最新初二上册数学三角形的边练习题及答案
人教版八年级上册《数学》第11章三角形的边练习题(含答案)

三角形的边练习题一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有对。
6.若等腰三角形的腰长为6,则它的底边长a的取值范围是。
7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为。
8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长。
9.已知等腰三角形的周长是16cm。
(1)若其中一边的长为4cm,求另外两边的长。
(2)若其中一边的长为6cm,求另外两边的长。
10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|。
11.已知等腰三角形的周长为20cm,设腰长为xcm。
(1)用含x的式子表示底边长。
(2)腰长x能否为5cm,为什么?(3)求x的取值范围。
二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示。
……等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图。
答案:一、能力提升1.B2.B由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x可以是12、13、14.故选B。
3.D由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9。
4.C由题意知三角形的三条边长分别为2、4、5或3、4、4,所以最长边可能取值的最大值为5。
八年级上册数学三角形练习题及答案

八年级上册数学三角形练习题及答案一、选择题1.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是.A.3B.C.5D..下面四个图形中,线段BE是⊿ABC的高的图是3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是 A.13cmB.6cmC.5cmD.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是 A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C 相等的角的个数是A、3个 B、4个 C、5个 D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=A、90B、120C、160D、180第5题图第6题图7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是1个2个3个4个 8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD=。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________. 11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度。
12.如图,∠1=_____.ACABED第10题图C第11题图2第12题图第14题图16题图13.若三角形三个内角度数的比为2:3:4,则相应的外角比是 . 14.如图,⊿ABC中,∠A =0°,∠B =2°,CE 平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =度。
人教版数学八年级上册随堂练习:三角形的边(含答案)

人教版数学八年级上册随堂练习:三角形的边(含答案)1. 如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A. 2B. 3C. 4D. 82. 如图所示,为估计池塘岸边A,B两点的距离,小方在池塘的一侧选取一点O,测得OA=15m,OB=10m,A,B间的距离不可能是()A. 20mB. 15mC. 10mD. 5m第2题第3题3. 若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A. 2对B. 3对C. 4对D. 6对4. 已知三角形的三边长分别是3,8,x,若x的值为奇数,则x的值有()A. 5个B. 4个C. 3个D. 2个5. 下面给出的三条线段,一定不能组成三角形的是()A. a+1,a+2,a+3(a>0)B. 三条线段的比为4∶6∶10C. 3cm,8cm,10cmD. 3a,5a,2a+1(a>0)6. 如图,在△ABF中,∠B的对边是()A. ADB. AEC. AFD. AC第6题第7题7. 