高一数学集合的概念教案设计
高中数学 必修一 集合的概念 教案

集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。
2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。
【教学重难点】教学重点:集合的含义与表示方法。
教学难点:表示法的恰当选择。
【教学过程】一、创设情景,揭示课题。
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。
举例和互相交流。
与此同时,教师对学生的活动给予评价。
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。
二、研探新知。
1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程2560-+=的所有实数根;x xx->的所有解;(7)不等式30(8)国兴中学2004年9月入学的高一学生的全体。
2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。
一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
a b c d…表4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,示。
三、质疑答辩,排难解惑,发展思维。
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。
使学生明确集合元素的三大特性,即:确定性。
高一数学第一章《集合》教案

高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。
那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。
高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
高一数学集合教学设计

高一数学集合教学设计一、教学任务及对象1、教学任务本教学设计针对的是高一数学中的集合部分。
集合是数学的基础概念之一,它涉及到数学的各个分支,是学生建立数学逻辑思维的重要环节。
教学任务主要包括:集合的定义与表示方法,集合的基本运算,集合论的基本性质,以及集合在数学中的应用。
此外,通过集合的学习,培养学生抽象思维能力,理解数学概念的本质,并能够运用集合知识解决实际问题。
2、教学对象教学对象为高中一年级学生,他们经过初中的数学学习,已经具备了一定的数学基础和逻辑思维能力。
然而,集合概念作为高中数学的起点,对学生而言是全新的,需要从零开始构建知识体系。
此外,由于集合思想的抽象性,学生在理解和应用上可能存在一定难度,因此需要教师运用适当的教学策略,帮助学生顺利过渡到高中数学的学习。
二、教学目标1、知识与技能(1)理解集合的概念,掌握集合的表示方法,包括列举法、描述法等;(2)掌握集合的基本运算,如并集、交集、差集、补集等,并能够灵活运用;(3)理解集合论的基本性质,如集合的确定性、互异性、无序性等;(4)能够运用集合知识解决实际问题,提高数学应用能力;(5)通过集合的学习,培养学生的抽象思维能力和逻辑推理能力。
2、过程与方法(1)通过引导学生观察、分析现实生活中的集合现象,培养学生从具体实例中抽象出数学概念的能力;(2)采用问题驱动的教学方法,激发学生的求知欲和思考能力,引导学生主动探究集合的性质和运算规律;(3)运用分类讨论的思想方法,培养学生分析问题和解决问题的能力;(4)通过小组合作学习,培养学生的团队协作能力和交流表达能力;(5)利用多媒体教学手段,辅助学生理解抽象的集合概念,提高教学效果。
3、情感,态度与价值观(1)激发学生对数学学习的兴趣,培养他们积极、主动学习的态度;(2)培养学生勇于探索、善于思考的数学精神,使他们认识到数学学习的价值;(3)通过集合的学习,引导学生体会数学的严谨性和美感,提高学生的审美情趣;(4)培养学生面对困难时,保持坚持不懈、勇于克服的精神风貌;(5)引导学生将数学知识运用到实际生活中,认识到数学与现实生活的紧密联系,增强学生的社会责任感。
《高中数学集合》教案模板

