高考重点突破:解三角形知识点梳理、例题
(完整版)解三角形,知识点汇总和典型例题,推荐文档

)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等
)余弦定理:三角形任何一边的平方等于另两边平方的和减去其与它们夹角的余弦的积的两倍
-2
角形中的复杂运算可使用计算器
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
+
点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到
,20
62315ACsin60+=
b .
故当B=30°时,sinB+sinC取得最大值1。
高中数学-解三角形知识点汇总情况及典型例题1.docx

实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中, C=90°,AB= c, AC= b , BC= a。
(1)三边之间的关系:a2+b2=c2。
(勾股定理)(2)锐角之间的关系:A+B= 90 °;(3)边角之间的关系:(锐角三角函数定义)sin A= cos B=a, cos A=sin=b, tan A=a。
c bc2.斜三角形中各元素间的关系:在△ABC 中, A、 B、 C 为其内角, a、b、 c 分别表示 A、 B、C 的对边。
(1)三角形内角和:A+B+C=π。
(2 )正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b c2R (R为外接圆半径)sin A sin B sin C( 3 )余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2 =b2+2- 2bccosA;b2 = 2 +a2- 2cacosB;c2= 2 +b2-2abcos。
c c a C3.三角形的面积公式:1ah a=11(1)S=bh b=ch c( h a、 h b、 h c分别表示 a、b、 c 上的高);22211bc sin A=1(2)S=ab sin C=ac sin B;222求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1 )两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2 )两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
( 1)角的变换因为在△ABC 中, A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。
解三角形经典例题

解三角形一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C===2.正弦定理适用情况: (1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+- 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-=4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abcS ab C ac B bc A R ABC R ===∆为外接圆半径 (两边夹一角);6.三角形中常用结论(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边) (3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-;③()tan tan A B C +=-;④sincos ,22A B C +=⑤cos sin 22A B C+= 7.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②) 注:仰角、俯角、方位角的区别是:三者的参照不同。
高中数学-解三角形知识点汇总情况及典型例题1

实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
(完整版)高中数学-解三角形知识点归纳和分类习题测试,推荐文档

必修五:解三角形知识点一:正弦定理和余弦定理1.正弦定理a b c:si nAsin B si nC J'或变形:a: b:c s iri A:sin B:sin CcosAb 2 2 c2a2bc2 222a2 2b c2bccos AcosB ac b2acb 22 2 a c2accosBcosCb 2 2 a 2 c2 c 2 2 b a 2 •余弦定理:2bacosC 或2ab3. ( 1)两类正弦定理解三角形的问题: 1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题: 1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式运算 女口. sin(A B) sinC,cos(A B)A B C ABC AB C sincos ,cossin ,ta n cot — 2 2 22 225 •解题中利用 ABC 中A B C,以及由此推得的一些基本关系式进行三角变换的cosC, tan(A B) tanC,1.若ABC 的三个内角满足si nA:si nB:si nC 5:11:13,贝U ABC 是( )A. 