如图所示的图形中,三角形共有()A. 3个B. 4个C. 5个D. 6个8. 下列说法正确的是()A. 三角形按边分类可分为不等边三角形和直角三角形B. 三角形按角分类可分为锐角三角形和钝角三角形C. 等腰三角形可分为等边三角形和底边与腰不相等的等腰三角形D. 等边三角形不是等腰三角形9. 设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个选项中,能表示它们之间关系的是()A BC D10. 下列各数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,1011. 五条线段的长分别为1cm,2cm,3cm,4cm,5cm,以其中的三条线段为边可以构成个三角形.12. 若等腰三角形的两边长分别是4和9,则它的周长是.13. 图中一共有多少个三角形?锐角三角形、直角三角形、钝角三角形各有多少个?用符号表示这些三角形.14. 若a,b,c为三角形的三边长,化简:|a-b-c|+|a-c+b|+|a+b+c|.15. 已知等腰三角形的周长是14cm ,底边与腰的比为3∶2,求各边的长.16. 已知在△ABC 中,AB =AC ,D 在AC 的延长线上.求证:BD -BC <AD -AB.17. 已知△ABC 的两边长分别为3和7,第三边的长是关于x 的方程x +a 2=x +1的解,求a 的取值范围.18.如图,某油田有四个油井分别位于A,B,C,D四个点上,如果要建一个维修站H,使这个维修站到这四个油井的距离之和最短,那么这个维修站就必须建于AC,BD的交点上,你知道这是为什么吗?19. 如图,是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F,G是小正方形的顶点,以这7个点中的任意3个点为顶点,可组成多少个面积为1的三角形?请写出所有这样的三角形.答案1. C2. D3. B4. D5. B6. C7. C8. C9. A 10. C11. 312. 2213. 解:共有6个三角形,其中锐角三角形有2个:△ABE ,△ABC ;直角三角形有3个:△ABD ,△ADE ,△ADC ;钝角三角形有1个:△AEC.14. 解:因为a ,b ,c 是三角形的三边长,由三角形的三边关系,得b +c >a ,即a -(b +c )<0,同理a -c +b =(a +b )-c ,a +b >c ,则(a +b )-c >0.从而由绝对值的性质可得,原式=-(a -b -c )+(a -c +b )+(a +b +c )=-a +b +c +a -c +b +a +b +c =a +3b +c .15. 解:设底边长为3x cm ,腰长为2x cm ,依题意,得3x +2x +2x =14,解得x =2,∴底边为3x =6,腰长为2x =4.三角形各边的长分别为6cm ,4cm ,4cm.16. 证明:∵AB =AC ,AD =AC +CD ,∴AD -AB =AC +CD -AC =CD ,∵在△BCD 中,BD -BC <CD ,∴BD -BC <AD -AB.17. 解:解关于x 的方程2x +a =x +1,得x =a -2.由题意得7-3<x <7+3,即4<x <10.∴4<a -2<10.解得6<a <12.即a的取值范围是6<a <12.18. 解:在四边形ABCD 内另取一点H ′,如图,连接AH ′,BH ′,CH ′,DH ′,则AH ′+CH ′>AC ,BH ′+DH ′>BD ,所以AH ′+CH ′+BH ′+DH ′>AC +BD ,即AH +CH +BH +DH 最短.19. 解:共有14个三角形,以这7个点中的任意3个点为顶点,组成面积为1的三角形,只需三角形的底是1,高是2或三角形的底是2,高是1.符合要求的三角形为△ADE ,△BDE ,△AEF ,△BEF ,。
人教版数学八年级上册:12.2.3 三角形全等的判定(三)ASA、AAS 同步练习(附答案)

第十二章全等三角形12.2.3 三角形全等的判定(三)ASA、AAS1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的是( ) A.甲B.乙C.甲和乙都是D.都不是2.如图,∠ABC=∠DCB,BD,CA分别是∠ABC,∠DCB的平分线.求证:AB=DC.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB,AC作垂线段,则能够说明△BDE≌△CDF的理由是( )A.SSS B.SASB.C.ASA D.AAS5.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,CE=BF,∠A =∠D.求证:AB=CD.6.如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“SAS”为依据,还需添加的条件为;(2)若以“ASA”为依据,还需添加的条件为;(3)若以“AAS”为依据,还需添加的条件为.7.