧⎫+<<+∈⎨⎬⎩⎭Z . 17.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=,AB AC ==13AA = ,D 是BC 的中点,点E 在棱1BB 上运动.⑴证明:1AD C E ⊥;⑵当异面直线AC ,1C E 所成的角为60时,求三棱柱111C A B E -的体积.【测量目标】空间点、线、面的之间的位置关系,线线、线面、面面垂直与平行 第17题图 的性质与判定,异面直线所成角,三棱柱的体积.【考查方式】根据线面垂直推导到线线垂直,求出三棱柱111E A B C -的高1EB 再求体积. 【试题解析】⑴AB AC = ,D 是BC 的中点,AD BC ∴⊥.(步骤1) ① 又在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,而AD ⊂平面11BB C C ,∴1AD BB ⊥.(步骤2) ② 由①②,得AD ⊥平面11BB C C ,由E 点在棱1BB 上运动,得1C E ⊂平面11BB C C 1C E AD ∴⊥.(步骤3)⑵11CA C A ∥,1160AC E ∴∠=⇒在11Rt AC E △中,1A E =,(步骤4) ⇒在11Rt A B E △中,12EB =.(步骤5) 111ABC A B C - 是直棱柱,1EB ∴是三棱柱111E A B C -的高.(步骤6) 11111111111212333C A B E E A B C A B C V V S EB --==⨯⨯=⨯⨯=△.所以三棱柱111C A B E -的体积是23.(步骤7)18.(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. ⑴完成下表,并求所种作物的平均年收获量;⑵在所种作物中随机选取一株,求它的年收获量至少为48 kg 的概率.【测量目标】频数分布表及平均数、简单随机事件的概率.【考查方式】考查识图能力及数据处理能力及分类讨论思想,结合图形解决概率与统计的相关知识,根据图形找出Y 对应的频数.【试题解析】(1) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1). 与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1). 如下表所示:平均年收获量5124844564234615u ⨯+⨯+⨯+⨯==.(2)在15株中,年收获量至少为48kg 的作物共有246+=个. 所以,15株中任选一个,它的年收获量至少为48kg 的概率60.415p ==. 19.(本小题满分13分)设n S 为数列{}n a 的前项和,已知01≠a ,112n n a a S S -=∙,*n ∈N .⑴求1a ,2a ,并求数列{}n a 的通项公式; ⑵求数列{}n na 的前n 项和.【测量目标】等比数列的公式、性质及数列的前n 项和的公式、性质.【考查方式】利用递推公式1n n n a S S -=-(2)n …消去n S 得到关于n a 的通项公式,并用错位相减法求{}n na 的前n 项和.【试题解析】⑴ 11S a = ∴令1n =,得21112a a a -=.1,011=≠⇒a a (步骤1)令2n =,得2221a S -=21a =+22a ⇒=.(步骤2) 当2n …时,由21nn a S -=,1121n n a S ---=两式相减,得122n n n a a a --=,即12n n a a -=.(步骤3) 于是{}n a 是首项为1,公比为2的等比数列.(步骤4) 因此,12,n na n -*=∈N ,∴数列{}n a 的通项公式为12n n a -=.(步骤5) ⑵由⑴知,12n n na n -=⋅.记数列{}12n n -⋅的前n 项和为n T ,于是21122322n nT n -=+⨯+⨯++⨯ ①2321222322n n T n ⇒=⨯+⨯+⨯++⨯ ② (步骤6)①-②,得21122...22n n nT n --=++++-⋅212n n n =--⋅(1)21,n n T n n *⇒=-⋅+∈N .(步骤7) 20.(本小题满分13分)已知1F ,2F 分别是椭圆E :2215x y +=的左、右焦点1F ,2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点.⑴求圆C 的方程;⑵设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.【测量目标】点关于直线对称点的求法,圆的方程,直线与椭圆的位置关系,直线的方程以及利用函数求最值问题.【考查方式】考查了对称思想在求解实际问题中的应用,求出圆C 的方程.由勾股定理求出弦长b ,根据焦半径的公式求出弦长a ,构造函数判断单调性,求出ab 最大值,求出l 的方程.