锐角三角形B•钝角三角形C.直角三角形D.可能是锐角三角形,也可能是钝角三角形•2 .在厶ABC中,角A, B, C所对的边分别为a, b, c,若a2b=2,sinB+cosB= 、 2 ,则角A的大小为( )A - B. _ C - D.—2 3 463.在厶ABC中,a 7,b 4、.3,c.13 ,则最小角为A—B、一 C 、— D 、364124.已知ABC中,AB 4, AC 3, BAC60,则BC ()A. 13B. 13C.5D.10 5•在锐角ABC中,若C 2B,则c的范围()bA. 2, 3 B . 3,2 C . 0,2 D. 2,26.在ABC中,A、B、C所对的边分别是a、b、c,已知a2b2c2-、°ab,则C ()23A. 2B.4C.3D.47.在厶ABC中,A60o,b16,面积S220 .. 3,则cA 10、6 B、75C、55D、4 98.在厶ABC中,(a c)(a c) b(b c), 则AA 30o B、60o C、120o D、150o9.已知ABC中,AB 4,BAC45AC 3.2则ABC的面积为cosB b10.在ABC中,a,b,c分别是角A,B,C的对边,且cosC 2a c ,则角B的大小为11.已知锐角三角形的边长分别是23 x,则x的取值范围是A、1 X 5 B 、、5 x ^13 C 、0 x .5 D 、13x512 . ABC中,AB 1,BC 2则角C的取值范围是__________________知识点二:判断三角形的形状问题C1.在ABC 中,若cos A cos B sin2—,则ABC 是()2A.等边三角形B •等腰三角形C .锐角三角形D.直角三角形A、一定是直角三角形C、可能是锐角三角形tan A3. 已知在△ABC中,tan B a b4. 在ABC 中,若cosA cosBA .等腰直角三角形5. 在△ ABC 中,若2cosBsinA = sinC,y^ ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形6. △ ABC 中,B 60°, b2 ac,则厶ABC - -定是( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形7. 若(a+b+c)(b+c —a)=3abc,且sinA=2sinBcosC,那么△ ABC 是()A .直角三角形B.等边三角形C.等腰三角形 D . 等腰直角三角形8.在厶ABC中,已知2ab c2sin A sin BsinC,试判断厶ABC的形状。
解三角形知识点总结及典型例题

解三角形知识点总结及典型例题三角形作为几何学的基础概念之一,是学习几何学不可或缺的部分。
在解三角形的过程中,我们需要掌握一些基本的知识点和技巧。
本文将对解三角形的相关知识点进行总结,并配以典型例题进行说明。
一、三角形的基本概念三角形由三条边和三个角组成。
根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
根据角的大小,三角形可以分为钝角三角形、直角三角形和锐角三角形。
二、重要的定理1. 三角形内角和定理:三角形的内角和等于180°。
利用这个定理,我们可以求解一些已知角的三角形问题。
2. 角平分线定理:角平分线将一个角分为两个大小相等的角。
利用这个定理,我们可以求解一些已知角平分线的三角形问题。
3. 直角三角形的性质:直角三角形的两个直角边平方和等于斜边的平方。
这个定理被广泛应用于解决直角三角形的各类问题。
三、解三角形的方法1. 已知两边和夹角如果我们已知三角形的两边和夹角,我们可以利用余弦定理求解第三边的长度。
余弦定理的数学表达式如下:c² = a² + b² - 2abcosC其中,c为第三边的长度,a和b为已知边的长度,C为已知夹角的度数。
2. 已知两边和对应的角如果我们已知三角形的两边和对应的角,我们可以利用正弦定理求解第三角的长度。
正弦定理的数学表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
3. 已知三边如果我们已知三角形的三边,我们可以利用余弦定理或正弦定理求解其中一个角的大小。
然后,再利用三角形的内角和定理求解其他角的大小。
四、典型例题1. 已知三角形ABC,AB = 8 cm,BC = 6 cm,AC = 10 cm。
求角A、角B和角C的度数。
解:根据余弦定理,cosA = (8² + 10² - 6²) / (2 × 8 × 10) = 0.6cosB = (6² + 10² - 8²) / (2 × 6 × 10) = 0.8cosC = (8² + 6² - 10²) / (2 × 8 × 6) = 0.7通过查表或使用计算器,我们可以得到:角A ≈ 53.13°,角B ≈ 36.87°,角C ≈ 90°2. 在直角三角形ABC中,∠B = 90°,AB = 5 cm,BC = 12 cm。
收集2解三角形重难点,易错点突破(含答案解析)