如图,AE∥DF,AE=DF,则添加下列条件还不能确定△EAC≌△FDB( ) A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F第7题图第8题图第9题图第10题图8.如图,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD =2,CF=5,则AB的长为( )A.2 B.5C.7 D.39.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.10.如图,要测量河两岸相对的两点A,B的距离,在AB的垂线BF上取两点C,D,使BC=CD,过点D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=,△ABC≌.若测得DE的长为25米,则河宽AB的长为.11.如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.求证:(1)BD=CE;(2)∠M=∠N.13.如图1,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN 于点M,BN⊥MN于点N.(1)求证:MN=AM+BN;(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),(1)中的结论是否仍然成立?说明理由.参考答案1.B2.证明:∵∠ABC =∠DCB ,BD ,CA 分别是∠ABC ,∠DCB 的平分线,∴∠DBC =∠ACB.在△ABC 和△DCB 中,⎩⎪⎨⎪⎧∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,∴△ABC ≌△DCB(ASA ).∴AB =DC.3.证明:∵BD ⊥AC 于点D ,CE ⊥AB 于点E ,∴∠ADB =∠AEC =90°.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,∠A =∠A ,∴△ABD ≌△ACE(ASA ).∴AB =AC.又∵AD =AE ,∴AB -AE =AC -AD ,即BE =CD.4.D5.证明:∵AB ∥CD ,∴∠B =∠C.∵CE =BF ,∴CE +EF =BF +EF ,即CF =BE.在△ABE 和△DCF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF(AAS ),∴AB =CD.6. (1) BC =EF 或BE =CF ;(2) ∠A =∠D ;(3) ∠ACB =∠F .7.C8.C9.AC =BC .10.25米.11.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB.(2)选△ABE ≌△CDF ,证明:∵AB ∥CD ,∴∠BAE =∠DCF.∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS ).12.证明:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE.(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM.由(1),得△ABD ≌△ACE ,∴∠B =∠C. 在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN(ASA ).∴∠M =∠N.13.解:(1)证明:∵∠ACB =90°,∴∠ACM +∠BCN =90°.又∵AM ⊥MN ,BN ⊥MN ,∴∠AMC =∠CNB =90°.∴∠BCN +∠CBN =90°.∴∠ACM =∠CBN. 在△ACM 和△CBN 中,⎩⎪⎨⎪⎧∠ACM =∠CBN ,∠AMC =∠CNB ,AC =CB ,∴△ACM ≌△CBN(AAS ).∴MC =NB ,MA =NC.∵MN =MC +CN ,∴MN =AM +BN.(2)(1)中的结论不成立,结论为MN =AM -BN. 理由如下:同(1)中证明可得△ACM ≌△CBN ,∴CM=BN,AM=CN.∵MN=CN-CM,∴MN=AM-BN.。
人教版八年级数学上册《三角形边或角关系》专项练习题-附含答案

人教版八年级数学上册《三角形边或角关系》专项练习题-附含答案几何探究类问题一直属于考试压轴题范围 在三角形这一章 压轴题主要考查是证明角的数量关系 或者三角形的三边和差关系等 接来下我们针对这两个版块做出详细分析与梳理。
