数值分析实验报告
数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析实验报告

一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
数值分析实验报告

数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。
2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeiostreamusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;kn-1;k++){for(j=k,i=k;jn;j++){if(j==k)temp=fabs(a[j][k]);else if(tempfabs(a[j][k])){temp=fabs(a[j][k]);i=j;}}if(temp==0){cout"无解\n; return;}else{for(j=k;jn;j++){temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;in;i++) {l=a[i][k]/a[k][k];for(j=k;jn;j++)a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}if(a[n-1][n-1]==0){cout"无解\n;return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i=0;i--){temp=0;for(j=i+1;jn;j++)temp=temp+a[i][j]*x[j];x[i]=(b[i]-temp)/a[i][i];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}//平方根法void pfg(double **a,double *b,int n)int i,k,m;double x[8],y[8],temp;for(k=0;kn;k++){temp=0;for(m=0;mk;m++)temp=temp+pow(a[k][m],2);if(a[k][k]temp)return;a[k][k]=pow((a[k][k]-temp),1.0/2.0);for(i=k+1;in;i++){temp=0;for(m=0;mk;m++)temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k]; }temp=0;for(m=0;mk;m++)temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k=0;k--){temp=0;for(m=k+1;mn;m++)temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10]; for(i=0;in;i++){a0[i]=a[i][i];if(in-1)c[i]=a[i][i+1];if(i0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;in-1;i++){b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;in;i++)y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;in;i++){A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout"第一题(Gauss列主元消去法):"endlendl; cout"请输入阶数n:"endl;cinn;cout"\n请输入系数矩阵:\n\n";for(i=0;in;i++)for(j=0;jn;j++){篇三:数值分析实验报告(包含源程序) 课程实验报告课程实验报告。
数值分析实验报告5篇

1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。
为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。
二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。
三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。
四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。
2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。
3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。
4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。
5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 解线性方程组的直接方法实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
实验内容:考虑线性方程组编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。
实验要求:(1)取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。
取n=10计算矩阵的条件数。
让程序自动选取主元,结果如何?(2)现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
(3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
