(完整版)导数与函数的单调性练习题.docx
导数与函数的单调性练习题

导数与函数的单调性练习题2.2.1 导数与函数的单调性基础巩固题:1.已知函数 $f(x)=\frac{ax+1}{x+2}$ 在区间 $(-2,+\infty)$ 上为增函数,求实数 $a$ 的取值范围。
解析:由题意可得 $f(x)$ 在 $(-2,+\infty)$ 上单调递增,因此$a>-\frac{1}{2}$。
又因为$f(x)$ 的定义域为$(-2,+\infty)$,所以 $a$ 的取值范围为 $a\geq -\frac{1}{2}$ 或 $a\leq -2$,即$a\geq -\frac{1}{2}$ 或 $a\leq -2$。
2.已知函数 $f(x)=x^2+2x+a\ln x$ 在区间 $(0,1)$ 上单调,求实数 $a$ 的取值范围。
解析:由题意可得 $f(x)$ 在 $(0,1)$ 上单调,因此$f'(x)=2x+2+\frac{a}{x}$ 在 $(0,1)$ 上恒大于等于零或恒小于等于零。
化简可得 $a\geq -(2x^2+2x)$ 或 $a\leq -(2x^2+2x)$ 在$(0,1)$ 上恒成立。
记 $g(x)=-(2x^2+2x)$,则 $g(x)$ 在$(0,1)$ 上单调递增,且 $-4<g(x)<0$。
因此,$a\geq -4$ 或$a\leq -4$,即 $a\geq -4$ 或 $a\leq -4$。
3.已知函数$f(x)=\frac{x}{2x-9}$,求$f(x)$ 的单调区间。
解析:求导得 $f'(x)=\frac{9}{(2x-9)^2}$,$f'(x)>0$ 当且仅当 $x\frac{9}{2}$。
因此,$f(x)$ 在 $(-\infty,\frac{9}{2})$ 上单调递减,在 $(\frac{9}{2},+\infty)$ 上单调递增。
所以$f(x)$ 的单调区间为 $(-\infty,\frac{9}{2})$ 和$(\frac{9}{2},+\infty)$。
(完整word版)导数与单调性极值最基础值习题

导数与单调性极值最基础值习题一.选择题1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的() A.充分条件B.必要条件 C.充要条件 D.必要非充分条件2.函数y=1+3x﹣x3有()A.极小值﹣1,极大值3 B.极小值﹣2,极大值3C.极小值﹣1,极大值1 D.极小值﹣2,极大值23.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1•x2=A.9 B.﹣9 C.1 D.﹣14.函数的最大值为()A. B.e2C.e D.e﹣15.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.26.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=( )A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或17.设函数f(x)=xe x,则()A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是( )A.(0,3)B.(0,)C.(0,+∞) D.(﹣∞,3)9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于()A.11或18 B.11 C.18 D.17或1810.设三次函数f(x)的导函数为f′(x),函数y=x•f′(x)的图象的一部分如图所示,则正确的是()A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(﹣3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(﹣3)11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是()A.﹣a<a<2 B.a>2或a<﹣1 C.a≥2或a≤﹣1 D.a>1或a<﹣212.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是( )A.5,﹣15 B.5,﹣4 C.﹣4,﹣15 D.5,﹣1613.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是( )A.﹣37 B.﹣29 C.﹣5 D.以上都不对二.填空题15.函数f(x)=x3﹣3x2+1的极小值点为.16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b= .17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= .18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a的取值范围是.19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是.20.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a= .21.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是.22.已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m= .23.设f(x)=x3﹣﹣2x+5,当x∈[﹣1,2]时,f(x)<m恒成立,则实数m的取值范围为.24.f(x)=ax3﹣3x+1对于x∈[﹣1,1]总有f(x)≥0成立,则a= .三.解答题25.已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.26.已知函数f(x)=x﹣1﹣lnx(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)求函数f(x)的极值;(Ⅲ)对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围.28.已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax﹣1,求实数a的取值范围.29.已知函数f(x)=(x﹣2)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,2]上的最小值和最大值.30.已知函数f(x)=ax3﹣6ax2+b(x∈[﹣1,2])的最大值为3,最小值为﹣29,求a、b的值.31.求函数f(x)=x3﹣2x2+5在区间[﹣2,2]的最大值和最小值.32.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.导数与单调性极值最基础值习题参考答案与试题解析一.选择题(共14小题)1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的( )A.充分条件B.必要条件C.充要条件D.必要非充分条件【分析】结合极值的定义可知必要性成立,而充分性中除了要求f′(x)=0外,还的要求在两侧有单调性的改变(或导函数有正负变化),通过反例可知充分性不成立.【解答】解:如y=x3,y′=3x2,y′|x=0=0,但x=0不是函数的极值点.若函数在x0取得极值,由定义可知f′(x)=0,所以f′(x)=0是x为函数y=f(x)的极值点的必要不充分条件故选:D.【点评】本题主要考查函数取得极值的条件:函数在x0处取得极值⇔f′(x)=0,且f′(x<x 0)•f′(x>x)<02.函数y=1+3x﹣x3有()A.极小值﹣1,极大值3 B.极小值﹣2,极大值3C.极小值﹣1,极大值1 D.极小值﹣2,极大值2【分析】利用导数工具去解决该函数极值的求解问题,关键要利用导数将原函数的单调区间找出来,即可确定出在哪个点处取得极值,进而得到答案.【解答】解:∵y=1+3x﹣x3,∴y′=3﹣3x2,由y′=3﹣3x2>0,得﹣1<x<1,由y′=3﹣3x2<0,得x<﹣1,或x>1,∴函数y=1+3x﹣x3的增区间是(﹣1,1),减区间是(﹣∞,﹣1),(1,+∞).∴函数y=1+3x﹣x3在x=﹣1处有极小值f(﹣1)=1﹣3﹣(﹣1)3=﹣1,函数y=1+3x﹣x3在x=1处有极大值f(1)=1+3﹣13=3.故选:A.【点评】利用导数工具求该函数的极值是解决该题的关键,要先确定出导函数大于0时的实数x 的范围,再讨论出函数的单调区间,根据极值的判断方法求出该函数的极值,体现了导数的工具作用3.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1•x2=()A.9 B.﹣9 C.1 D.﹣1【分析】本题的函数为三次多项式函数,若三次多项式函数有两个极值点,说明它的导函数有两个不相等的零点,转化为二次函数的根求解,用韦达定理可得x1•x2=﹣1【解答】解:由f(x)=x3+ax2﹣3x﹣9得, f′(x)=3x2+2ax﹣3f′(x)=0的两根为x1,x2就是函数的两个极值点根据韦达定理,得故选:D.【点评】本题主要考查利用导数工具讨论函数的单调性,从而得到函数的极值点.一元二次方程根与系数的关系是解决本题的又一个亮点.4.函数的最大值为()A. B.e2C.e D.e﹣1【分析】利用导数进行求解,注意函数的定义域,极大值在本题中也是最大值;【解答】解:∵函数,(x>0)∴y′=,令y′=0,得x=e,当x>e时,y′<0,f(x)为减函数,当0<x<e时,y′>0,f(x)为增函数,∴f(x)在x=e处取极大值,也是最大值,∴y最大值为f(e)==e﹣1,故选:D.【点评】此题主要考查函数在某点取极值的条件,利用导数研究函数的最值问题,是一道基础题;5.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.2【分析】可求导数得到f′(x)=3x2﹣12,可通过判断导数符号从而得出f(x)的极小值点,从而得出a的值.【解答】解:f′(x)=3x2﹣12;∴x<﹣2时,f′(x)>0,﹣2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选:D.【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象.6.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=( )A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或1【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x 轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.7.设函数f(x)=xe x,则( )A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点【分析】由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点【解答】解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选:D.【点评】本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是()A.(0,3)B.(0,)C.(0,+∞) D.(﹣∞,3)【分析】先对函数求导,函数在(0,1)内有极小值,得到导函数等于0时,求出x的值,这个值就是函数的极小值点,使得这个点在(0,1)上,求出a的值.【解答】解:根据题意,y’=3x2﹣2a=0有极小值则方程有解a>0x=±所以x=是极小值点所以0<<10<<10<a<故选:B.