【试题解析】⑴先求圆C 关于直线20x y +-=对称的圆D ,由题意知,圆D 的直径为12F F ,所以圆D 的圆心是(0,0)D,半径2r c ==,(步骤1) 圆心0,0D ()与圆心C 关于直线02=-+y x 对称(2,2)C ⇒. ⇒圆的方程是22(2)(2)4x y -+-=(步骤2)⑵由⑴知2(2,0)F ,根据题可设直线l 方程为:2,x my m =+∈R . 这时直线l 可被圆和椭圆截得2条弦,符合题意.圆C :4)2()2(22=-+-y x 到直线l的距离d =.(步骤3)⇒在圆中,由勾股定理,得22222444(4)11m b m m =-=++.(步骤4) 直线与椭圆相较于点1122(,),(,)E x y F x y ,联立直线与椭圆方程,得22(5410m y my ++-=)12x x ⇒+12()4m y y =++2445m mm -=++2205m =+,由椭圆的焦半径公式得:12)a x x =+=2215m m +=+2215m ab m +∴=+25m =+(步骤5)令()0f x x =…()y f x ⇒=在[0,3]上单调增,在[3,)+∞单调减,(步骤6) 令()(3)f x f …⇒当23m =时,取ab最大值,这时直线方程为2x =+,所以当取ab最大值,直线方程为2x =+.(步骤7) 21.(本小题满分13分)已知函数21()e 1xx f x x-=+.⑴求()f x 的单调区间;⑵证明:当时1212()()()f x f x x x =≠时,120x x +<.【测量目标】导数的运算,导数研究函数的单调性,导数在不等式证明问题中的应用.【考查方式】考查导数的运算、利用导数求函数单调区间的方法、构造函数判断函数大小的方法.【试题解析】⑴ 函数的定义域,-∞+∞(), 2211()e e 11x x x x f x x x '--⎛⎫'=+ ⎪++⎝⎭222(11)e 1)(1)e 21)x x x x x x x -+-⋅+--⋅=+((22232e 1)x x x x x --+=⋅+((步骤1) 22420∆=-⨯< ,∴当(,0)x ∈-∞时,()0,()f x y f x '>=单调递增,当时(0,)x ∈+∞,()0,()f x y f x '=…单调递减.∴()y f x =在(,0)-∞上单调递增,在(0)x ∈+∞,上单调递减.(步骤2) ⑵当1x <时,由于2101x x ->+,e 0x >,故()0f x >;同理,当1x >时,()0f x <.(步骤3) 当1212()()()f x f x x x =≠时,不妨设12x x <,由⑴知,1(,0)x ∈-∞,2(0,1)x ∈.(步骤4) 下面证明:(0,1)x ∀∈,()()f x f x <-,即证2211e e 11x x x x x x --+<++⇔1(1)e 0e x x x x ---<.(步骤5) 令1()(1)e ex x x g x x +=--,则2()e (e 1)x x g x x -'=--.(步骤6) 当(0,1)x ∈时,()0g x '<,()g x 单调递减,从而()(0)0g x g <=,即1(1)e 0e x xx x +--<. (0,1)x ∴∀∈,()()f x f x <-.(步骤7)而2(0,1)x ∈,22()()f x f x ∴<-,从而12()()f x f x <-.(步骤8) 由于1x ,2(,0)x -∈-∞,()f x 在(,0)-∞上单调递增,所以12x x <-,即120x x +<.(步骤9)。
(11)--12-13学年高等代数(I)试卷及参考答案

AC BD
(2) eØb AŒ_, þ¡ ª´Ä¤á? `²nd.
( 7 • 1 5•)
© Ê!(15©) A´••r n Ý , y²: (1) •3••r n Ý B¦ ABA = A; (2) ÷vþã^‡ B´•˜ …= AŒ_.
( 7 • 1 6•)
© 8!(10©) •þ|α1, α2, . . . , αm, β1, β2, . . . , βm ••m, …α1, α2, . . . , αm‚5 Ã'. y²•3áõ‡êc¦ cα1 + β1, cα2 + β2, . . . , cαm + βm‚5Ã'.
(g, g′) = x2 + 3x +1 ( 附 辗 转 相 除 法 过 程 ). 从 而 有 f (x) = (x −1)(x2 + 3x +1)2 . 由
x2 + 3x +1 在有理数域上的不可约性知上式即为 f (x) 在有理数域上的标准分解.
2. 解答:
由| A |= 1,| B |= −1可知
⎛ 1 −2 1 a ⎞ ⎛ 1 −2 1 a ⎞ ⎛ 1 −2 1 a ⎞
⎜ ⎜
2
−1
−1
3
⎟ ⎟
→
⎜ ⎜
0
3
−3
3
−
2a
⎟ ⎟
→
⎜ ⎜
0
3
−3
3
−
2a
⎟ ⎟
⎜⎝ 1 1 −2 2a ⎟⎠ ⎜⎝ 0 3 −3 a ⎟⎠ ⎜⎝ 0 0 0 3a − 3⎟⎠
⎛1
→
⎜ ⎜
0
−2 1
湖南大学高等数学期末考试试卷(含答案)

湖南大学高等数学期末考试试卷(含答案)
一、高等数学选择题
1.设函数,则.