专题1-2 解三角形重难点、易错点突破(建议用时:60分钟)三角形定“形”记根据边角关系判断三角形的形状是一类热点问题.解答此类问题,一般需先运用正弦、余弦定理转化已知的边角关系,再进一步判断三角形的形状,这种转化一般有两个通道,即化角为边或化边为角.下面例析这两个通道的应用.1.通过角之间的关系定“形”例1 在△ABC 中,已知2sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形2.通过边之间的关系定“形”例2 在△ABC 中,若sin A +sin C sin B =b +ca ,则△ABC 是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形细说三角形中解的个数解三角形时,处理“已知两边及其一边的对角,求第三边和其他两角”问题需判断解的个数,这是一个比较棘手的问题.下面对这一问题进行深入探讨. 1.出现问题的根源我们作图来直观地观察一下.不妨设已知△ABC 的两边a ,b 和角A ,作图步骤如下:①先做出已知角A ,把未知边c 画为水平的,角A 的另一条边为已知边b ;②以边b 的不是A 点的另外一个端点为圆心,边a 为半径作圆C ;③观察圆C 与边c 交点的个数,便可得此三角形解的个数. 显然,当A 为锐角时,有如图所示的四种情况:当A 为钝角或直角时,有如图所示的两种情况:根据上面的分析可知,由于a ,b 长度关系的不同,导致了问题有不同个数的解.若A 为锐角,只有当a 不小于b sin A 时才有解,随着a 的增大得到的解的个数也是不相同的.当A 为钝角时,只有当a 大于b 时才有解. 2.解决问题的策略 (1)正弦定理法已知△ABC 的两边a ,b 和角A ,求B . 根据正弦定理a sin A =b sin B,可得sin B =b sin A a.若sin B>1,三角形无解;若sin B=1,三角形有且只有一解;若0<sin B<1,B有两解,再根据a,b的大小关系确定A,B的大小关系(利用大边对大角),从而确定B的两个解的取舍.(2)余弦定理法已知△ABC的两边a,b和角A,求c.利用余弦定理可得a2=b2+c2-2bc cos A,整理得c2-2bc cos A-a2+b2=0.适合问题的上述一元二次方程的解c便为此三角形的解.(3)公式法当已知△ABC的两边a,b和角A时,通过前面的分析可总结三角形解的个数的判断公式如下表:A<90°A≥90°a≥ba<ba>b a≤b a>b sin A a=b sin A a<b sin A一解二解一解无解一解无解3.实例分析例在△ABC中,已知A=45°,a=2,b=2(其中角A,B,C的对边分别为a,b,c),试判断符合上述条件的△ABC有多少个?挖掘三角形中的隐含条件解三角形是高中数学的重要内容,也是高考的一个热点.由于我们对三角公式比较熟悉,做题时比较容易入手.但是公式较多且性质灵活,解题时稍有不慎,常会出现增解、错解现象,其根本原因是对题设中的隐含条件挖掘不够.下面结合例子谈谈解三角形时,题目中隐含条件的挖掘. 隐含条件1.两边之和大于第三边例1 已知钝角三角形的三边a =k ,b =k +2,c =k +4,求k 的取值范围.隐含条件2.三角形的内角范围 例2 已知△ABC 中,B =30°,AB =23,AC =2,则△ABC 的面积是________.例3 在△ABC 中,tan A tan B =a 2b 2,试判断三角形的形状.例4 在△ABC 中,B =3A ,求b a的取值范围.正弦、余弦定理三应用有些题目,表面上看不能利用正弦、余弦定理解决,但若能构造适当的三角形,就能利用两定理,题目显得非常容易,本文剖析几例. 1.平面几何中的长度问题例1 如图,在梯形ABCD 中,CD =2,AC =19,∠BAD =60°,求梯形的高.2.求范围例2 如图,等腰△ABC 中,底边BC =1,∠ABC 的平分线BD 交AC 于点D ,求BD 的取值范围(注:0<x <1时,f (x )=x -1x为增函数).3.判断三角形的形状例3 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB →·AC →=BA →·BC →=k ,(k ∈R ). (1)判断△ABC 的形状; (2)若c =2,求k 的值.专题1-2 解三角形重难点、易错点突破参考答案三角形定“形”记例1 分析 通过三角形恒等变换和正弦、余弦定理,把条件式转化,直至能确定两角(边)的关系为止,即可判断三角形的形状.解析 方法一 利用正弦定理和余弦定理 2sin A cos B =sin C 可化为2a ·a 2+c 2-b 22ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0,即a 2=b 2,故a =b . 所以△ABC 是等腰三角形.故选B. 方法二 因为在△ABC 中,A +B +C =π, 即C =π-(A +B ),所以sin C =sin(A +B ). 由2sin A cos B =sin C ,得2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =0,即sin(A -B )=0. 又因为-π<A -B <π, 所以A -B =0,即A =B . 所以△ABC 是等腰三角形,故选B. 答案 B点评 根据角的三角函数之间的关系判断三角形的形状,一般需通过三角恒等变换,求出角(边)之间的关系. 例2分析 先运用正弦定理化角为边,根据边之间的关系即可判断三角形的形状. 解析 在△ABC 中,由正弦定理,可得sin A +sin C sin B =a +c b =b +ca ,整理得a (a +c )=b (b +c ),即a 2-b 2+ac -bc =0,(a -b )(a +b +c )=0. 因为a +b +c ≠0,所以a -b =0,即a =b ,所以△ABC 是等腰三角形.故选C. 答案 C点评 本题也可化边为角,但书写复杂,式子之间的关系也不易发现.