类型一、燕尾角模型例1.在社会实践手工课上 小茗同学设计了一个形状如图所示的零件 如果52,25A B ︒︒∠=∠= 30,35,72C D E ︒︒︒∠=∠=∠= 那么F ∠的度数是( ).A .72︒B .70︒C .65︒D .60︒【答案】A 【详解】延长BE 交CF 的延长线于O 连接AO 如图∵180,OAB B AOB ∠+∠+∠=︒ ∵180,AOB B OAB ∠=︒-∠-∠同理得180,AOC OAC C ∠=︒-∠-∠∵360,AOB AOC BOC ∠+∠+∠=︒∵360BOC AOB AOC ∠=︒-∠-∠ 360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠107,B C BAC =∠+∠+∠=︒∵72,BED ∠=︒∵180108,DEO BED ∠=︒-∠=︒∵360DFO D DEO EOF ∠=︒-∠-∠-∠ 36035108107110,=︒-︒-︒-︒=︒∵180********DFC DFO ∠=︒-∠=︒-︒=︒ 故选:A .【变式训练1】如图 若115EOC ∠=︒ 则A B C D E F ∠+∠+∠+∠+∠+∠=____________.【答案】230°【详解】解:如图∵∵EOC =∵E +∵2=115° ∵2=∵D +∵C ∵∵E +∵D +∵C =115°∵∵EOC =∵1+∵F =115° ∵1=∵A +∵B ∵∵A +∵B +∵F =115°∵∵A +∵B +∵C +∵D +∵E +∵F =230° 故答案为:230°.【变式训练2】如右图 ∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H =__.【答案】360°【详解】解:由图形可知:∵BNP =∵A +∵B ∵DPQ =∵C +∵D ∵FQM =∵E +∵F ∵HMN =∵G +∵H ∵∵BNP +∵DPQ +∵FQM +∵HMN =360°∵∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H =∵BNP +∵DPQ +∵FQM +∵HMN =360°.故答案为:360°.【变式训练3】如图 求∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H +∵I =__.【答案】900°【详解】解:连EF GI 如图∵6边形ABCDEFK 的内角和=(6-2)×180°=720°∵∵A +∵B +∵C +∵D +∵E +∵F =720°-(∵1+∵2)即∵A +∵B +∵C +∵D +∵E +∵F +(∵1+∵2)=720°∵∵1+∵2=∵3+∵4 ∵5+∵6+∵H =180°∵∵A +∵B +∵C +∵D +∵E +∵F ∵H +(∵3+∵4)=900°∵∵A +∵B +∵C +∵D +∵E +∵F (∵3+∵4)+∵5+∵6+∵H =720°+180°∵∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H +∵I =900°故答案为:900°.【变式训练4】模型规律:如图1 延长CO 交AB 于点D 则1BOC B A C B ∠=∠+∠=∠+∠+∠.因为凹四边形ABOC 形似箭头 其四角具有“BOC A B C ∠=∠+∠+∠”这个规律 所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2 60,20,30A B C ∠=︒∠=︒∠=︒ 则BOC ∠=__________︒;②如图3 A B C D E F ∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:①如图4 ABO ∠、ACO ∠的2等分线(即角平分线)1BO 、1CO 交于点1O 已知120BOC ∠=︒ 50BAC ∠=︒ 则1BO C ∠=__________︒;②如图5 BO 、CO 分别为ABO ∠、ACO ∠的10等分线1,2,3,,(,)89i =⋯.它们的交点从上到下依次为1O 、2O 、3O 、…、9O .已知120BOC ∠=︒ 50BAC ∠=︒ 则7BO C ∠=__________︒;③如图6 ABO ∠、BAC ∠的角平分线BD 、AD 交于点D 已知120,44BOC C ∠=︒∠=︒ 则ADB =∠__________︒;④如图7 BAC ∠、BOC ∠的角平分线AD 、OD 交于点D 则B 、C ∠、D ∠之同的数量关系为__________.【答案】(1)①110;②260;(2)①85;②110;③142;④∵B -∵C +2∵D =0【详解】解:(1)①∵BOC =∵A +∵B +∵C =60°+20°+30°=110°;②∵A +∵B +∵C +∵D +∵E +∵F =∵BOC +∵DOE =2×130°=260°;(2)①∵BO 1C =∵BOC -∵OBO 1-∵OCO 1=∵BOC -12(∵ABO +∵ACO )=∵BOC -12(∵BOC -∵A )=∵BOC -12(120°-50°)=120°-35°=85°;②∵BO 7C =∵BOC -17(∵BOC -∵A )=120°-17(120°-50°)=120°-10°=110°; ③∵ADB =180°-(∵ABD +∵BAD )=180°-12(∵BOC -∵C )=180°-12(120°-44°)=142°;④∵BOD =12∵BOC =∵B +∵D +12∵BAC∵BOC =∵B +∵C +∵BAC联立得:∵B -∵C +2∵D =0.