【点评】本题考查函数在某一点取得极值点条件,本题解题的关键是在一个区间上有极值相当于函数的导函数在这一个区间上有解.9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于()A.11或18 B.11 C.18 D.17或18【分析】根据函数在x=1处有极值时说明函数在x=1处的导数为0,又因为f′(x)=3x2+2ax+b,所以得到:f′(1)=3+2a+b=0,又因为f(1)=10,所以可求出a与b的值确定解析式,最终将x=2代入求出答案.【解答】解:f′(x)=3x2+2ax+b,∴或①当时,f′(x)=3(x﹣1)2≥0,∴在x=1处不存在极值;②当时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1)∴x∈(,1),f′(x)<0,x∈(1,+∞),f′(x)>0,符合题意.∴,∴f(2)=8+16﹣22+16=18.故选:C.【点评】本题主要考查导数为0时取到函数的极值的问题,这里多注意联立方程组求未知数的思想,本题要注意f′(x0)=0是x=x是极值点的必要不充分条件,因此对于解得的结果要检验.10.设三次函数f(x)的导函数为f′(x),函数y=x•f′(x)的图象的一部分如图所示,则正确的是()A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(﹣3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(﹣3)【分析】观察图象知,x<﹣3时,f′(x)<0.﹣3<x<0时,f′(x)>0.由此知极小值为f (﹣3).0<x<3时,yf′(x)>0.x>3时,f′(x)<0.由此知极大值为f(3).【解答】解:观察图象知,x<﹣3时,y=x•f′(x)>0,∴f′(x)<0.﹣3<x<0时,y=x•f′(x)<0,∴f′(x)>0.由此知极小值为f(﹣3).0<x<3时,y=x•f′(x)>0,∴f′(x)>0.x>3时,y=x•f′(x)<0,∴f′(x)<0.由此知极大值为f(3).故选:D.【点评】本题考查极值的性质和应用,解题时要仔细图象,注意数形结合思想的合理运用.11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是()A.﹣a<a<2 B.a>2或a<﹣1 C.a≥2或a≤﹣1 D.a>1或a<﹣2【分析】求出函数的导函数,根据函数的极值是导函数的根,且根左右两边的导函数符号不同得到△>0;解出a的范围.【解答】解:f′(x)=3x2+4ax+3(a+2)∵f(x)有极大值和极小值∴△=16a2﹣36(a+2)>0解得a>2或a<﹣1故选:B.【点评】本题考查函数的极值点是导函数的根,且根左右两边的导函数符号需不同.12.函数y=xe﹣x,x∈[0,4]的最小值为()A.0 B.C. D.【分析】先求出导函数f′(x),由f′(x)>0和f′(x)<0,求出x的取值范围,得出函数f(x)的单调区间,从而求出函数的最值.【解答】解:,当x∈[0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,4]时,f′(x)<0,f(x)单调递减,∵f(0)=0,,∴当x=0时,f(x)有最小值,且f(0)=0.故选:A.【点评】本题考查的是利用导数,判断函数的单调性,从而求出最值,属于基础题.13.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4 C.﹣4,﹣15 D.5,﹣16【分析】对函数y=2x3﹣3x2﹣12x+5求导,利用导数研究函数在区间[0,3]上的单调性,根据函数的变化规律确定函数在区间[0,3]上最大值与最小值位置,求值即可【解答】解:由题意y'=6x2﹣6x﹣12令y’>0,解得x>2或x<﹣1故函数y=2x3﹣3x2﹣12x+5在(0,2)减,在(2,3)上增又y(0)=5,y(2)=﹣15,y(3)=﹣4故函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是5,﹣15故选:A.【点评】本题考查用导数判断函数的单调性,利用单调性求函数的最值,利用单调性研究函数的最值,是导数的重要运用,注意上类题的解题规律与解题步骤.14.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是()A.﹣37 B.﹣29 C.﹣5 D.以上都不对【分析】先求导数,根据单调性研究函数的极值点,在开区间(﹣2,2)上只有一极大值则就是最大值,从而求出m,通过比较两个端点﹣2和2的函数值的大小从而确定出最小值,得到结论.【解答】解:∵f′(x)=6x2﹣12x=6x(x﹣2),∵f(x)在(﹣2,0)上为增函数,在(0,2)上为减函数,∴当x=0时,f(x)=m最大,∴m=3,从而f(﹣2)=﹣37,f(2)=﹣5.∴最小值为﹣37.故选:A.【点评】本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b) 比较而得到的,属于基础题.二.填空题(共10小题)15.函数f(x)=x3﹣3x2+1的极小值点为 2 .【分析】首先求导可得f′(x)=3x2﹣6x,解3x2﹣6x=0可得其根,再判断导函数的符号分析函数的单调性,即可得到极小值点.【解答】解:f′(x)=3x2﹣6x令f′(x)=3x2﹣6x=0得x1=0,x2=2且x∈(﹣∞,0)时,f′(x)>0;x∈(0,2)时,f′(x)<0;x∈(2,+∞)时,f′(x)>0故f(x)在x=2出取得极小值.故答案为2.【点评】本题考查函数的极值问题,属基础知识的考查.熟练掌握导数法求极值的方法步骤是解答的关键.16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b= 7 .【分析】求导函数,利用函数f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,建立方程组,求得a,b的值,再验证,即可得到结论.【解答】解:∵函数f(x)=x3﹣ax2﹣bx+a2∴f'(x)=3x2﹣2ax﹣b,又∵函数f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,∴,∴或时,f’(x)=3x2﹣2ax﹣b=(x﹣1)(3x+11)=0有不等的实根,满足题意;时,f'(x)=3x2﹣2ax﹣b=3(x﹣1)2=0有两个相等的实根,不满足题意;∴a+b=7故答案为:7【点评】本题考查导数知识的运用,考查函数的极值,考查学生的计算能力,属于基础题.17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= 6 .【分析】由已知函数f(x)=x(x﹣c)2在x=2处有极大值,则必有f′(2)=0,且在x=2的两侧异号即可得出.【解答】解:∵f′(x)=(x﹣c)2+2x(x﹣c)=3x2﹣4cx+c2,且函数f(x)=x(x﹣c)2在x=2处有极大值,∴f′(2)=0,即c2﹣8c+12=0,解得c=6或2.经检验c=2时,函数f(x)在x=2处取得极小值,不符合题意,应舍去.故c=6.故答案为6.【点评】熟练掌握利用导数研究函数的极值的方法是解题的关键.18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a的取值范围是(﹣∞,﹣1)∪(2,+∞).【分析】先对函数进行求导,根据函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,可以得到△>0,进而可解出a的范围.【解答】解:∵f(x)=x3+3ax2+3(a+2)x+1∴f'(x)=3x2+6ax+3(a+2)∵函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值∴△=(6a)2﹣4×3×3(a+2)>0∴a>2或a<﹣1故答案为:(﹣∞,﹣1)∪(2,+∞)【点评】本题主要考查函数在某点取得极值的条件.属基础题.19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是m <﹣3或m>6 .【分析】求出函数f(x)的导函数,根据已知条件,导函数必有两个不相等的实数根,只须令导函数的判别式大于0,求出m的范围即可.【解答】解:∵函数f(x)=x3+mx2+(m+6)x+1既存在极大值,又存在极小值f′(x)=3x2+2mx+m+6=0,它有两个不相等的实根,∴△=4m2﹣12(m+6)>0解得m<﹣3或m>6故答案为:m<﹣3或m>6.【点评】本题主要考查了函数在某点取得极值的条件.导数的引入,为研究高次函数的极值与最值带来了方便.20.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a= 36 .【分析】由题设函数在x=3时取得最小值,可得f′(3)=0,解此方程即可得出a的值.【解答】解:由题设函数在x=3时取得最小值,∵x∈(0,+∞),∴得x=3必定是函数的极值点,∴f′(3)=0,f′(x)=4﹣,即4﹣=0,解得a=36.故答案为:36.【点评】本题考查利用导数求函数的最值及利用导数求函数的极值,解题的关键是理解“函数在x=3时取得最小值”,将其转化为x=3处的导数为0等量关系.21.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是 2 .【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣1<x<0时,f′(x)>0;当0<x<1时,f′(x)<0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为2【点评】求函数的最值,一般先求出函数的极值,再求出区间的端点值,选出最值.22.已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m= 32 .【分析】先对函数f(x)进行求导,令导函数等于0求出x,然后根据导函数的正负判断函数f (x)的单调性,列出在区间[﹣3,3]上f(x)的单调性、导函数f’(x)的正负的表格,从而可确定最值得到答案.【解答】解:令f′(x)=3x2﹣12=0,得x=﹣2或x=2,列表得:x﹣3(﹣3,﹣﹣2(﹣2,2)2(2,3)32)f′(x)+0﹣0+f(x)17极值24极值﹣8﹣1可知M=24,m=﹣8,∴M﹣m=32.故答案为:32【点评】本题主要考查函数的求导运算、函数的单调性与其导函数的正负之间的关系和函数在闭区间上的最值.导数是由高等数学下放到高中的内容,每年必考,要引起重视.23.设f(x)=x3﹣﹣2x+5,当x∈[﹣1,2]时,f(x)<m恒成立,则实数m的取值范围为(7,+∞).【分析】先求导数,然后根据函数单调性研究函数的极值点,通过比较极值与端点的大小从而确定出最大值,进而求出变量m的范围.【解答】解:f′(x)=3x2﹣x﹣2=0解得:x=1或﹣当x∈时,f'(x)>0,当x∈时,f'(x)<0,当x∈(1,2)时,f'(x)>0,∴f(x)max ={f(﹣),f(2)}max=7由f(x)<m恒成立,所以m>fmax(x)=7.故答案为:(7,+∞)【点评】本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b)比较而得到的,属于基础题.24.f(x)=ax3﹣3x+1对于x∈[﹣1,1]总有f(x)≥0成立,则a= 4 .【分析】这类不等式在某个区间上恒成立的问题,可转化为求函数最值的问题,本题要分三类:①x=0,②x>0,③x<0等三种情形.当x=0时,不论a取何值,f(x)≥0都成立;当x>0时,有a≥,可构造函数g(x)=,然后利用导数求g(x)的最大值,只需要使a≥g(x)max 同理可得x<0时的a的范围,从而可得a的值.【解答】解:①若x=0,则不论a取何值,f(x)≥0都成立;②当x>0,即x∈(0,1]时,f(x)=ax3﹣3x+1≥0可化为:a≥设g(x)=,则g′(x)=,所以g(x)在区间(0,]上单调递增,在区间[,1]上单调递减,=g()=4,从而a≥4;因此g(x)max③当x<0,即x∈[﹣1,0)时,f(x)=ax3﹣3x+1≥0可化为:a≤,g(x)=在区间[﹣1,0)上单调递增,=g(﹣1)=4,从而a≤4,综上a=4.