细说三角形中解的个数例 分析 此题为“已知两边和其中一边的对角”解三角形的问题,可以利用上述办法来判断△ABC 解的情况.解 方法一 由正弦定理a sin A =bsin B ,可得sin B =22sin 45°=12<1. 又因为a >b ,所以A >B ,故B =30°, 符合条件的△ABC 只有一个. 方法二 由余弦定理得 22=c 2+(2)2-2×2×c cos 45°,即c 2-2c -2=0,解得c =1±3.而1-3<0,故仅有一解,符合条件的△ABC 只有一个.方法三 A 为锐角,a >b ,故符合条件的△ABC 只有一个.挖掘三角形中的隐含条件例1 [错解] ∵c >b >a 且△ABC 为钝角三角形, ∴C 为钝角. 由余弦定理得cos C =a 2+b 2-c 22ab=k 2+(k +2)2-(k +4)22k (k +2)=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6. 又∵k 为三角形的边长, ∴k >0.综上所述,0<k <6.[点拨] 忽略了隐含条件:k ,k +2,k +4构成一个三角形,需满足k +(k +2)>k +4.即k >2而不是k >0. [正解] ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角. 由余弦定理得cos C =a 2+b 2-c 22ab=k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6.由两边之和大于第三边得k +(k +2)>k +4,∴k >2, 综上所述,k 的取值范围为2<k <6.温馨点评 虽然是任意两边之和大于第三边,但实际应用时通常不用都写上,只需最小两边之和大于最大边就行了.例2 [错解] 由正弦定理,得sin C =AB sin B AC =32. ∴C =60°,∴A =90°.则S △ABC =12AB ·AC ·sin A =12×23×2×1=23.[点拨] 上述解法中在用正弦定理求C 时丢了一解.实际上由sin C =32可得C =60°或C =120°,它们都满足条件.[正解] 由正弦定理,得sin C =AB sin B AC=32.∴C =60°或C =120°. 当C =60°时,A =90°,∴S △ABC =12AB ·AC ·sin A =23.当C =120°时,A =30°, ∴S △ABC =12AB ·AC ·sin A =3. 故△ABC 的面积是23或3.温馨点评 利用正弦定理理解“已知两边及其中一边对角,求另一角”问题时,由于三角形内角的正弦值都为正的,而这个内角可能为锐角,也可能为钝角,容易把握不准确出错.例3 [错解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2A sin 2B ⇔cos B cos A =sin Asin B ⇔sin A cos A =sin B cos B ⇔sin 2A =sin2B , ∴A =B .∴△ABC 是等腰三角形.[点拨] 上述错解忽视了满足sin 2A =sin 2B 的另一个角之间的关系:2A +2B =180°. [正解] tan A tan B =a 2b 2⇔sin A cos B cos A sin B =sin 2A sin 2B ⇔cos B cos A =sin Asin B ⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B ⇔2A =2B 或2A +2B =180°. ∴A =B 或A +B =90°.∴△ABC 是等腰三角形或直角三角形.温馨点评 在△ABC 中,sin A =sin B ⇔A =B 是成立的,但sin 2A =sin 2B ⇔2A =2B 或2A +2B =180°. 例4 [错解] 由正弦定理得b a =sin B sin A =sin 3A sin A =sin (A +2A )sin A=sin A cos 2A +cos A sin 2Asin A=cos 2A +2cos 2A =4cos 2A -1. ∵0≤cos 2A ≤1, ∴-1≤4cos 2A -1≤3, ∵b a>0,∴0<b a≤3.[点拨] 忽略了三角形内角和为180°,及角A 、B 的取值范围,从而导致b a 取值范围求错. [正解] 由正弦定理得b a =sin B sin A =sin 3A sin A=sin (A +2A )sin A =sin A cos 2A +cos A sin 2A sin A=cos 2A +2cos 2A =4cos 2A -1. ∵A +B +C =180°,B =3A .∴A +B =4A <180°,∴0°<A <45°.∴22<cos A <1, ∴1<4cos 2 A -1<3,∴1<ba <3.温馨点评 解三角形问题,角的取值范围至关重要.一些问题,角的取值范围隐含在题目的条件中,若不仔细审题,深入挖掘,往往疏漏而导致解题失败.正弦、余弦定理三应用例1 分析 如图,过点D 作DE ⊥AB 于点E ,则DE 为所求的高.由∠BAD =60°,知∠ADC =120°,又边CD 与AC 的长已知,故△ACD 为已知两边和其中一边的对角,可解三角形.解Rt △ADE ,需先求AD 的长,这只需在△ACD 中应用余弦定理.