类型二、折叠模型例1.如图 在ABC 中 46C ∠=︒ 将ABC 沿直线l 折叠 点C 落在点D 的位置 则12∠-∠的度数是( ).A .23︒B .92︒C .46︒D .无法确定【答案】B【详解】解:由折叠的性质得:46D C ∠=∠=︒根据外角性质得:13C ∠=∠+∠ 32D ∠=∠+∠则1222292C D C ∠=∠+∠+∠=∠+∠=∠+︒ 则1292∠-∠=︒.故选:B .【变式训练1】如图 将∵ABC 纸片沿DE 折叠 使点A 落在点A '处 且A 'B 平分∵ABC A 'C 平分∵ACB若∵BA 'C =120° 则∵1+∵2的度数为( )A .90°B .100°C .110°D .120°【答案】D【详解】解:如图 连接AA ' ∵A 'B 平分∵ABC A 'C 平分∵ACB∵∵A'BC=12∵ABC∵A'CB=12∵ACB∵∵BA'C=120° ∵∵A'BC+∵A'CB=180°-120°=60°∵∵ABC+∵ACB=120° ∵∵BAC=180°-120°=60°∵沿DE折叠∵∵DAA'=∵DA'A∵EAA'=∵EA'A∵∵1=∵DAA'+∵DA'A=2∵DAA' ∵2=∵EAA'+∵EA'A=2∵EAA'∵∵1+∵2=2∵DAA'+2∵EAA'=2∵BAC=2×60°=120°故选:D.【变式训练2】如图把∵ABC沿EF对折叠合后的图形如图所示.若∵A=55° ∵1=95° 则∵2的度数为().A.14︒B.15︒C.28︒D.30【答案】B【详解】解:∵∵A=55°∵∵AEF+∵AFE=180°-55°=125°∵∵FEB+∵EFC=360°-125°=235°由折叠可得:∵B′EF+∵EFC′=∵FEB+∵EFC=235° ∵∵1+∵2=235°-125°=110°∵∵1=95°∵∵2=110°-95°=15°故选:B .【变式训练3】如图 将∵ABC 沿着DE 翻折 使B 点与B'点重合 若∵1+∵2=80° 则∵B 的度数为( )A .20°B .30°C .40°D .50°【答案】C【详解】由折叠的性质可知','BED B ED BDE B DE ∠=∠∠=∠∵1'180,2'180BED B ED BDE B DE ∠+∠+∠=︒∠+∠+∠=︒ ∵11(36012)(36080)14022BED BDE ∠+∠=︒-∠-∠=⨯︒-︒=︒∵180()18014040B BED BDE ∠=︒-∠+∠=︒-︒=︒故选C【变式训练4】如图 将矩形纸片ABCD 沿EF 折叠 点C 落在边AB 上的点H 处点D 落在点G 处若111GEF ∠=︒ 则AHG ∠的度数为( ).A .42°B .69°C .44°D .32°【答案】A【详解】由图形翻折的性质可知 111GEF DEF ∠=∠=︒180111AEF ∴∠=︒-︒=69︒1116942AEG GEF AEF ∠=∠-∠=︒-︒=︒90A G ∠=∠=︒ 利用“8”字模型42AHG AEG ∴∠=∠=︒故选:A .类型三、“8”字模型例1.如图 BP 平分ABC ∠ 交CD 于点F DP 平分ADC ∠交AB 于点E AB 与CD 相交于点G 42A ∠=︒.(1)若60ADC ∠=︒ 求AEP ∠的度数;(2)若38C ∠=︒ 求P ∠的度数.【答案】(1)72︒;(2)40︒.【详解】解:(1)∵DP 平分∵ADC ∵∵ADP=∵PDF=12ADC ∠∵60ADC ∠=︒∵30ADP ∠=︒∵304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∵ABC DP 平分∵ADC∵∵ADP=∵PDF ∵CBP=∵PBA∵∵A+∵ADP=∵P+∵ABP∵C+∵CBP=∵P+∵PDF∵∵A+∵C=2∵P∵∵A=42° ∵C=38° ∵∵P=12(38°+42°)=40°.【变式训练1】如图 求∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H +∵K 的度数.【答案】540°【详解】解:如图所示:由三角形的外角的性质可知:∵A +∵B =∵IJL ∵C +∵D =∵MLJ ∵H +∵K =∵GIJ ∵E +∵F =∵GML ∵∵A +∵B +∵C +∵D +∵E +∵F +∵G +∵H +∵K =∵IJL +∵MLJ +∵GML +∵G +∵GIJ =(5-2)×180°=3×180°=540°.