因此g(x)min答案为:4.【点评】本题考查的是含参数不等式的恒成立问题,考查分类讨论,转化与化归的思想方法,利用导数和函数的单调性求函数的最大值,最小值等知识与方法.在讨论时,容易漏掉x=0的情形,因此分类讨论时要特别注意该问题的解答.三.解答题(共10小题)25.已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.【分析】(Ⅰ)由f'(x)=3ax2+2x+b得g(x)=fax2+(3a+1)x2+(b+2)x+b,再由函数g(x)是奇函数,由g(﹣x)=﹣g(x),利用待系数法求解.(2)由(1)知,再求导g’(x)=﹣x2+2,由g’(x)≥0求得增区间,由g’(x)≤0求得减区间;求最值时从极值和端点值中取.【解答】解:(1)由题意得f’(x)=3ax2+2x+b因此g(x)=f(x)+f’(x)=ax3+(3a+1)x2+(b+2)x+b因为函数g(x)是奇函数,所以g(﹣x)=﹣g(x),即对任意实数x,有a(﹣x)3+(3a+1)(﹣x)2+(b+2)(﹣x)+b=﹣[ax3+(3a+1)x2+(b+2)x+b]从而3a+1=0,b=0,解得,因此f(x)的解析表达式为.(2)由(Ⅰ)知,所以g’(x)=﹣x2+2,令g'(x)=0解得则当时,g'(x)<0从而g(x)在区间,上是减函数,当,从而g(x)在区间上是增函数,由前面讨论知,g(x)在区间[1,2]上的最大值与最小值只能在时取得,而,因此g(x)在区间[1,2]上的最大值为,最小值为.【点评】本题主要考查构造新函数,用导数研究函数的单调性和求函数的最值.26.已知函数f(x)=ln(1+x)﹣x,g(x)=xlnx.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设0<a<b,证明0<g(a)+g(b)﹣2g()<(b﹣a)ln2.【分析】(1)先求出函数的定义域,然后对函数进行求导运算,令导函数等于0求出x的值,再判断函数的单调性,进而可求出最大值.(2)先将a,b代入函数g(x)得到g(a)+g(b)﹣2g()的表达式后进行整理,根据(1)可得到lnx<x,将、放缩变形为、代入即可得到左边不等式成立,再用根据y=lnx的单调性进行放缩<.然后整理即可证明不等式右边成立.【解答】(Ⅰ)解:函数f(x)的定义域为(﹣1,+∞)..令f′(x)=0,解得x=0.当﹣1<x<0时,f′(x)>0,当x>0时,f′(x)<0.又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值为0.(Ⅱ)证明:=.由(Ⅰ)结论知ln(1+x)﹣x<0(x>﹣1,且x≠0),由题设,因此ln=﹣ln(1+)>﹣,,所以.又,<.=(b﹣a)ln<(b﹣a)ln2综上.【点评】本题主要考查导数的基本性质和应用、对数函数性质和平均值不等式等知识以及综合推理论证的能力.27.已知函数f(x)=x﹣1﹣lnx(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)求函数f(x)的极值;(Ⅲ)对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围.【分析】(Ⅰ)求出f(2),再根据导数的几何意义,求出该点的导数值,即得曲线在此点处的切线的斜率,然后用点斜式写出切线方程即可(Ⅱ)令导数大于0解出增区间,令导数小于0,解出函数的减区间,然后由极值判断规则确定出极值即可.(Ⅲ)由于f(x)≥bx﹣2恒成立,得到在(0,+∞)上恒成立,构造函数g(x)=,b≤g(x)即可.min【解答】解:(Ⅰ)函数的定义域为(0,+∞),,则,f(2)=1﹣ln2,∴曲线y=f(x)在点(2,f(2))处的切线方程为,即x﹣2y﹣2ln2=0;(Ⅱ),令f′(x)>0,得x>1,列表:x(0,1)1(1,+∞)f′(x)﹣0+f(x)↘0↗∴函数y=f(x)的极小值为f(1)=0;(Ⅲ)依题意对∀x∈(0,+∞),f(x)≥bx﹣2恒成立等价于x﹣1﹣lnx≥bx﹣2在(0,+∞)上恒成立可得在(0,+∞)上恒成立,令g(x)=,令g′(x)=0,得x=e2列表:x(0,e2)e2(e2,+∞)g’(x)﹣0+g(x)↘↗∴函数y=g(x)的最小值为,根据题意,.【点评】本题考查利用导数研究函数的极值,考查恒成立问题,着重考查分类讨论思想与构造函数思想的应用,体现综合分析问题与解决问题能力,属于中档题.28.已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax﹣1,求实数a的取值范围.【分析】(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值.(2)将f(x)≥ax﹣1在[1,+∞)上恒成立转化为不等式对于x∈[1,+∞)恒成立,然后令,对函数g(x)进行求导,根据导函数的正负可判断其单调性进而求出最小值,使得a小于等于这个最小值即可.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),f(x)的导数f'(x)=1+lnx.令f'(x)>0,解得;令f'(x)<0,解得.从而f(x)在单调递减,在单调递增.所以,当时,f(x)取得最小值.(Ⅱ)依题意,得f(x)≥ax﹣1在[1,+∞)上恒成立,即不等式对于x∈[1,+∞)恒成立.令,则.当x>1时,因为,故g(x)是[1,+∞)上的增函数,所以g(x)的最小值是g(1)=1,从而a的取值范围是(﹣∞,1].【点评】本题主要考查函数的单调性与其导函数的正负之间的关系、根据导数求函数的最值.导数是高等数学下放到高中的内容,是每年必考的热点问题,要给予重视.29.已知函数f(x)=(x﹣2)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,2]上的最小值和最大值.【分析】(1)求出函数的导数,令导数大于0,得增区间,令导数小于0,得减区间;(2)由(1)可得f(x)在[0,1]递减,在(1,2]递增,即有f(x)在x=1处取得极小值,且为最小值,求得端点的函数值,比较即可得到最大值.【解答】解:(1)函数f(x)的导数为f′(x)=(x﹣1)e x,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1.则f(x)的增区间为(1,+∞),减区间为(﹣∞,1);(2)由(1)可得f(x)在[0,1]递减,在(1,2]递增,即有f(x)在x=1处取得极小值,且为最小值,且为f(1)=﹣e,由f(0)=﹣2,f(2)=0,可得f(x)的最大值为f(2)=0.则f(x)的最小值为﹣e,最大值为0.【点评】本题考查导数的运用:求单调区间和极值、最值,考查运算能力,正确求导是解题的关键.30.已知函数f(x)=ax3﹣6ax2+b(x∈[﹣1,2])的最大值为3,最小值为﹣29,求a、b的值.【分析】求出f′(x)=0在[﹣1,2]上的解,研究函数f(x)的增减性,函数的最值应该在极值点或者区间端点取,已知最大值为3,最小值为﹣29代入即可.【解答】解:函数f(x)=ax3﹣6ax2+b∴f′(x)=3ax2﹣12ax=3a(x2﹣4x)令f′(x)=3ax2﹣12ax=3a(x2﹣4x)=0,显然a≠0,否则f(x)=b为常数,矛盾,∴x=0,若a>0,列表如下:由表可知,当x=0时f(x)取得最大值∴b=3又f′(0)=﹣29,则f(2)<f(0),这不可能,∴f(2)=8a﹣24a+3=﹣16a+3=﹣29,∴a=2若a<0,同理可得a=﹣2,b=﹣29故答案为:a=2,b=3或a=﹣2,b=﹣29【点评】本题考查函数的导数在求最大值、最小值中的应用,关键是对于闭区间上的最值要注意函数的端点函数值,注意区别理解函数的极值点一定不在函数端点,而最值点可能在函数端点,属于基础题.31.求函数f(x)=x3﹣2x2+5在区间[﹣2,2]的最大值和最小值.【分析】求出函数的导数,利用导数研究函数f(x)=x3﹣2x2+5在区间[﹣2,2]的单调性,再由单调性求函数在区间上的最值.【解答】解:函数f(x)=x3﹣2x2+5的导函数是f'(x)=x(3x﹣4),令f’(x)=0得x=0或,如下表:∴ymax =5,ymin=﹣11【点评】本题考点是利用导数求闭区间上的函数的最值,考查用导数研究函数的单调性并利用单调性确定函数的最值,并求出.此是导数的一个很重要的运用.32.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x)时,恒有f(x)>k(x﹣1).【分析】(Ⅰ)求导数,利用导数大于0,可求函数f(x)的单调增区间;(Ⅱ)令F (x )=f (x )﹣(x ﹣1),证明F (x)在[1,+∞)上单调递减,可得结论;(Ⅲ)分类讨论,令G (x )=f (x )﹣k (x ﹣1)(x >0),利用函数的单调性,可得实数k 的所有可能取值.【解答】解:(Ⅰ)∵f(x)=lnx ﹣,∴f′(x)=>0(x >0),∴0<x <,∴函数f (x)的单调增区间是(0,);(Ⅱ)令F (x )=f (x )﹣(x ﹣1),则F′(x)=当x >1时,F′(x)<0,∴F(x )在[1,+∞)上单调递减, ∴x >1时,F(x )<F (1)=0, 即当x >1时,f (x)<x ﹣1;(Ⅲ)由(Ⅱ)知,k=1时,不存在x 0>1满足题意;当k >1时,对于x >1,有f (x )<x ﹣1<k (x ﹣1),则f (x )<k(x ﹣1), 从而不存在x 0>1满足题意;当k <1时,令G(x)=f(x)﹣k (x ﹣1)(x >0),则 G′(x)==0,可得x 1=<0,x 2=>1,当x ∈(1,x 2)时,G′(x)>0,故G (x )在(1,x 2)上单调递增, 从而x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x ﹣1), 综上,k 的取值范围为(﹣∞,1).【点评】本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,正确构造函数是关键.33.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.【分析】(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈[0,1],当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.【点评】本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.34.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f’(1)e x﹣1﹣f(0)x+⇒f’(x)=f’(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f’(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f’(0)=0;当x<0时,有f’(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)min(完整word 版)导数与单调性极值最基础值习题第31页(共31页)≥b∴(a+1)b ≤(a+1)2﹣(a+1)2ln (a+1),(a+1>0)令F (x )=x 2﹣x 2lnx (x >0),则F’(x )=x (1﹣2lnx)∴F'(x )>0⇔0<x <当x=时,F(x )max = 即当a=时,(a+1)b 的最大值为 【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.。
2016学年高二人教版数学选修1-1练习:3.3.1函数的单调性与导数 Word版含答案