A、正确
B、不正确
【答案】A
2.设函数,则.
A、正确
B、不正确
【答案】B
二、二选择题
3.设函数,则().
A、
B、
C、
D、
【答案】C
4.设曲线如图示,则在内
( ).
A、没有极大值点
B、有一个极大值点
C、有两个极大值点
D、有三个极大值点
【答案】B
5.函数的单调增加区间是().
A、
B、
C、
D、
【答案】B
6.设为上的连续函数,且,则定积分().A、
B、
C、
D、
一、一选择题
7.设函数,则.
A、正确
B、不正确
【答案】A
8.定积分.
A、正确
B、不正确
【答案】B
9.是偶函数.
A、正确
B、不正确
【答案】B
10.设函数,则().
A、
B、
C、
D、
【答案】B
11.函数的定义域为.A、正确
【答案】A
12.设函数,则导数.
A、正确
B、不正确
【答案】B
13..
A、正确
B、不正确
【答案】B
14.函数的图形如图示,则函数 ( ).
A、有四个极大值
B、有两个极大值
C、有一个极大值
D、没有极大值
【答案】C
15.设函数,则().
A、
B、
C、
D、
【答案】B。
全国名校高等代数考研真题汇编(含部分答案)
考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足
,
.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题
有
证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题
湖南师范大学2013年高等代数
12、设 是一个实数,在实数域 上的多项式空间 中,令
证明:(1) 是 的一个子空间;
(2) 是 的一组基。
13、设 是实数域 上的 阶方阵,向量 (实数域 上的 维列向量),使得
是 的一个基。如果 上的 阶方阵 满足条件 ,证明:
(1)存在实数域 上一个次数不超过 的多项式 使得 ;
(2)对于(1)中找到的多项式 ,必有 。
6、设 ,且 是一个
二次多项式,求 的值。
7、计算 阶行列式
8、设 元实二次型
(1)当 时,用非退化线性替换化 为规范形;
(2)当 时,用非退化线性替换化 为标准形。
9、设 ,求正交矩阵 ,使 为对角形
三、(本大题共4小题,每小题15分,共60分)
10、设 ,且 满足 ,证明: 。
11、设 为 阶方阵, 为 的特征多项式,证明: 可逆的充要条件是
2013年硕士生入学考试初试
湖南师范大学自命题科目试题册
业务课代码:841业务课名称:高等代数
满分:150分考试时间:3小时
考生须知:1、答案必须写在答题纸上,写在其它纸上无效。
2、答题时必须使用蓝、黑色墨水笔作答,用其他笔答题不给分。不得使用涂改液。
一、填空题Байду номын сангаас本大题共5小题,每空6分,共30分)
1、若 除多项式 的余式为 ,则 除多项式 的余式是_
__。
2、设 是行列式 的第 行,第 列的代数余子式,则
___。
3、将秩为 的 元实二次型按合同分类,一共可以分为___类。
4、设 与 相似,则 ___。
5、设 是三维欧氏空间 的一组基,其度量矩阵是 ,向量 ,则 ___。
二、计算题(本大题共4小题,每小题15分,共60分)
2013年(湖南卷)高考数学(文科)
绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷)数 学(文史类)本试卷包括选择题.填空题和解答题三部分.共5页.时量120分钟.满分150分·一.选择题:本大题共9小题.每小题5分.共45分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.复数z=i ·(1+i)(i 为虚数单位)在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.某工厂甲.乙.丙三个车间生产了同一种产品.数量分别为120件.80件.60件·为了解它们的产品质量是否存在显著差异.用分层抽样方法抽取了一个容量为n 的样本进行调查.其中从丙车间的产品中抽取了3件.则n=A .9B .10C .12D .134.已知f (x )是奇函数.g (x )是偶函数.且f (-1)+g (1)=2.f (1)+g (-1)=4.则g (1)等于A .4B .3C .2D .15.在锐角∆ABC 中.角A.B 所对的边长分别为a.b. 若2sinB=3b.则角A 等于A .3πB .4πC .6πD .12π 6.函数f (x )=㏑x 的图像与函数g (x )=x 2-4x+4的图像的交点个数为A.0B.1C.2D.37.已知正方体的棱长为1.其俯视图是一个面积为1的正方形..则该正方体的正视图的面积等于A .B.1C.128.已知a,b 是单位向量.a ·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为1129.已知事件“在矩形ABCD 的边CD 上随机取一点P.使△APB 的最大边是AB ”发生的概率为28,04,03,x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩.则AD AB= A.12 B.14C.2D.4二.填空题:本大题共6小题.每小题5分.共30分·10.已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()C A B ⋃⋂=11.在平面直角坐标系xOy 中.若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行.