解 由∠BAD =60°,得∠ADC =120°,在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos ∠ADC ,即19=AD 2+4-2AD ×2×⎝ ⎛⎭⎪⎫-12, 解得AD =3或AD =-5(舍去).在△ADE 中,DE =AD ·sin 60°=332.点评 依据余弦定理建立方程是余弦定理的一个妙用,也是函数与方程思想在解三角形中的体现.2.求范围例2 分析 把BD 的长表示为∠ABC 的函数,转化为求函数的值域.解 设∠ABC =α.因为∠ABC =∠C ,所以∠A =180°-2α,∠BDC =∠A +∠ABD =180°-2α+α2=180°-3α2, 因为BC =1,在△BCD 中,由正弦定理得BD =sin αsin 3α2=2sin α2cos α2sin αcos α2+cos αsin α2=2cos α24cos 2α2-1=24cos α2-1cos α2, 因为0°<α2<45°,所以22<cos α2<1, 而当cos α2增大时,BD 减小,且当cos α2=22时, BD =2;当cos α2=1时,BD =23, 故BD 的取值范围是⎝ ⎛⎭⎪⎫23,2. 点评 本题考查:(1)三角知识、正弦定理以及利用函数的单调性求值域的方法;(2)数形结合、等价转化等思想.例3 解 (1)∵AB →·AC →=cb cos A ,BA →·BC →=ca cos B .又AB →·AC →=BA →·BC →,∴bc cos A =ac cos B ,∴b cos A =a cos B .方法一 ∴sin B cos A =sin A cos B ,即sin A cos B -cos A sin B =0,∴sin(A -B )=0,∵-π<A -B <π,∴A =B .∴△ABC 为等腰三角形.方法二 利用余弦定理将角化为边, ∵b cos A =a cos B ,∴b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac ,∴b 2+c 2-a 2=a 2+c 2-b 2,∴a 2=b 2,∴a =b .∴△ABC 为等腰三角形.(2)由(1)知:a =b .∴AB →·AC →=bc cos A =bc ·b 2+c 2-a 22bc =c 22=k , ∵c =2,∴k =1.。
解三角形知识点总结及典型例题

课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。
中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考重点突破:解三角形知识点梳理1、正弦定理:__a sin A __=__b sin B ____=__csin C _=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =____ sin A ∶sin B ∶sin C _____;(2)a =___2Rsin A _____,b =__2Rsin B _____,c =__2Rsin C ___;(3)sin A =___a 2R ____,sin B =___b 2R ___,sin C =__c2R _____等形式,以解决不同的三角形问题.2.余弦定理:a 2=__ b 2+c 2-2bccos A ________,b 2=__ a 2+c 2-2accos B _____,c 2=____ a 2+b 2-2abcos C ____.余弦定理可以变形为:cos A =___b2+c2-a22bc ________,cos B =___a2+c2-b22ac ______,cos C =___a2+b2-c22ab______.3.面积公式S △ABC =12absin C =12bcsin A =12acsin B =abc 4R =12(a +b +c)·r(r 是三角形内切圆的半径),并可由此计算R 、r.4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题: (1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题. 解三角形时,三角形解的个数的判断在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =bsin A bsin A<a<b a ≥b a>b 解的个数一解两解一解一解5.判断三角形的形状特征必须从研究三角形的边角关系入手,充分利用正、余弦定理进行转化,即化边为角或化角为边,边角统一. ①等腰三角形:a =b 或A =B.②直角三角形: b 2+c 2=a 2或 A =90° .③钝角三角形: a 2>b 2+c 2或 A >90° .④锐角三角形:若a 为最大边,且满足 a 2<b 2+c 2或A 为最大角,且 A <90° .6.由正弦定理容易得到:在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即A >B ⇔a >b ⇔sinA >sinB.例题精讲例1 ⑴在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c. (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c.解 (1)由正弦定理得a sin A =b sin B , 3sin A =2sin 45°,∴sin A =32.