《高中数学集合》教案模板一、教学目标1.知识与技能:●理解集合的概念及其表示方法(列举法、描述法)。
●掌握集合的基本性质:确定性、无序性、互异性。
●能够运用集合的基本运算:并集、交集、补集。
2.过程与方法:●通过实例引入,让学生感受集合概念在现实生活中的应用。
●通过讨论与探索,培养学生的逻辑推理能力和抽象思维能力。
3.情感态度与价值观:●激发学生对数学学习的兴趣和好奇心。
●培养学生的团队合作精神和数学表达的自信心。
二、教学重点与难点1.教学重点:●集合的定义与表示方法。
●集合的基本运算。
2.教学难点:●对集合概念的理解及其在实际问题中的应用。
●集合运算的灵活运用。
三、教学准备•多媒体课件,包括集合的基本概念、表示方法、运算的演示。
•黑板及粉笔,用于板书重点概念和例题。
•练习题册或教学软件,用于学生课堂练习和巩固。
四、教学过程1.导入新课●通过生活中的实例(如班级学生的集合、水果种类的集合等)引出集合的概念。
●提问学生:“你们认为什么是集合?”引导学生初步思考。
2.讲授新课●讲解集合的定义和表示方法(列举法、描述法),并举例说明。
●介绍集合的基本性质,并通过实例让学生理解这些性质。
●讲解集合的基本运算(并集、交集、补集),通过图示和实例帮助学生理解运算过程。
3.互动探究●分组讨论:让学生分组讨论集合概念在实际生活中的应用,并分享讨论结果。
●教师引导:针对学生的讨论结果,教师进行点评和总结,并引导学生深入思考。
4.巩固练习●学生独立完成练习题册中的题目,教师巡视指导。
●针对学生练习中出现的问题,教师进行解答和讲解。
5.课堂小结●总结本节课的学习内容,强调集合概念和运算的重要性。
●布置课后作业,包括复习本节课知识点和完成相关练习题。
五、板书设计●集合的定义与表示方法•列举法•描述法●集合的基本性质•确定性•无序性•互异性●集合的基本运算•并集•交集•补集六、教学反思●在课后对本节课的教学效果进行反思,总结教学中的成功之处和不足。
高一数学教案(优秀6篇)

高一数学教案(优秀6篇)第一节集合的含义与表示学时:1学时[学习引导]一、自主学习1.阅读课本.2.回答问题:⑴本节内容有哪些概念和知识点?⑵尝试说出相关概念的含义?3完成练习4小结二、方法指导1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。
2、理解集合元素的特性,并会判断元素与集合的关系3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。
4、在学习中要特别注意理解空集的意义和记法[思考引导]一、提问题1.集合中的元素有什么特点?2、集合的常用表示法有哪些?3、集合如何分类?4.元素与集合具有什么关系?如何用数学语言表述?5集合和是否相同?二、变题目1.下列各组对象不能构成集合的是()A.北京大学2023级新生B.26个英文字母C.著名的艺术家2.下列语句:①0与表示同一个集合;②由1,2,3组成的集合可表示为或;③方程的解集可表示为;④集合可以用列举法表示。
其中正确的是()A.①和④B.②和③C.②D.以上语句都不对[总结引导]1.集合中元素的三特性:2.集合、元素、及其相互关系的数学符号语言的表示和理解:3.空集的含义:[拓展引导]1.课外作业:习题11第题;2.若集合,求实数的值;3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.1、知识与技能(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数。
2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。
引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。
高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
集合的概念 高中数学教案

集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。
2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。
【教学重难点】教学重点:集合的含义与表示方法。
教学难点:表示法的恰当选择。
【教学过程】一、创设情景,揭示课题。
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。
举例和互相交流。
与此同时,教师对学生的活动给予评价。
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。
二、研探新知。
1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程的所有实数根;2560x x -+=(7)不等式的所有解;30x ->(8)国兴中学2004年9月入学的高一学生的全体。
2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。
一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set )(简称为集)。
4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母…,,,a b c d 表示。
三、质疑答辩,排难解惑,发展思维。
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。
集合的概念教案5篇

集合的概念教案5篇集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,3)}6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。
集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。
把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。
从知识结构上来说是为了引入函数的定义。
因此在高中数学的模块中,集合就显得格外的举足轻重了。
(2)说教学目标根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:1.知识与技能:掌握集合的基本概念及表示方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合的概念教案设计数学《集合》概念教案一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当x∈N时,x∈G;(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0*=a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:数学《集合》概念教案二教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当x∈N时,x∈G;(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0*=a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:八、附录:康托尔简介发疯了的数学家康托尔(GeorgCantor,1845-1918)是德国数学家,集合论的1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学*们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神*症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H.Her-mannWey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学*把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》。