►基础梳理1.函数的单调性与其导数的正负的关系.在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.根据导数与函数单调性的关系,求函数单调区间的一般程序.(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)解不等式f′(x)>0或f′(x)<0;(4)写单调区间.3.利用导数判断函数单调性和确定单调区间的注意事项.(1)必须首先确定函数的定义域,在具体的解决问题过程中,只能在定义域内,通过讨论导数的符号,来判断函数的单调区间;(2)了解在某一区间内f′(x)>0[或f′(x)<0]是函数f(x)在该区间为增(或减)函数的充分不必要条件;(3)函数的单调区间可以都用开区间表示,如果一个函数具有相同单调性的单调区间有几个,它们不能用并集符号“∪”连接,要用逗号或文字“和”、“及”等隔开;(4)若函数中含有参数,必须根据具体问题,对参数进行分类讨论,然后分别求出单调区间;(5)一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数图象就比较“陡峭”(向上或向下),反之,函数的图象就“平缓”一些.,►自测自评1.若在区间(a,b)内有f′(x)>0,且f(a)≥0,则在(a,b)内恒有(A)A.f(x)>0B.f(x)<0C.f(x)=0D.不能确定解析:由f′(x)>0知,f(x)在(a,b)上单调递增,∴f(x)>f(a)≥0,即f(x)>0,故选A.2.函数y=x3-3x的单调增区间是________________________________________________________________________ ____________.答案:解析:y′=3x2-3,令y′>0,即3x2-3>0,解得x>1,或x<-1,∴函数y=x3-3x的单调增区间是(-∞,-1),(1,+∞).答案:(-∞,-1),(1,+∞)3.函数y =x ln x 的单调递减区间是________.解析:y ′=(x ln x )′=ln x +1,令y ′<0,∴ln x +1<0,∴0<x <1e,∴函数y =x ln x 的单调递减区间是⎝⎛⎭⎫0,1e .1.f (x )=5x 2-2x 的单调增区间为(A) A.⎝⎛⎭⎫15,+∞ B.⎝⎛⎭⎫-∞,15 C.⎝⎛⎭⎫-15,+∞ D.⎝⎛⎭⎫-∞,-15 2.函数y =x cos x -sin x 在下面哪个区间内是增函数(B) A.⎝⎛⎭⎫π2,3π2 B .(π,2π)C.⎝⎛⎭⎫3π2,5π2 D .(2π,3π)解析:y ′=cos x -x sin x -cos x =-x sin x .若y =f (x )在某区间内是增函数,只需在此区间内y ′恒大于等于0即可.只有当x ∈(π,2π)时,y ′>0恒成立,∴只有B 符合题意.3.已知导函数y =f ′(x )的图象如下图所示,请根据图象写出原函数y =f (x )的递增区间是________.解析:从图象可知f ′(x )>0的解为-1<x <2或x >5,∴f (x )的递增区间为(-1,2),(5,+∞).答案:(-1,2),(5,+∞)4.设f (x )=ln x ,g (x )=f (x )+f ′(x ). 求g (x )的单调区间.解析:由题设知f (x )=ln x ,g (x )=ln x +1x ,∴g ′(x )=x -1x2,令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调减区间. 当x ∈(1,+∞]时,g ′(x )>0,故(1,+∞)是g (x )的单调递增区间. 5.若f (x )=ax 3+x 在区间[-1,1]上单调递增,求a 的取值范围. 分析:利用不等式f ′(x )≥0在[-1,1]上恒成立,确定a 的取值范围. 解析:f ′(x )=3ax 2+1,∵f (x )在区间[-1,1]上单调递增,∴f ′(x )=3ax 2+1≥0在[-1,1]上恒成立. 当x =0时,显然成立,当x ≠0时,a ≥-13x2,∵13x 2在x ∈[-1,0)∪(0,1]的最大值为-13, ∴a ≥-13.故a 的取值范围是⎣⎡⎭⎫-13,+∞.1.若f (x )在[a ,b ]上连续,在(a ,b )内可导,且x ∈(a ,b )时,f ′(x )>0,又f (a )<0,则(D ) A .f (x )在[a ,b ]上单调递增,且f (b )>0 B .f (x )在[a ,b ]上单调递增,且f (b )<0 C .f (x )在[a ,b ]上单调递减,且f (b )<0D .f (x )在[a ,b ]上单调递增,但f (b )的符号无法判断 2.函数y =x cos x -sin x 在下面哪个区间内是增函数(B ) A.⎝⎛⎭⎫π2,3π2 B .(π,2π)C.⎝⎛⎭⎫3π2,5π2 D .(2π,3π)解析:y ′=cos x -x sin x -cos x =-x sin x .若y =f (x )在某区间内是增函数,只需在此区间内y ′恒大于等于0即可,只有当x ∈(π,2π)时,y ′>0恒成立,∴只有B 符合题意.3.下列函数在区间(-1,1)内不是增函数的是(D )A .y =e x +xB .y =sin xC .y =x 3-6x 2+9x +2D .y =x 2+x +1解析:A 中y =e x +x ,y ′=e x +1>0在(-1,1)上成立;B 中y =sin x ,y ′=cos x >0在(-1,1)上成立;C 中y =x 3-6x 2+9x +2,y ′=3x 2-12x +9=3(x -2)2-3≥0在(-1,1)上成立;D中y =x 2+x +1,y ′=2x +1,在⎝⎛⎭⎫-12,1上y ′>0,在⎝⎛⎭⎫-1,-12上,y ′<0. 4.如果函数f (x )=2x 3+ax 2+1(a 为常数)在区间(-∞,0)和(2,+∞)上单调递增,且在区间(0,2)内单调递减,则实数a 的值是(C )A .1B .2C .-6D .-12解析:依题意,x =0或x =2是方程f ′(x )=6x 2+2ax =0的两个实数根,解得a =-6. 5.如果函数y =f (x )的图象如图所示,那么导函数y =f ′(x )的图象可能是(A )解析:由原函数的单调性可以得到导函数的正负情况依次是正→负→正→负,只有答案A 满足.6.已知函数y =x 3-ax 在[1,+∞)内是单调增函数,则实数a 的最大值为(D) A .0 B .1 C .2 D .3解析:∵f ′(x )=3x 2-a 在[1,+∞)上有3x 2-a ≥0恒成立,∴a ≤(3x 2)min =3. 7.下列命题中正确的是________.①若f (x )在(a ,b )内是增函数,则对于任何x ∈(a ,b ),都有f ′(x )>0; ②若在(a ,b )内f ′(x )存在,则f (x )必为单调函数;③若在(a ,b )内的任意x 都有f ′(x )>0,则f (x )在(a ,b )内是增函数; ④若x ∈(a ,b ),总有f ′(x )<0,则在(a ,b )内f (x )<0.解析:①y =x 3在x ∈(-∞,+∞)为增函数,而y ′=2x 2≥0,故①错.②错.③正确.④由f ′(x )<0能判断f (x )为减函数,但不能判定f (x )<0. 答案:③8.函数f (x )=lnx-12x 2的单调增区间是________________________________________________________________________.解析:函数的定义域为(0,+∞), f ′(x )=1x -x =1-x 2x,令f ′(x )>0,即1-x 2x>0,解得0<x <1,∴f (x )在(0,1)上为增函数. 答案:(0,1)9.函数f (x )=x ln x (x >0)的单调递增区间是__________________.解析:令f ′(x )=ln x +1≥0,得x ≥1e,即函数f (x )的单调递增区间是⎣⎡⎭⎫1e ,+∞. 答案:⎣⎡⎭⎫1e ,+∞ 10.函数f (x )在其定义域(-1,1)上的导数满足f ′(x )<0,当a ,b ∈(-1,1),且a +b =0时,f (a )+f (b )=0.则不等式f (1-m )+f (1-m 2)>0的解集是________.解析:根据已知,得知f (x )是定义在(-1,1)上的单调递减的奇函数. 所以f (1-m )+f (1-m 2)>0 ⇔f (1-m )>-f (1-m 2)=f (m 2-1),即⎩⎪⎨⎪⎧-1<1-m <1,-1<m 2-1<1,1-m <m 2-1,解得1<m <2,即原不等式的解集为(1,2). 答案:(1,2)11.(2013·茂名一模)已知函数g (x )=13ax 3+2x 2-2x ,若a =1,求g (x )的单调减区间.解析:当a =1时,g (x )=13x 3+2x 2-2x ,g ′(x )=x 2+4x -2.由g ′(x )<0解得:-2-6<x <-2+ 6. ∴当a =1时,函数g (x )的单调递减区间为(-2-6,-2+6). ►体验高考 1.(2014·新课标全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是(D )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).2.(2014·湖南卷)若0<x 1<x 2<1,则(C )A .e x 2-e x 1>ln x 2-ln x 1B .e x 2-e x 1<ln x 2-ln x 1C .x 2e x 1>x 1e x 2D .x 2e x 2<x 1e x 1解析:令f (x )=e xx ,则f ′(x )=x e x -e x x 2=e x (x -1)x 2.当0<x <1时,f ′(x )<0,即f (x )在(0,1)上单调递减, 因为0<x 1<x 2<1,所以f (x 2)<f (x 1),即e x 2x 2<e x 1x 1,所以x 2e x 1>x 1e x 2. 3.(2013·浙江卷)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是(B )解析:在(-1,0)上,f ′(x )单调递增,所以f (x )图象的切线斜率呈递增趋势;在(0,1)上,f ′(x )单调递减,所以f ′(x )图象的切线斜率呈递减趋势.故选B.4.(2014·全国卷)函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(1,2)是增函数,求a 的取值范围. 解析:(1)f ′(x )=3ax 2+6x +3,f ′(x )=3ax 2+6x +3=0的判别式Δ=36(1-a ). ①若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1,故此时f (x )在R 上是增函数. ②由于a ≠0,故当a <1时f ′(x )=0有两个根:x 1=-1+1-a a,x 2=-1-1-aa,若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f ′(x )>0,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)上是减函数;(2)当a >0,x >0时,f ′(x )>0,所以当a >0时,f (x )在区间(1,2)是增函数.若a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞). 5.已知a ∈R ,函数f (x )=4x 3-2ax +a .(1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0. 解析:(1)由题意得f ′(x )=12x 2-2a ,当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x )=12⎝⎛⎭⎫x -a 6⎝⎛⎭⎫x +a 6,此时函数f (x )的单调递减区间为⎣⎡⎦⎤-a6, a 6;单调递增区间为⎝⎛⎭⎫-∞,-a 6,⎝⎛⎭⎫ a 6,+∞. (2)由于0≤x ≤1,当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2. 当a >2时,f (x )+|a -2|=4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2=6⎝⎛⎭⎫x -33⎝⎛⎭⎫x +33. 于是g ′(x ),g (x )随x 的变化情况如下表:所以g (x )min =g ⎝⎛⎭⎫33=1-439>0.当0≤x ≤1时, 2x 3-2x +1>0. 故f (x )+|a -2|≥4x 3-4x +2>0.。