∵a>b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =bsin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°,c =bsin C sin B =6-22.(2)∵B =60°,C =75°,∴A =45°.由正弦定理a sin A =b sin B =csin C ,得b =a ·sin B sin A =46,c =a ·sin C sin A =43+4.∴b =46,c =43+4.例2、设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2bsinA.①求角B 的大小;②求cosA +sinC 的取值范围.解析 ①由a =2bsinA ,根据正弦定理得sinA =2sinBsinA ,所以sinB =12,由△ABC 为锐角三角形得B =π6.②cosA +sinC =cosA +sin(π-π6-A)=cosA +sin(π6+A)=cosA +12cosA +32sinA =3sin(A +π3).由△ABC 为锐角三角形知,π2>A >π2-B ,又π2-B =π2-π6=π3. ∴2π3<A +π3<5π6,∴12<sin(A +π3)<32. 由此有32<3sin(A +π3)<32×3=32,所以cosA +sinC 的取值范围为(32,32). 点评 解决这类问题的关键是利用正弦定理和余弦定理,要么把角化成边,要么把边化成角,然后再进行三角恒等变换得到y =Asin(ωx +φ)+B 型函数,从而求解单调区间、最值、参数范围等问题,注意限制条件A +B+C =π,0<A ,B ,C <π的应用,如本题中由△ABC 为锐角三角形得到A +B >π2,从而推到2π3<A +π3<5π6.探究提高 (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.变式训练 (1) 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. π6(2)在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________;(3)在△ABC 中,若a =50,b =256,A =45°,则B =______解析 (2)∵在△ABC 中,tan A =13,C =150°,∴A 为锐角,∴sin A =110.又∵BC =1.∴根据正弦定理得AB =BC ·sin C sin A =102.(3)由b>a ,得B>A ,由a sin A =bsin B ,得sin B =bsin A a =25650×22=32,∵0°<B<180° ∴B =60°或B =120°.例3、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足csinA =acosC. ①求角C 的大小;②求3sinA -cos(B +π4)的最大值,并求取得最大值时角A ,B 的大小.解析 ①由正弦定理得sinCsinA =sinAcosC.因为0<A <π,所以sinA >0,从而sinC =cosC ,又cosC ≠0,所以tanC =1,则C =π4.②由(1)知B =3π4-A.于是3sinA -cos(B +π4)=3sinA -cos(π-A)=3sinA +cosA =2sin(A +π6).∵0<A <3π4,∴π6<A +π6<11π12,从而当A +π6=π2,即A =π3时,2sin(A +π6)取最大值2.综上所述,3sinA -cos(B +π4)的最大值为2,此时A =π3,B =5π12.例4、如图,已知△ABC 是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN 经过△ABC 的重心G.设∠MGA =α(π3≤α≤2π3).①试将△AGM 、△AGN 的面积(分别记为S 1与S 2)表示为α的函数; ②求y =1S21+1S22的最大值与最小值.解析①因为G 是边长为1的正三角形ABC 的重心, 所以AG =23×32=33,∠MAG =π6,由正弦定理GM sin π6=GAsin π-α-π6,得GM=36sin α+π6.则S1=12GM ·GA ·sin α=sin α12sin α+π6(或163+cot α).又GN sin π6=GAsin α-π6,得GN=36sin α-π6,则S2=12GN ·GA ·sin(π-α)=sin α12sin α-π6(或163-cot α),②y =1S21+1S22=144sin2α·[sin2(α+π6)+sin2(α-π6)]=72(3+cot2α).因为π3≤α≤2π3,所以,当α=π3或α=2π3时,y 取得最大值ymax =240;当α=π2时,y 取得最小值ymin =216.题型二 利用余弦定理求解三角形例5、 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解 (1)由余弦定理知:cos B =a2+c2-b22ac ,cos C =a2+b2-c22ab.将上式代入cos B cos C =-b 2a +c 得: a2+c2-b22ac ·2ab a2+b2-c2=-b2a +c ,整理得:a2+c2-b2=-ac.