【变式训练2】(1)已知:如图①的图形我们把它称为“8字形” 试说明:A B C D ∠+∠=∠+∠.(2)如图② AP CP 分别平分BAD ∠ BCD ∠ 若36ABC ∠=︒ 16ADC ∠=︒ 求P ∠的度数.(3)如图(3) 直线AP 平分BAD ∠ CP 平分BCD ∠的外角BCE ∠ 猜想P ∠与B 、D ∠的数量关系是__;(4)如图(4) 直线AP 平分BAD ∠的外角FAD ∠ CP 平分BCD ∠的外角BCE ∠ 猜想P ∠与B 、D ∠的数量关系是________.【答案】(1)见解析;(2)26°;(3)()1902P B D ∠=︒+∠+∠;(4)()11802P B D ∠=︒-∠+∠ 【详解】解:(1)A B AOB ∠+∠+∠=180° C D COD ∠+∠+∠=180° A B AOB C D COD ∴∠+∠+∠=∠+∠+∠.AOB COD ∠=∠ A B C D ∴∠+∠=∠+∠;(2)AP CP 分别平分BAD ∠ BCD ∠ 设BAP PAD x ∠=∠= BCP PCD y ∠=∠=则有x ABC y P x P y ADC +∠=+∠⎧⎨+∠=+∠⎩ABC P P ADC ∴∠-∠=∠-∠ ()1122P ABC ADC ∴∠=∠+∠=(36°+16°)=26°(3)直线AP 平分BAD ∠ CP 平分BCD ∠的外角BCE ∠1=2PAB PAD BAD ∴∠=∠∠ 1=2PCB PCE BCE ∠=∠∠ ∵2PAB B ∠+∠=180°-2PCB D ∠+∠ ∵180°()2PAB PCB D B -∠+∠+∠=∠∵∵P +∵P AD =∵PCD +∵D ∵BAD +∵B =∵BCD +∵D ∵=P PAD BAD B PCD BCD ∠+---∠∠∠∠∠ ,P PAB B PCB ∴∠-∠-∠=∠∵P B PAB PCB ∠-=∠+∠∠∵180°()2P B D B -∠-∠+∠=∠即P ∠=90°()12B D +∠+∠.(4)连接PB PD直线AP 平分BAD ∠的外角FAD ∠ CP 平分BCD ∠的外角BCE ∠FAP PAO ∴∠=∠ PCE PCB ∠=∠∵APB PBA PAB +∠+∠=∠180° PCB PBC BPC +∠+∠=∠180°∵APC ABC PCB PAB ∠+∠+∠+=∠360°同理得到:APC ADC PCD PAD ∠+∠+∠+=∠360°∵2APC ABC ADC PCB PAB PCD PAD ∠+∠+∠+∠++∠+=∠∠720°∵2APC ABC ADC PCE PAB PCD PAF ∠+∠+∠+∠++∠+=∠∠720°∵=PCE PCD ∠+∠180° =PAB PAF +∠∠180°∵2APC ABC ADC ∠+∠+∠=360° APC ∴∠=180°-()12ABC ADC ∠+∠。
2022-2023学年八年级数学三角形的边 同步练习题(含答案)

三角形的边同步练习题1.下列4个图形都是由三条线段组成的图形,其中是三角形的是(C)2.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示(D)A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.有下列说法:①三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形;②等边三角形一定是等腰三角形;③有两边相等的三角形一定是等腰三角形.其中说法正确的有(B)A.1个B.2个C.3个D.0个4.在下列长度的三条线段中,不能组成三角形的是(C)A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm5.如图,为估计池塘岸边A,B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,则A,B间的距离不可能是(A)A.5米B.10米C.15米D.20米6.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为(C)A.7B.8C.9D.107.图中三角形的个数是(C)A.4个B.6个C.8个D.10个8.已知n是正整数,若一个三角形的三边长分别是n+2,n+8,3n,则满足条件的n的值有(D)A.4个B.5个C.6个D.7个9.如图所示,以AB为边的三角形有△ABO,△ABC,△ABD;含∠ACB 的三角形有△BOC,△ABC;在△BOC中,OC的对角是∠OBC,∠OCB 的对边是OB.10.如图,过A,B,C,D,E五个点中的任意三个点画三角形.(1)其中以AB为一边可以画出3个三角形;(2)其中以C为顶点可以画出6个三角形.11.如图,已知AB=AC,AD=BD=DE=CE=AE,则图中共有4个等腰三角形,有1个等边三角形.12.已知等腰三角形的一边长为4,另一边长为8,则该等腰三角形的周长为20.13.