(4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
思考题一:(Vadermonde 矩阵)设⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑====n i i n n i i ni i n i i n n n n nn nx x x x b x x x x x x x x x x x x A 002010022222121102001111 ,,其中,n k k x k ,,1,0,1.01 =+=,(1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化?(2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b (3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。
(4)你能由此解释为什么不用插值函数存在定理直接求插值函数而要用拉格朗日或牛顿插值法的原因吗?5.1实验过程:5.1.1程序:function x=gauss(n,r)n=input('请输入矩阵A的阶数:n=')A=diag(6*ones(1,n))+diag(ones(1,n-1),1)+diag(8*ones(1,n-1),-1)b=A*ones(n,1)for i=1:4p=input('条件数对应的范数是p-范数:p=')pp=cond(A,p)endpause[m,n]=size(A);nb=n+1;Ab=[A b]r=input('请输入是否为手动,手动输入1,自动输入0:r=')for i=1:n-1if r==0[pivot,p]=max(abs(Ab(i:n,i)));ip=p+i-1;if ip~=iAb([i ip],:)=Ab([ip i],:);disp(Ab); pauseendendif r==1i=iip=input('输入i列所选元素所处的行数:ip=');Ab([i ip],:)=Ab([ip i],:);disp(Ab); pauseendpivot=Ab(i,i);for k=i+1:nAb(k,i:nb)=Ab(k,i:nb)-(Ab(k,i)/pivot)*Ab(i,i:nb);enddisp(Ab); pauseendx=zeros(n,1);x(n)=Ab(n,nb)/Ab(n,n);for i=n-1:-1:1x(i)=(Ab(i,nb)-Ab(i,i+1:n)*x(i+1:n))/Ab(i,i);end5.1.2实验结果如下:1.按照实验要求一:取矩阵A的阶数:n=10且自动选取主元,程序结果运行如下:(2)现选择程序中手动选取主元的功能,观察并记录计算结果。
①选取绝对值最大的元素为主元:程序运行开始如第一问的截图也是求范数故这里不在给出。
The answer is :1 1 1 1 1 1 1 1 1 1②选取绝对值最小的元素为主元:The answer is:1.0e+003*(INF 0.007 0.0057 -0.0410 -0.0303 0.3430 0.2577 -2.7290 -2.0463 2.7308)⑶取矩阵A的阶数:n=20,手动选取主元:①选取绝对值最大的元素为主元:The answer is :1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1②选取绝对值最小的元素为主元:The answer is:1.0e+007*(-Inf 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0003 -0.0002 0.00220.0016 -0.0175 -0.0131 0.1398 0.1049 -1.1185 -0.8389 8.9478 6.7109 -8.9478)⑷修改程序如下:function x=gaussong(n,r)n=input('请输入矩阵A的阶数:n=')A=hilb(n)b=A*ones(n,1)for i=1:4p=input('条件数对应的范数是p-范数:p=')pp=cond(A,p)endpause[m,n]=size(A);nb=n+1;Ab=[A b]r=input('请输入是否为手动,手动输入1,自动输入0:r=')for i=1:n-1if r==0[pivot,p]=max(abs(Ab(i:n,i)));ip=p+i-1;if ip~=iAb([i ip],:)=Ab([ip i],:);disp(Ab); pauseendendif r==1i=iip=input('输入i列所选元素所处的行数:ip=');Ab([i ip],:)=Ab([ip i],:);disp(Ab); pauseendpivot=Ab(i,i);for k=i+1:nAb(k,i:nb)=Ab(k,i:nb)-(Ab(k,i)/pivot)*Ab(i,i:nb);enddisp(Ab); pauseendx=zeros(n,1);x(n)=Ab(n,nb)/Ab(n,n);for i=n-1:-1:1x(i)=(Ab(i,nb)-Ab(i,i+1:n)*x(i+1:n))/Ab(i,i);end①所求范数为:自动输入结果为:ans =1.0000 1.00001 .0000 1.0000 1.0002 0.9996 1.0007 0.9993 1.0004 0.9999②选取绝对值最大的元素为主元结果为:The answer is :NaN NaN NaN NaN NaN Inf -Inf -Inf 281.3945 -283.3708 ③选取绝对值最小的元素为主元结果为: The answer is :NaN NaN NaN -Inf -5.8976 -1.9243 -2.0291 -4.9972 23.4548 -11.1012 5.1.3 对实验结果进行分析:5.1.3.1 对实验要求一的结果进行分析:对于Gauss 消去法就是用行的初等变换将原线性方程组系数矩阵转化为简单形式,从而进行求解,缺点是迭代次数可能较多,效率不高,且在消去过程中不可以将主元素很小的做除数,否则将导致其他元素数量级的严重增长和舍入误差的扩散,使得计算解不可靠。