∴cos B =a2+c2-b22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b2=a2+c2-2accos B ,得b2=(a +c)2-2ac -2accos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3. ∴S △ABC =12acsin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 变式训练 1.已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a2+c2-b2=ac. (1)求角B 的大小;(2)若c =3a ,求tan A 的值.解 (1)∵a2+c2-b2=ac ,∴cos B =a2+c2-b22ac =12.∵0<B<π,∴B =π3.(2)方法一 将c =3a 代入a2+c2-b2=ac ,得b =7a.由余弦定理,得cos A =b2+c2-a22bc =5714.∵0<A<π,∴sin A =1-cos2A =2114,∴tan A =sin A cos A =35. 方法二 将c =3a 代入a2+c2-b2=ac ,得b =7a.由正弦定理,得sin B =7sin A.由(1)知,B =π3,∴sin A =2114.又b =7a>a ,∴B>A ,∴cos A =1-sin2A =5714. ∴tan A =sin A cos A =35.方法三 ∵c =3a ,由正弦定理,得sin C =3sin A.∵B =π3,∴C =π-(A +B)=2π3-A ,∴sin(2π3-A)=3sin A ,∴sin 2π3cos A -cos 2π3sin A =3sin A ,∴32cos A +12sin A =3sin A ,∴5sin A =3cos A ,∴tan A =sin A cos A =35.例6、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,b 2+c 2-a 2=3. (1)求△ABC 的面积; (2)若b +c =6,求a 的值. 解 (1)∵cos A 2=255,∴cos A =2cos2A 2-1=35,∴sin A =45.又b 2+c 2-a 2=3,∴bccos A =3,∴bc =5.∴S △ABC =12bcsin A =12×5×45=2.(2)由(1)知,bc =5,又b +c =6,根据余弦定理得a2=b2+c2-2bccos A =(b +c)2-2bc -2bccos A =36-10-10×35=20,∴a =2 5.3.在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,AB BC ⋅=8,∠BAC =θ,a =4. (1)求b ·c 的最大值及θ的取值范围;(2)求函数f(θ)=23sin2(π4+θ)+2cos2θ-3的值.【解析】(1)∵AB BC ⋅=8,∠BAC =θ,∴bccos θ=8. 又a =4,∴b2+c2-2bccos θ=42 即b2+c2=32. 又b2+c2≥2bc ∴bc ≤16,即bc 的最大值为16.而bc =8cos θ,∴8cos θ≤16,∴cos θ≥12∵0<θ<π,∴0<θ≤π3.(2)f(θ)=23sin2(π4+θ)+2cos2θ-3=3[1-cos(π2+2θ)]+1+cos2θ- 3=3sin2θ+cos2θ+1=2sin(2θ+π6)+1∵0<θ≤π3, ∴π6<2θ+π6≤5π6 ∴12≤sin(2θ+π6)≤1.当2θ+π6=5π6,即θ=π3时,f(θ)min =2×12+1=2.当2θ+π6=π2,即θ=π6时,f(θ)max =2×1+1=3.点评 有关三角形中的三角函数求值问题,既要注意内角的范围,又要灵活利用基本不等式.题型三 正、余弦定理的综合应用例3 (2011·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知sin A +sin C =psin B (p ∈R),且ac =14b2.(1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围. 解 (1)由题设并由正弦定理, 得⎩⎪⎨⎪⎧a +c =54,ac =14,解得⎩⎪⎨⎪⎧a =1,c =14或⎩⎪⎨⎪⎧a =14,c =1.(2)由余弦定理,b2=a2+c2-2accos B =(a +c)2-2ac -2accos B =p2b2-12b2-12b2cos B ,即p2=32+12cos B.因为0<cos B<1,所以p2∈⎝ ⎛⎭⎪⎫32,2,由题设知p>0,所以62<p< 2.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是:将角都化成边或将边都化成角,再结合正、余弦定理即可求角.变式训练3 1.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c.(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A)=sin 2A ,试判断△ABC 的形状.解 (1)∵c =2,C =π3,∴由余弦定理c2=a2+b2-2abcos C得a2+b2-ab =4.