(完整版)导数讨论含参单调性习题(含详解答案).doc

1.设函数.( 1)当时,函数与在处的切线互相垂直,求的值;( 2)若函数在定义域内不单调,求的取值范围;( 3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.( 1)讨论的单调性;( 2)当时,证明:;( 3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).( 1)当时,若在其定义域内为单调函数,求的取值范围;( 2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.( 1)讨论函数的单调性;( 2)若存在两个极值点,求证:无论实数取什么值都有.5 .已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数 .( 1)求的值;( 2)若在及所在的取值范围上恒成立,求的取值范围;6.已知函数ln , x ,其中.f x ax x F x e ax x 0, a 0( 1)若f x 和 F x 在区间 0,ln3 上具有相同的单调性,求实数 a 的取值范围;( 2)若a , 1 ,且函数 g x xe ax 1 2ax f x 的最小值为 M ,求 M 的e2最小值 .7.已知函数 f ( x) e x m ln x .( 1)如x 1 是函数 f (x) 的极值点,求实数m 的值并讨论的单调性 f (x) ;( 2)若x x0是函数f ( x)的极值点,且f ( x) 0 恒成立,求实数m 的取值范围(注:已知常数 a 满足 a ln a 1 ) .8.已知函数 f x ln 1 mx x2mx ,其中0 m 1 .2( 1)当m 1时,求证: 1 x 0 时, f x x3;3( 2)试讨论函数y f x 的零点个数.9.已知e 是自然对数的底数 , F x 2e x 1 x ln x, f x a x 1 3 .(1)设T x F x f x , 当a 1 2e 1时, 求证: T x 在 0, 上单调递增;(2)若x 1, F x f x , 求实数a的取值范围 .10 .已知函数f x e x ax 2(1)若a 1 ,求函数f x 在区间[ 1,1]的最小值;(2)若a R, 讨论函数 f x 在 (0, ) 的单调性;(3)若对于任意的x1, x2 (0, ), 且 x1 x2,都有 x2 f ( x1) a x1 f ( x2 ) a 成立,求 a 的取值范围。
(完整版)导数与单调性习题

导数与单调性习题1、函数x e x x f )3()(-=的单调递增区间是( )A .)2,(-∞B .(0,3)C .(1,4)D .),2(+∞2、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )3函数x x y 142+=的单调递增区间是( )A .),0(+∞ B .),21(+∞ C .)1,(--∞ D .)21,(--∞ 4.求函数2()2ln f x x x =-的单调区间.5. 已知函数2()ln 3,f x x x x a R =+-∈.求()f x 的单调区间6.已知函数y =f (x )(x ∈R )上任一点(x 0,f (x 0))处的切线斜率k =(x 0-2)(x 0+1)2,则该函数的单调递减区间为( )A .[-1,+∞) B .(-∞,2] C .(-∞,-1)和(1,2) D .[2,+∞)7.已知函数y =xf ′(x )的图象如图(1)所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )8.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( )A.⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2B.⎝⎛⎭⎫-π2,0和⎝⎛⎭⎫0,π2C.⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫π2,πD.⎝⎛⎭⎫-π2,0和⎝⎛⎭⎫π2,π 9.x y O 图1x y O A x y O B x y O C y OD x10.已知函数()2ln ()f x x ax a a R =-+∈.讨论()f x 的单调性11.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )12.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)13.已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时( )A .f ′(x )>0,g ′(x )>0B .f ′(x )>0,g ′(x )<0C .f ′(x )<0,g ′(x )>0D .f ′(x )<0,g ′(x )<014.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________. 15.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________.16.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.17.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11).(1)求a 、b 的值;(2)讨论函数f (x )的单调性.18.设函数f (x )=x (e x -1)-12x 2. 求f (x )的单调区间;19、函数3()f x ax x =-在R 上为减函数,则实数a 的取值范围是______________.20. 已知函数()22ln f x x a x x=++在区间[2,3]上单调递增,求实数a 的取值范围21.已知函数32()f x x ax bx c =+++,()124g x x =-,若(1)0f -=,且()f x 的图象在点(1,(1))f 处的切线方程为()y g x =.(1)求实数a ,b ,c 的值;(2)求单调区间。
高一数学利用导数研究函数的单调性试题答案及解析

高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.函数y=f(x)在定义域(-,3)内的图像如图所示.记y=f(x)的导函数为y=f¢(x),则不等式f¢(x)≤0的解集为()A.[-,1]∪[2,3)B.[-1,]∪[,]C.[-,]∪[1,2)D.(-,-]∪[,]∪[,3)【答案】A【解析】由图象可知,即求函数的单调减区间,从而有解集为[−,1]∪[2,3),故选A..【考点】利用导数研究函数的单调性..3.若曲线f(x)=ax3+ln x存在垂直于y轴的切线,则实数a的取值范围是__________.【答案】a<0【解析】∵f′(x)=3ax2+(x>0)∵曲线f(x)=ax3+lnx存在垂直于y轴的切线,∴f′(x)=3ax2+=0有正解即a=有正解,∵<0∴a<0,故答案为(-∞,0).【考点】利用导函数研究曲线上的切线.4.设,.(1)令,讨论在内的单调性并求极值;(2)求证:当时,恒有.【答案】(1) 在内是减函数,在内是增函数, 在处取得极小值;(2)详见解析.【解析】(1)先根据求导法求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间及极值即可.(2)欲证x>ln2x-2a ln x+1,即证x-1-ln2x+2alnx>0,也就是要证f(x)>f(1),根据第一问的单调性即可证得.试题解析:解(1)解:根据求导法则有,故, 3分于是,列表如下:2递减极小值递增故知在内是减函数,在内是增函数,所以,在处取得极小值. 6(2)证明:由知,的极小值.于是由上表知,对一切,恒有.从而当时,恒有,故在内单调增加.所以当时,,即.故当时,恒有. .12【考点】1.利用导数研究函数的单调性;2.函数恒成立问题;3.利用导数研究函数的极值.5.函数的单调增区间是.【答案】【解析】求函数的单调区间,必须先求函数的定义域,,此函数可以看作是增函数和二次函数复合而成,利用复合函数的单调性,知所求增区间为.【考点】复合函数的单调性.6.设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
高中数学同步练习 导数与函数的单调性

第3章 §1 第1课时 导数与函数的单调性A 级 基础巩固一、选择题1.在下列结论中,正确的有( A ) (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数; (4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个D .4个[解析] 分别举反例:(1)y =lnx,(2)y =1x (x>0),(3)y =2x,(4)y =x 2,故选A.2.若函数f(x)=kx -lnx 在区间(1,+∞)单调递增,则k 的取值范围是( D ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)[解析] 由条件知f′(x)=k -1x ≥0在(1,+∞)上恒成立,∴k≥1.把函数的单调性转化为恒成立问题是解决问题的关键.3.(2019·宣城高二检测)函数f(x)=2x+x 3-2在区间(0,1)内的零点个数是( B ) A .0 B .1 C .2D .3[解析] 本小题考查函数的零点与用导数判断函数的单调性,考查分析问题、解决问题的能力. ∵f(x)=2x+x 3-2,0<x<1,∴f ′(x)=2xln2+3x 2>0在(0,1)上恒成立,∴f(x)在(0,1)上单调递增. 又f(0)=20+0-2=-1<0,f(1)=2+1-2=1>0,f(0)·f(1)<0,则f(x)在(0,1)内至少有一个零点, 又函数y =f(x)在(0,1)上单调递增,则函数f(x)在(0,1)内有且仅有一个零点. 4.下列函数中,在(0,+∞)内为增函数的是( B ) A .y =sinx B .y =xe 2C .y =x 3-xD .y =lnx -x[解析] 对于B,y =xe 2,则y′=e 2,∴y =xe 2在R 上为增函数,在(0,+∞)上也为增函数,选B. 5.(2019·临沂高二检测)已知函数y =f(x)的图像是如图四个图像之一,且其导函数y =f′(x)的图像如图所示,则该函数的图像是( B )[解析] 由导函数图像可知函数在[-1,1]上为增函数,又因导函数值在[-1,0]递增,原函数在[-1,1]上切线的斜率递增,导函数的函数值在[0,1]递减,原函数在[0,1]上切线的斜率递减,选B.6.若f(x)=lnxx ,e<a<b,则( A )A .f(a)>f(b)B .f(a)=f(b)C .f(a)<f(b)D .f(a)f(b)>1[解析] 因为f′(x)=1-lnxx2, ∴当x>e 时,f′(x)<0,则f(x)在(e,+∞)上为减函数,因为e<a<b, 所以f(a)>f(b).选A. 二、填空题7.(2019·烟台高二检测)函数y =ln(x 2-x -2)的单调递减区间为(-∞,-1). [解析] 函数y =ln(x 2-x -2)的定义域为 (2,+∞)∪(-∞,-1),令f(x)=x 2-x -2,f ′(x)=2x -1<0,得x<12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1).8.