5.1.3.2 对实验要求二的结果进行分析:通过每次选取最大或最小的主元可以发现取绝对值大的元素作为主元比取绝对值小的元素作为主元时产生的结果比较准确,即选取绝对值小的主元时结果产生了较大的误差,条件数越大产生的误差就越大。
所以应尽量避免很小的数作为除数。
5.1.3.3 对实验要求三的结果进行分析:此要求是对要求一和要求二的一个延续,通过实验结果可以看出若采用很小的数作为主元迭代次数越多导致的结果越不可靠,甚至出现错误。
5.1.3.4 对实验要求四的结果进行分析:对新矩阵进行实验发现依然符合上述规律,可以知道,在进行迭代时主元的选择与算法的稳定性有密切的联系选取绝对值大的元素作为主元比绝对值小的元素作为主元时对结果产生的误差较小。
条件数越大对用gauss 消去法解线性方程组时,对结果产生的误差就越大。
5.1.4实验总结:1.在用gauss 消去法解线性方程组时,主元的选取与算法的稳定性有密切的联系,选取适当的主元有利于得出稳定的算法,2.在算法的过程中,选取绝对值较大的主元比选取绝对值较小的主元更有利于算法的稳定,选取绝对值最大的元素作为主元时,得出的结果相对较准确较稳定。
3.条件数越小,对用这种方法得出的结果更准确。
4.在算除法的过程中要尽量避免使用较小的数做为除数,以免发生结果数量级加大,使大数吃掉小数,产生舍入误差。
实验5.2(线性代数方程组的性态与条件数的估计)问题提出:理论上,线性代数方程组b Ax =的摄动满足矩阵的条件数确实是对矩阵病态性的刻画,但在实际应用中直接计算它显然不现实,因为计算1-A 通常要比求解方程b Ax =还困难。
实验内容:Matlab 中提供有函数“condest ”可以用来估计矩阵的条件数,它给出的是按1-范数的条件数。
首先构造非奇异矩阵A 和右端,使得方程是可以精确求解的。
再人为地引进系数矩阵和右端的摄动b A ∆∆和,使得b A ∆∆和充分小。
实验要求:(1)假设方程Ax=b 的解为x ,求解方程b b xA A ∆+=∆+ˆ)(,以1-范数,给出xx x xx -=∆ˆ的计算结果。
(2)选择一系列维数递增的矩阵(可以是随机生成的),比较函数“condest ”所需机器时间的差别.考虑若干逆是已知的矩阵,借助函数“eig ”很容易给出cond 2(A)的数值。
将它与函数“cond(A,2)”所得到的结果进行比较。
(3)利用“condest ”给出矩阵A 条件数的估计,针对(1)中的结果给出xx ∆的理论估计,并将它与(1)给出的计算结果进行比较,分析所得结果。
注意,如果给出了cond(A)和A的估计,马上就可以给出1 A的估计。
(4)估计著名的Hilbert矩阵的条件数。
5.2 实验过程如下:5.2.1.1 实验要求一的程序如下:function n=jisuan(n)a=fix(100*rand(n))+1x=ones(n,1)b=a*xdata=rand(n)*0.00001datb=rand(n,1)*0.00001A=a+dataB=b+datbx0=get(A,B)x1=norm(x0-x,1)/norm(x,1)function x=get(A,B)[m,n]=size(A);nb=n+1;AB=[A B];for i=1:n-1pivot=AB(i,i);for k=i+1:nAB(k,i:nb)=AB(k,i:nb)-(AB(k,i)/pivot)*AB(i,i:nb);endendx=zeros(n,1);x(n)=AB(n,nb)/AB(n,n);for i=n-1:-1:1x(i)=(AB(i,nb)-AB(i,i+1:n)*x(i+1:n))/AB(i,i);End5.2.1.2 实验要求一程序运行结果如下:系数矩阵a为:b加扰动后的b值为:xx的值为:x0的值为:1.146958549E-06 x1的值为:6.8990e-007 5.2.1.3实验结果为:xx x xx -=∆ˆ的计算结果为:6.8990e-0075.2.2.1 实验要求二的程序如下:function cond2(A) B=A'*A;[V1,D1]=eig(B); [V2,D2]=eig(B^(-1));cond2A=sqrt(max(max(D1)))*sqrt(max(max(D2))) endfor n=10:10:100n=n A=fix(100*randn(n)); condestA=condest(A) cond2(A) condA2=cond(A,2) pause endfunction bijiao(n)a=fix(100*rand(n))+1; x=ones(n,1); b=a*x; data=rand(n)*0.00001; datb=rand(n,1)*0.00001; A=a+data; B=b+datb;xx=geshow(A,B); x1=norm(xx-x,1)/norm(x,1)x2=cond(A)/(1-norm(inv(A))*norm(xx-x))*(norm((xx-x))/(norm(A))+norm(datb)/norm(B)) datx=abs(x1-x2)5.2.3.2 实验要求三的程序运行结果如下: 给出对xx x xx -=∆ˆ的估计是:7.310559817408125e-007xx x xx -=∆ˆ的理论结果是: 3.828481757617297e-007结果相差: 3.482078059790828e-0075.2.4.1 实验要求四的程序如下: for n=4:11n=nHi=hilb(n); cond1Hi=cond(Hi,1) cond2Hi=cond(Hi,2) condinfHi=cond(Hi,inf) pause end5.2.4.2讨论:线性代数方程组的性态与条件数有着很重要的关系,既矩阵的条件数是刻画矩阵性质的一个重要的依据,条件数越大,矩阵“病态”性越严重,在解线性代数方程组的过程中较容易产生比较大的误差,则在实际问题的操作过程中,我们必须要减少对条件数来求解,把条件数较大的矩阵化成条件数较小的矩阵来进行求解。