又∵△ABC 的面积为3,∴12absin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a2+b2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A)=sin 2A ,得sin(A +B)+sin(B -A)=2sin Acos A , 即2sin Bcos A =2sin Acos A ,∴cos A ·(sin A -sin B)=0, ∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A<π,∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.2. ABC 的三个内角A ,B ,C 所对的边分别为a,b,c,asinAsinB+bcos2A= 2a⑴ ba ⑵若c2=b2+ 3a2求B.解: (1)由正弦定理得,sin2Asin B +sin Bcos2A =2sin A ,即sin B(sin2A +cos2A)=2sin A.故sin B =2sin A ,所以ba = 2.(2)由余弦定理和c2=b2+3a2,得cos B =1+3a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B =12,又cos B>0,故cos B =22,所以B =45°.题型四 判断三角形的形状一、判断三角形的形状例1在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,已知2asinA =(2b +c)sinB +(2c +b)sinC. (1)求角A 的大小;(2)若sinB +sinC =1,试判断△ABC 的形状. 解析 (1)由已知得:2a2=(2b +c)b +(2c +b)c. 即a2=b2+c2+bc由余弦定理得:a2=b2+c2-2bccosA ∴cosA =-12∵A ∈(0°,180°),∴A =120°.(2)由(1)得:sin2A =sin2B +sin2C +sinBsinC又sinB +sinC =1得sinB =sinC =12∵0°<B<60°,0°<C<60°. ∴B =C. ∴△ABC 是等腰的钝角三角形.点评 有关三角形形状的判定,途径一:探究内角的大小或取值范围确定形式;途径二:计算边的大小或转化为仅关于边的关系式确定形式.例2、在△ABC 中,若(a2+b2)sin(A -B)=(a2-b2)·sin(A +B), 试判断△ABC 的形状.解 ∵(a2+b2)sin(A -B)=(a2-b2)sin(A +B),∴b2[sin(A +B)+sin(A -B)]=a2[sin(A +B)-sin(A -B)], ∴2sin Acos B ·b2=2cos Asin B ·a2,即a2cos Asin B =b2sin Acos B. 方法一 由正弦定理知a =2Rsin A ,b =2Rsin B ,∴sin2Acos Asin B =sin2Bsin Acos B ,又sinA ·sin B ≠0,∴sin Acos A =sin Bcos B , ∴sin 2A =sin 2B.在△ABC 中,0<2A<2π,0<2B<2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.方法二 由正弦定理、余弦定理得: a2b b2+c2-a22bc =b2a a2+c2-b22ac,∴a2(b2+c2-a2)=b2(a2+c2-b2),∴(a2-b2)(a2+b2-c2)=0,∴a2-b2=0或a2+b2-c2=0. 即a =b 或a2+b2=c2.∴△ABC 为等腰或直角三角形.变式训练1.已知在△ABC 中,222cos A b c c +=,则△ABC 的形状是解析:∵cos2A 2=b +c 2c ,∴cos A +12=b +c2c.∴cos A =b c . 又∵b2+c2-a22bc =bc,即b2+c2-a2=2b2. ∴a2+b2=c2.∴△ABC 为直角三角形.探究提高 利用正弦、余弦定理判断三角形形状时,对所给的边角关系式一般都要先化为纯粹的边之间的关系或纯粹的角之间的关系,再判断.设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c , 且3b2+3c2-3a2=42bc. (1)求sin A 的值;(2)求2sin ⎝⎛⎭⎪⎫A +π4sin ⎝ ⎛⎭⎪⎫B +C +π41-cos 2A 的值.解 (1)∵3b2+3c2-3a2=42bc ,∴b2+c2-a2=423bc.由余弦定理得,cos A =b2+c2-a22bc =223,又0<A<π,故sin A =1-cos2A =13(2)原式=2sin ⎝ ⎛⎭⎪⎫A +π4sin ⎝ ⎛⎭⎪⎫π-A +π41-cos 2A =2sin ⎝ ⎛⎭⎪⎫A +π4sin ⎝⎛⎭⎪⎫A -π42sin2A=2⎝ ⎛⎭⎪⎫22sin A +22cos A ⎝ ⎛⎭⎪⎫22sin A -22cos A 2sin2A=sin2A -cos2A2sin2A=-72.所以2sin(A +π4)sin(B +C +π4)1-cos 2A =-72方法与技巧1.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.2.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.3.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,。