已知函数f(x)=x 3-ax 2-3x 在区间[1,+∞)上是增函数,则实数a 的取值范围是(-∞,0]. [解析] ∵f(x)=x 3-ax 2-3x,∴f ′(x)=3x 2-2ax -3, 又因为f(x)=x 3-ax 2-3x 在区间[1,+∞)上是增函数, f ′(x)=3x 2-2ax -3≥0在区间[1,+∞)上恒成立, ∴⎩⎪⎨⎪⎧a 3≤1,f ′(1)=3×12-2a -3≥0,解得a≤0,故答案为(-∞,0]. 三、解答题9.(2018·天津理,20(1))已知函数f(x)=a x,g(x)=log a x,其中a>1.求函数h(x)=f(x)-xln a 的单调区间.[解析] 由已知,h(x)=a x-xln a, 有h′(x)=a xln a -ln a. 令h′(x)=0,解得x =0.由a>1,可知当x 变化时,h′(x),h(x)的变化情况如下表:所以函数10.(2019·长沙高二检测)已知a≥0,函数f(x)=(x 2-2ax)·e x.设f(x)在区间[-1,1]上是单调函数,求a 的取值范围.[解析] ∵f(x)=(x 2-2ax)e x, ∴f′(x)=(2x -2a)e x+(x 2-2ax)e x=e x[x 2+2(1-a)x -2a]令f′(x)=0,即x 2+2(1-a)x -2a =0, 解x 1=a -1-1+a 2,x 2=a -1+1+a 2, 其中x 1<x 2,当x 变化时,f′(x),f(x)的变化情况如下表∵a≥0,∴x 1212∴x 2≥1,即a -1+1+a 2≥1, ∴a≥34.B 级 素养提升一、选择题1.(2018·和平区二模)已知f(x)是定义在R 上的函数,它的图像上任意一点P(x 0,y 0)处的切线方程为y =(x 20-x 0-2)x +(y 0-x 30+x 20+2x 0),那么函数f(x)的单调递减区间为( A )A .(-1,2)B .(-2,1)C .(-∞,-1)D .(2,+∞)[解析] 因为函数f(x),(x ∈R)上任一点(x 0,y 0)的切线方程为y =(x 20-x 0-2)x +(y 0-x 30+x 20+2x 0),即函数在任一点(x 0,y 0)的切线斜率为k =x 20-x 0-2, 即知任一点的导数为f ′(x)=x 2-x -2=(x -2)(x +1),由f ′(x)<0,得-1<x <2,即函数f(x)的单调递减区间是(-1,2). 故选A.2.函数f(x)的定义域为R,f(-2)=2017,对任意x ∈R,都有f ′(x)<2x 成立,则不等式f(x)>x 2+2013的解集为( C )A .(-2,2)B .(-2,+∞)C .(-∞,-2)D .(-∞,+∞)[解析] 令F(x)=f(x)-x 2-2013,则F ′(x)=f ′(x)-2x<0,∴F(x)在R 上为减函数, 又F(-2)=f(-2)-4-2013=2017-2017=0, ∴当x<-2时,F(x)>F(-2)=0,∴不等式f(x)>x 2+2013的解集为(-∞,-2). 二、填空题3.若函数f(x)=x -13sin2x +asinx 在(-∞,+∞)单调递增,则a 的取值范围是[-13,13].[解析] 函数f(x)=x -13sin2x +asinx 在(-∞,+∞)单调递增,等价于f ′(x)=1-23cos2x +acosx=-43cos 2x +acosx +53≥0在(-∞,+∞)恒成立.设cosx =t,则g(t)=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎪⎨⎪⎧g (1)=-43+a +53≥0g (-1)=-43-a +53≥0,解得-13≤a≤13.4.已知函数f(x)=x 3+ax 2+(2a -3)x -1.(1)若f(x)的单调减区间为(-1,1),则a 的取值集合为{0}; (2)若f(x)在区间(-1,1)内单调递减,则a 的取值集合为{a|a<0}. [解析] f ′(x)=3x 2+2ax +2a -3 =(x +1)(3x +2a -3).(1)∵f(x)的单调减区间为(-1,1), ∴-1和1是方程f ′(x)=0的两根,∴3-2a3=1,∴a =0,∴a 的取值集合为{0}. (2)∵f(x)在区间(-1,1)内单调递减,∴f ′(x)<0在(-1,1)内恒成立,又二次函数y =f ′(x)开口向上,一根为-1,∴必有3-2a3>1,∴a<0,∴a 的取值集合为{a|a<0}. 三、解答题5.已知函数f(x)=(ax 2+x -1)·e x,其中e 是自然对数的底数,a ∈R. (1)若a =1,求曲线f(x)在点(1,f(1))处的切线方程; (2)若a =-1,求f(x)的单调区间.[解析] (1)因为f(x)=(x 2+x -1)e x,所以f′(x)=(2x +1)e x+(x 2+x -1)e x=(x 2+3x)e x,所以曲线f(x)在点(1,f(1))处的切线斜率为k =f′(1)=4e.又因为f(1)=e,所以所求切线方程为y -e =4e(x -1), 即4ex -y -3e =0.(2)f(x)=(-x 2+x -1)e x,因为f′(x)=-x(x +1)e x, 令f′(x)<0,得x<-1或x>0;f′(x)>0 得-1<x<0.所以f(x)的减区间为(-∞,-1),(0,+∞),增区间为(-1,0).6.(2019·山师附中高二检测)已知函数f(x)=alnx +2a2x +x(a>0).若函数y =f(x)在点(1,f(1))处的切线与直线x -2y =0垂直.(1)求实数a 的值;(2)求函数f(x)的单调区间. [解析] (1)f ′(x)=a x -2a2x2+1,∵f ′(1)=-2,∴2a 2-a -3=0,∵a>0,∴a =32.(2)f ′(x)=32x -92x 2+1=2x 2+3x -92x 2=(2x -3)(x +3)2x2, ∵当x ∈(0,32)时,f ′(x)<0;当x ∈(32,+∞)时,f ′(x)>0,∴f(x)的单调递减区间为(0,32),单调递增区间为(32,+∞).C 级 能力拔高(2019·广德高二检测)已知函数f(x)=x 2+2alnx. (1)求函数f(x)的单调区间;(2)若函数g(x)=2x +f(x)在[1,2]上是减函数,求实数a 的取值范围.[解析] (1)f ′(x)=2x +2a x =2x 2+2ax ,函数f(x)的定义域为(0,+∞).①当a≥0时,f ′(x)>0,f(x)的单调递增区间为(0,+∞); ②当a<0时f ′(x)=2(x +-a )(x --a )x .当x 变化时,f ′(x),f(x)的变化情况如下:(2)由g(x)=2x +x 2+2alnx,得g′(x)=-2x 2+2x +2ax ,由已知函数g(x)为[1,2]上的单调减函数, 则g′(x)≤0在[1,2]上恒成立, 即-2x 2+2x +2ax ≤0在[1,2]上恒成立.即a≤1x-x 2在[1,2]上恒成立.令h(x)=1x -x 2,x ∈[1,2],则h′(x)=-1x 2-2x =-(1x 2+2x)<0,∴h(x)在[1,2]上为减函数.h(x)min =h(2)=-72,∴a≤-72,故a 的取值范围为{a|a≤-72}.。
(完整版)利用导数求函数单调性题型全归纳

利用导数求函数单调性题型全归纳一.求单调区间二.函数单调性的判定与逆用 三.利用单调性求字母取值范围 四.比较大小 五.证明不等式 六.求极值 七.求最值 八.解不等式九.函数零点个数(方程根的个数) 十.探究函数图像一.求单调区间 例1. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=,因为当0,1a a >≠,所以2()2ln 0xg x a a '=+>所以()f x '在R 上是增函数,又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+, 故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞, 变式:已知()xf x e ax =-,求()f x 的单调区间解:'()xf x e a =-,当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0xf x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增 由'()0xf x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间 当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <,又*a N ∈,解得:5542a <<,所以正整数a 的取值集合{2} 三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x,若函数()y f x 在1(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x在1(,)上是减函数所以'2ln 1()0(ln )x f x ax 在1(,)上恒成立,即2ln 1(ln )x ax 在1(,)上恒成立令ln ,(1)t x x ,则0t,21()(0)t h t t t ,则max ()ah t因为222111111()=()()24t h t t t tt,所以max 1()=(2)4h t h ,所以14a 变式:若函数3211()(1)132f x x ax a x 在区间1,4()上为减函数,在区间(6,)上为增函数,试求实数a 的取值范围.解:2'()=1f x x ax a因为函数()yf x 在区间1,4()上为减函数,在区间(6,)上为增函数所以''()0(1,4)()0,(6,)f x x f x x,恒成立,即2210(1,4)10,(6,)x ax a x xaxa x,所以2211,(1,4)111,(6,)1x ax x x x ax xx ,所以4161a a,所以57a四.比较大小例4. 设a 为实数,当ln 210a x且时,比较x e 与221x ax 的大小关系.解:令2()21(0)x f x e x axx,则'()=22xf x e x a令'()()g x f x则'()e 2xg x ,令'()0g x 得:ln 2x当ln 2x 时,'()0g x ;当ln 2x时,'()0g x所以ln2min ()()=(ln 2)2ln 2222ln 22g x g x g e aa极小值,因为ln 21a,所以'()()0g x f x ,所以()f x 在0(,)上单调递增 所以()(0)0f x f ,即2210xe x ax ,所以221xe x ax变式:对于R 上的可导函数()y f x ,若满足'(3)()0xf x ,比较(1)(11)f f 与2(3)f 的大小关系.解:因为'(3)()0xf x所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f > 当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kxG x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k 上单调递增当1()x k ∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >=即()()f x g x >,综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 变式:已知关于x 的方程2(1)xx e ax a --=有两个不同的实数根12x x 、.