则常数a 的值为________12.执行如图1所示的程序框图.如果输入a=1,b=2,则输出的a 的值为______13.若变量x,y 满足约束条件28,04,03,x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩则x+y 的最大值为________14.设F 1.F 2是双曲线C.22221a x y b-= (a>0,b>0)的两个焦点·若在C 上存在一点P ·使 PF 1⊥PF 2.且∠PF 1F 2=30°.则C 的离心率为________________.15.对于E={a 1.a 2,….a 100}的子集X={a 1.a 2,…,a n },定义X 的“特征数列”为x 1,x 2…,x 100,其中x 1=x 10=…x n =1.其余项均为0.例如子集{a 2.a 3}的“特征数列”为0.1.0.0.…,0(1)子集{a 1,a 3,a 5}的“特征数列”的前三项和等于________________;(2)若E 的子集P 的“特征数列”P 1.P 2.…,P 100 满足P 1+P i+1=1, 1≤i ≤99;E 的子集Q 的“特征数列” q 1.q 2.q 100 满足q 1=1.q 1+q j+1+q j+2=1.1≤j ≤98.则P ∩Q 的元素个数为___________.三.解答题;本大题共6小题.共75分·解答应写出文字说明.证明过程或演算步骤·16.(本小题满分12分)已知函数f(x)=(1)求2()3fπ的值;(2)求使1()4f x<成立的x的取值集合17.(本小题满分12分)如图2.在直菱柱ABC-A1B1C1中.∠ABC=90°.AB=AC=.AA1=3.D是BC的中点.点E在菱BB1上运动·(I)证明:AD⊥C1E;(II)当异面直线AC.C1E 所成的角为60°时.求三菱子C1-A2B1E的体积18.(本小题满分12分)某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵.横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物·根据历年的种植经验.一株该种作物的年收货量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里.两株作物“相近”是指它们之间的直线距离不超过1米·(Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率.19.(本小题满分13分)设n S 为数列{n a }的前项和.已知01≠a .2n n S S a a ∙=-11.∈n N *(Ⅰ)求1a .2a .并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和·20.(本小题满分13分) 已知1F .2F 分别是椭圆15:22=+y x E 的左.右焦点1F .2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点·(Ⅰ)求圆C 的方程;(Ⅱ)设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a .b ·当ab 最大时.求直线l 的方程·21.(本小题满分13分)已知函数f (x )=x e x 21x 1+-. (Ⅰ)求f (x )的单调区间;(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时.x 1+x 2<0.。
湖南大学高等代数2005--2009年考研真题
高等代数——2005年真题一.(20分)证明:数域F 上的一个n 次多项式()f x 能被它的导数整除的充要条件是()()nf x a x b =-,(),a b F 其中是中的数.二.(20分)设120n a a a ≠ ,计算下面的行列式:12311111111111111111111na a a a ++++三.(15分)已知矩阵A PQ =,其中2431P ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,2121Q ⎛⎫⎪- ⎪= ⎪- ⎪-⎝⎭,Q ',求矩阵2100,A A A 和。
四.(20分)给定线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 当1234,,,a a a a 满足什么条件时,方程组(1)有惟一解?无穷多解?无解? 五.(20分)设()fX XA X '=是一实二次型,若有实n 维向量1X ,2X 使得()()12f X f X >0,<0,证明:必存在实n 维向量00X ≠使()00f X =。
六.设W 是齐次线性方程组1234512352300x x x x x x x x x +-+-=⎧⎨+- +=⎩ (2)的解空间。
1.W 中的向量与方程组(2)的系数矩阵的行向量有何关系?2。
求W 的一组标准正交基。
七.(15分)求复矩阵131616576687⎛⎫ ⎪--- ⎪ ⎪---⎝⎭的不变因子,初等因子及Jordan 标准形。
八.(10分)设整系数线性方程组1nij ji j a xb ==∑,()1,2,,i n = 对任意整数12,,,n b b b 均有整数解。
证明该方程组的系数矩阵的行列式必为1±。
九.(15分)设,,A B C 为复数域上n 维空间V 的线性变换,AB BA C -=,并且C 可以与,A B 交换。