求证:120x x <+证明:因为2(1)xx e ax a --=,所以2(1)1x x e a x -=+,令2(1)()1x x e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减,当0x <时()0f x '>,()f x 单调递增 因为关于x 的方程2(1)xx e ax a --=有两个不同的实数根12x x 、 所以不妨设12(,0),(0,)x x ∈-∞∈+∞,要证:120x x <+,只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x ,所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0xxx e x e---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x xx x e x e -=--+,0x ∈-∞(,),则g ()()xx x x e e -'=-因为0x ∈-∞(,),所以0xx e e -->所以g ()()0xx x x ee -'=-<恒成立所以g()(1)(1)xxx x e x e -=--+在0-∞(,)上单调递减,所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()xf x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)xxxxf x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去由表可知:2()=(2)(42)3f x f a a e --=-+=极大值解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -=,所以:=3a a e令()3(2)ag a e a a =->,则'2()31310ag a e e =->-> 所以()y g a =在2+∞(,)上单调递增,又2(2)320g e =-> 所以函数()y g a =在2+∞(,)上无零点,即方程=3aa e 无解 综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)xf x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围.解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可 又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()min 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++, 令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a +-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 变式:已知函数()ln()(0)x af x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值. 解:1()=x af x ex a -'-+,令()()g x f x '=,则21()=0(x ag x e x a -'+>+) 所以()y g x =在区间0+∞(,)单调递增,所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a -=-=+,即001=x a e x a -+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x af x f x ex a -==-+,由001=x aex a-+得:00=ln()x a x a --+所以0min 00001()()ln()=x af x f x ex a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件,所以12a = 八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e解:令()()xxg x e f x e =-,则()()()(()()1)xxxxg x e f x e f x e e f x f x '''=+-=+- 因为对任意1)()('>+∈x f x f R x ,,所以()0g x '>, 所以()y g x =为R 上的单调递增函数,又(0)(0)11g f =-=所以当1)(+>xxe xf e 即()1xxe f x e ->,所以()(0)g x g >,所以0x > 即不等式:1)(+>xxe xf e 的解集为0+∞(,) 变式:已知定义在R 上的可导函数()yf x 满足'()1f x ,若(12)()13f m f m m ,求m 的取值范围.解:令()()g x f x x =-,则()()1g x f x ''=-,因为'()1f x所以()()10g x f x ''=-<,所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m ,得:(12)()f m m f m m (1-2)>即(12)()g m g m ->,所以12m m ->,即13m < 九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围. 解: '2()21f x x x a =--+,因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-,即2a =,检验知2a =符合题意. 令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln3b -<≤-所以实数b 的取值范围是:2ln 222ln 3]--(, 变式:已知函数()y f x 是R 上的可导函数,当0x时,有'()()0f x f x x,判断函数13()()F x xf x x的零点个数 解:当0x时,有'()()f x f x x,即'()()xf x f x x令()()g x xf x =,则'()()()g x xf x f x所以当0x >时,'()()()0g x xf x f x ,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >, 所以当0x >时,13()()0F x xf x x恒成立,函数()y F x 无零点当0x <时,'()()()0g x xf x f x ,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立所以13()()F x xf x x在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ,所以13()0F x x当x →-∞时,10x,所以()()0F x xf x所以13()()F x xf x x 在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合. 变式:已知函数ln(2)()x f x x=,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围.解:21ln(2)()=x f x x -',令()=0f x '得2ex = 所以当02ex <<时,()0,()f x f x '>单调递增当2ex >时,()0,()f x f x '<单调递减由当12x <时,()0f x <,当12x >时,()0f x >作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(1) (2)(4)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解,所以()f x a >-有两个整数解,因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =,所以ln 6ln 23a ≤-<,所以ln 6ln 23a -<≤-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1 导数与函数的单调性基础巩固题:1.函数 f(x)= ax1在区间( -2, +∞)上为增函数,那么实数 a 的取值范围为()x2A.0<a<1 B.a<-1 或 a>1C.a>1D.a>-2222答案: C解析:∵ f(x)=a+12a在 (-2,+ ∞ )递增,∴ 1-2a<0, 即 a>1.x222.已知函数 f(x)= x 2+ 2x + aln x ,若函数 f(x)在 (0,1)上单调,则实数a 的取值范围是 ()A . a ≥ 0B . a<- 4C . a ≥ 0 或 a ≤- 4D . a>0 或 a<- 4a答案: C 解析: ∵ f ′ ( x)=2x + 2+ x , f(x)在 (0,1) 上单调,∴ f ′ (x)≥ 0 或 f ′ (x)≤ 0 在(0,1) 上恒成立,即 2x 2+2x + a ≥ 0 或 2x 2+ 2x +a ≤ 0 在 (0,1)上恒成立,所以 a ≥ - (2x 2+ 2x)或 a ≤ - (2x 2+ 2x)在 (0,1) 上恒成立.记 g(x)=- (2x 2+ 2x),0< x<1,可知- 4<g(x)<0 , ∴ a ≥ 0或 a ≤ - 4,故选 C.9的单调区间为 ________.3. 函数 f(x)= x + x答案:(- 3,0),(0,3)x 2- 9 解析:f ′ (x)= 1- 92=x 2 ,令 f ′ (x)<0,解得- 3< x<0 或 0<x<3,x故单调减区间为 (- 3,0)和 (0,3).4 函数 yx 2 x 3 的单调增区间为,单调减区间为 ___________________答案: (0, 2) ; ( ,0),( 2, ) 解析: y '3x 2 2x 0, x 0, 或x2 3335.确定下列函数的单调区间 :(1) y=x 3- 9x 2+24x (2) y=3x - x 3(1) 解: y ′ =(x 3- 9x 2+24x) ′ =3x 2- 18x+24=3( x - 2)( x - 4)令 3(x - 2)(x - 4)> 0,解得 x > 4 或 x < 2.∴ y=x 3- 9x 2+24x 的单调增区间是 (4, +∞)和 (- ∞, 2) 令 3(x - 2)(x - 4)< 0,解得 2< x < 4 .∴ y=x 3- 9x 2+24x 的单调减区间是 (2, 4)(2) 解: y ′ =(3x - x 3) ′=3- 3x 2=- 3(x 2- 1)= - 3(x+1)( x- 1) 令- 3(x+1)( x - 1)> 0,解得- 1< x < 1.∴ y=3x - x 3 的单调增区间是 (- 1, 1).令- 3(x+1)( x - 1)< 0,解得 x > 1 或 x <- 1.∴ y=3x - x 3 的单调减区间是 (- ∞,- 1)和 (1, +∞)6.函数 y = ln( x 2- x - 2)的单调递减区间为 __________.[答案 ] (-∞,- 1)[解析 ]函数 y = ln( x 2- x - 2)的定义域为 (2,+ ∞ )∪ (- ∞,-1),令 f(x)= x 2- x - 2, f ′ (x)= 2x - 1<0,得 x<12,∴ 函数 y = ln( x 2-x - 2)的单调减区间为 ( -∞ ,- 1)7.已知 y = 1x 3 + bx 2+ (b + 2)x + 3 在 R 上不是单调增函数,则b 的范围为 ________.3[答案 ] b<- 1 或 b>2[ 解析 ] 若 y ′ = x 2+ 2bx + b + 2≥ 0 恒成立,则= 4b 2- 4(b+2)≤ 0, ∴ - 1≤ b ≤ 2,由题意 b <- 1 或 b > 2.8.已知 x ∈ R, 求证: e x ≥ x+1.证明 :设 f ( x ) =e x - x - 1,则 f ′( x ) =e x - 1.∴当 x=0 时, f ′( x ) =0,f ( x )=0 .当 x > 0 时, f ′( x )> 0,∴ f ( x )在( 0,+∞)上是增函数.∴ f ( x )> f ( 0) =0.当 x < 0 时, f ′( x )< 0,f ( x )在(-∞ ,0)上是减函数,∴ f ( x )> f ( 0) =0.19.已知函数 y=x+ ,试讨论出此函数的单调区间 .xx 2解: y ′ =(x+1 -1 ( x 1)( x 1)(x 1)( x 1)> 0. 解)′ =1- 1· x2=x 2x 2令x 2x得 x > 1 或 x <- 1.∴ y=x+1的单调增区间 ; 是 (-∞,- 1)和 (1, +∞ ).令(x1)( x1)< 0,xx 2解得- 1< x <0 或 0< x <1. ∴ y=x+1的单调减区间是 (- 1, 0)和 (0, 1)10.已知函数 f ( x) x 3 bx 2xcxd 的图象过点 P ( 0, 2),且在点 M (- 1,f (- 1))处的切线方程为 6 x y 70 .(Ⅰ)求函数 y=f(x) 的解析式;(Ⅱ)求函数y=f(x) 的单调区间.解:(Ⅰ)由 f(x) 的图象经过 P ( 0, 2),知 d=2,所以 f (x) x 3bx 2cx 2,f ( x) 3x 22bx c.由在M(-1,f(-1))处 的 切线方程是6 x y70 ,知6f (1) 7 0, 即 f ( 1) 1, f ( 1)6.3 2b c 6, 即 2b c c 3,1 b c2 1. b 0, 解得 b c 3.故所求的解析式是( )33232.fxxxx(Ⅱ) f(x) 3x 2 6 x3. 令 3x 2 6x 3 0,22x1 0.解得 x 112, x 212.即 x当 x 12, 或x 12时, f ( x) 0;当 12 x 12时, f ( x) 0.故 f ( x)在 ( ,1 2 ) 内是增函数,在 (1 2,1 2)内是减函数,在 (1 2, ) 内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问 题的能力. 11. 已知函数 f(x)=x 3-1x 2+bx+c. (1) 若 f(x)在( - ∞, +∞)上是增函数,求b 的取值范2围; (x ) =3x 2-x+b, 因 f(x)f ( x) ≥0. 即 3x 2- x+b ≥0,解 ( 1) f 在( - ∞, +∞)上是增函数,则∴b ≥x -3x 2 在( - ∞, +∞)恒成立 . 设 g(x)=x-3x2 当 x= 1 时, g(x)= 1 , ∴b ≥ 1 ..6 max121212. 已知函数 f(x)=x(x-1)(x-a)在( 2,+∞)上是增函数,试确定实数 a 的取值范围 .解 f(x)=x(x-1)(x-a)=x3-(a+1)x 2+ax ∴ f (x) =3x 2-2(a+1)x+a要使函数f(x)=x(x-1)(x-a)在( 2,+ ∞) 上是增函数,只需 f ( x) 2在( 2,+∞)上满足=3x -2(a+1)x+a f ( x) ≥0即可 .∵ f (x ) =3x2-2(a+1)x+a 的对称轴是 x=a 1,3a 1a 1 22 或3解得 :a ≤ 8. ∴a 的取值范围是 a ≤ 8.∴a 的取值应满足:3 1f(2) 0f a0 33( )313.已知函数f ( x) 4 x ax22x 3 ( x R) 在区间1,1 上是增函数,求实数 a 的取值3范围.解: f ' ( x) 4 2ax 2x 2 ,因为 f x 在区间1,1 上是增函数,所以f ' ( x) 0 对x1,1 恒成立,即 x 2ax 2 0 对 x1,1 恒成立,解之得:1 a1所以实数 a 的取值范围为1,1 .点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则f ' ( x)0 ;若函数单调递减,则 f ' ( x) 0 ”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数的切线方程f ( x) x 3 bx 2 ax d 的图象过点 P ( 0,2),且在点 M (- 1, f ( 1) )处 6x y 7 0 ,( 1)求函数 y f (x) 的解析式;( 2)求函数 y f ( x) 的单调区间。
解:( 1)由 f ( x) 的图象经过 P ( 0, 2),知 d2 ,所以 f ( x) x 3bx 2cx 2 ,f ( x)3x 22bx c由在点 M (1, f ( 1) )处的切线方程为 6xy 7 0∴ f ( 1)1, f ( 1) 63 2b c 6 3即 ∴1 b c 解得 b c2 1故所求的解析式是 f ( x) x 3 3x 2 3x 2( 2) f ( x) 3x 2 6x 3 令 3x 2 6x 30 ,解得 x 112, x 212当 x 1 2 或 x12 时, f ( x) 0当 12 x 12 时, f (x) 0故 f ( x)x 3 3x 2 2 在 (,1 2 ) 内是增函数,在 (12 ,12) 内是减函数在 (12,) 内是增函数点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.2x - b15.已知函数 f(x)=2,求导函数 f ′ (x),并确定 f(x)的单调区间.2(x - 1)2- (2x - b) ·2(x - 1)解析: f ′ (x)= =(x - 1)4- 2x + 2b - 22[x - (b - 1)](x - 1)3 =-3(x - 1) 令 f ′ (x)= 0,得 x = b - 1 且 x ≠ 1.当 b -1< 1,即 b < 2 时, f ′ (x)的变化情况如下表:x (- ∞ ,b - 1) b - 1 (b - 1,1) (1,+ ∞ )f ′ (x)-0+-当 b-1> 1,即b> 2 时, f′ (x)的变化情况如下表:x(-∞,1)(1, b- 1)b- 1(b- 1,+∞ )f ′ (x)-+0-所以,当 b<2 时,函数f(x)在 (-∞, b- 1)上单调递减,在 (b- 1,1)上单调递增,在(1,+∞ )上单调递减.当 b>2 时,函数 f (x)在 (-∞,1) 上单调递减,在 (1,b- 1)上单调递增,在 (b- 1,+∞ )上单调递减.当 b-1=1,即2b=2时, f ( x)= x-1,所以函数 f ( x)在(-∞,1) 上单调递减,在(1,+∞ ) 上单调递减.强化提高题:16.设 f(x)、g(x)是 R 上的可导函数, f′ (x),g′ (x)分别为 f(x)、g(x)的导函数,且满足 f′ ( x) g( x)+ f(x)g′ (x)<0,则当a<x<b 时,有 ()A . f(x)g(b)>f(b)g(x) C. f(x)g(x)>f(b)g(b)答案: C 解析:令B . f(x)g(a)>f(a)g(x)D. f(x)g(x)>f(b)g(a)y= f(x) ·g(x),则y′= f ′ (x)·g(x)+f(x)·g′ (x) ,由于f′ ( x) g( x)+f(x)g′ (x)<0,所以y 在R 上单调递减,又x<b,故f(x)g(x)> f(b)g(b).17.若函数y=x3- ax2+ 4 在 (0,2)内单调递减,则实数 a 的取值范围是 ____________ .[答案 ] [3,+∞ )[ 解析 ] y′= 3x2- 2ax,由题意知3x2- 2ax<0 在区间 (0,2) 内恒成立,3即a>2x 在区间 (0,2)上恒成立,∴ a≥ 3.18.已知函数f(x)= ax- ln x,若 f (x)> 1 在区间 (1,+∞ )内恒成立,实数 a 的取值范围为________.[答案 ] a≥ 1[解析 ]由已知 a>1+ ln x在区间 (1,+∞ )内恒成立.x1+ ln x ln x1+ ln x设 g(x)=x,则 g′ (x)=-x2< 0(x>1),∴ g(x)=x在区间 (1,+∞ )内单调递减,∴ g(x)< g(1),∵g(1) = 1,∴1+ ln xx< 1 在区间 (1,+∞ )内恒成立,∴ a≥ 1.-x的单调递增区间是 ________.19.函数 y= x2 e答案: (0,2)解析: y′= (2x- x2)e-x> 0? 0< x< 2,故选填 (0,2).20若 f ( x) ax3bx 2cx d(a 0) 在R增函数,则 a, b, c 的关系式为是_______________答案: a0,且 b23ac解析: f ' ( x) 3ax22bx c 0恒成立,则a 0, a0,且 b 2 3ac4b 2 12ac21.若函数 y=- 4x 3+bx 有三个单调区间,则 b 的取值范围是 ________.答案: b>0 3y ′ =- 4x 2+b ,若 y ′值有正、有负,则 b>0.解析:22.定义在 R 上的奇函数 f(x) 在[ -a,-b ](a>b>0) 上是减函数且 f(-b)>0, 判断 F ( x )=[ f(x) ] 2 在[ b,a ]上的单调性并证明你的结论 .解析:设 b ≤ x 1<x 2≤ a,则 -b ≥ -x 1>-x 2≥ -a.∵ f(x) 在 [ -a,-b ] 上 是 减 函 数 , ∴ 0<f(-b) ≤ f(-x 1)<f(-x 2) ≤ f(-a), ∵ f(x) 是 奇 函 数 , ∴ 0<-f(x 1)<-f(x 2),则 f(x 2 )<f(x 1)<0, [ f(x 1)] 2<[ f(x 2 )] 2,即 F(x 1)<F(x 2).∴ F(x) 在[ b,a ]上为增函数 .23.设函数 f( x)= x 3- 3ax 2+ 3bx 的图象与直线 12x + y - 1= 0 相切于点 (1,- 11).(1) 求 a 、 b 的值; (2) 讨论函数 f(x)的单调性.[解析 ](1) 求导得 f ′ (x)= 3x 2- 6ax + 3b.由于 f(x)的图象与直线12x + y -1= 0 相切于点 (1,- 11),所以 f(1) =- 11, f ′ (1)=-12,1- 3a + 3b =- 11 ,解得 a = 1,b =- 3.即3- 6a + 3b =- 12(2)由 a = 1, b =- 3 得 f ′ (x)= 3x 2- 6ax +3b = 3(x 2- 2x -3) =3(x + 1)(x - 3).令 f ′ (x)>0,解得 x<- 1 或 x>3;又令 f ′ (x)<0,解得- 1<x<3.所以当 x ∈ (- ∞ ,- 1)时, f(x)是增函数;当 x ∈ (3,+ ∞ )时, f(x)也是增函数; 当 x ∈ ( - 1,3) 时, f ( x ) 是减函数.24.若函数 f (x)1x 31ax 2(a 1)x 1在区间 (1,4) 内为减函数,在区间 (6,)32上为增函数,试求实数 a 的取值范围.解: f ( x) x 2ax a1 (x 1)[x( a 1)] ,令 f ( x) 0 得 x 1 或 x a 1 ,∴当 x (1,4) 时, f ( x) 0 ,当 x (6, ) 时, f ( x) 0 ,∴ 4 a1 6 ,∴ 5 a 7 .25.设函数 f(x)=x+a (a>0).(1) 求函数在 ( 0,+∞) 上的单调区间, 并证明之;( 2)若函数 f(x)x在[ a-2,+∞]上递增,求a 的取值范围 .解析:( 1) f(x) 在 (0,+ ∞ )上的增区间为[ a ,+∞],减区间为( 0, a ) .证明:∵ f ′ (x)=1-a ,当 x ∈[a ,+∞]时,x 2∴ f ′ (x)>0, 当x ∈( 0,a )时,f ′ (x)<0.即 f(x) 在[a +∞]上单调递增,在(0,a )上单调递减 .(或者用定义证)( 2 )[ a-2,+ ∞ ] 为 [ a , + ∞ ] 的 子 区 间 , 所 以 a-2 ≥aa-a -2 ≥( a +1)(a -2) ≥ 0 a -2≥ 0a ≥ 4.b x调区间.解析:可先由函数y = ax与y =- bx 的单调性确定a 、b 的取值范围,再根据a 、b 的取值范围去确定y = ax 3+ bx 2+ 5 的单调区间.[解 ]∵ 函数y =ax与by =- x 在 (0,+∞ )上都是减函数, ∴ a <0, b < 0.由 y = ax 3+bx 2+ 5 得 y ′= 3ax 2+ 2bx.2b令 y ′ >0,得 3ax 2+2bx > 0,∴ - 3a <x < 0.2b∴ 当 x ∈ - 3a , 0 时,函数为增函数.令 y ′ <0,即 3ax 2+2bx < 0,2b∴ x <- 3a ,或 x >0.2b∴ 在- ∞ ,- 3a , (0,+ ∞ )上时,函数为减函数.27设 a 0, f ( x)a 是 R12f (x)0 +)e x上的偶函数,( )求 a 的值;( )证明在( ,ae x上是增函数。