在长度为2,5,6,8的四条线段中,任取三条线段,可构成2个不同的三角形.14.已知三角形的两边长分别为2 cm和7 cm,最大边的长为a cm,则a的取值范围是7≤a<9.15.图中共有12个三角形.16.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC-BC=5,求AB的最小值.解:(1)∵由三角形的三边关系知,6<AB<10,又∵△ABC的周长为奇数,而AC,BC为偶数,∴AB为奇数,故AB=7或9.(2)∵AC-BC=5,∴AC,BC中一个奇数、一个偶数.又∵△ABC的周长为奇数,故AB为偶数,∴AB>AC-BC=5,得AB的最小值为6.17.已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a-b|+|b-c|=0,试判断△ABC的形状;(2)化简:|a-b-c|+|b-c-a|+|c-a-b|.解:(1)∵|a-b|+|b-c|=0,∴a-b=0,b-c=0.∴a=b=c.∴△ABC为等边三角形.(2)∵a,b,c是△ABC的三边长,∴a-b-c<0,b-c-a<0,c-a-b<0.∴原式=-a+b+c-b+c+a-c+a+b=a+b+c.18.【探究题】如图,点P是△ABC内部的一点.(1)度量线段AB,AC,PB,PC的长度,根据度量结果比较AB+AC 与PB+PC的大小;(2)改变点P的位置,上述结论还成立吗?(3)你能说明上述结论为什么成立吗?解:(1)AB+AC>PB+PC.(2)改变点P的位置,上述结论还成立.(3)连接AP,延长BP交AC于点E,在△ABE中有,AB+AE>BE=BP+PE.①在△CEP中有,PE+CE>PC.②①+②,得AB+AE+PE+CE>BP+PE+PC,即AB+AC+PE>BP+PE+PC,∴AB+AC>BP+PC.。
人教版八年级上册数学:《11.1.1三角形的边》同步练习及答案

清大教育三角形的边试题一、选择题1.三角形是( )A .连接任意三角形组成的图形B .由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C .由三条线段组成的图形D .以上说法均不对2.若△ABC 三条边的长度分别为m,n,p,且()02=-+-p n n m ,则这个三角形为( )A .等腰三角形 B.等边三角形C .直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是( )A .一个直角三角形一定不是等腰三角形B .一个等腰三角形一定不是锐角三角形C .一个等腰三角形一定不是等腰三角形D .一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是( )A .1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.一个三角形的两边长分别为3cm 和7cm,则此三角形第三边长可能是( )A .3cm B.4 cm C. 7 cm D.11cm6.一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A .2 B.3 C.4D.87.)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远8.)如图1为图2中三角柱ABCEFG 的展开图,其中AE 、BF 、CG 、DH 是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB 长度?( )A .2B .3C .4D .5 (第7题) (第8题) (第9题)二、填空题9.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有________对10.已知△ABC 的一个外角为50°,则△ABC 一定是________三角形11.若等腰三角形两边长分别为3和5,则它的周长是_______________.12.如图,C 在三角形中所对的边是________________.13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.14.如图,在图1中互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个……则在第n 个图形中,互不重叠的三角形共有__________个(用含n 的代数式表示).15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有__________ .16.如图,图1中共有3个三角形,图2中共有6个三角形,图3中共有10个三角形,…,以此类推,则图6中共有 __________ 个三角形.17.如图,直角ABC 的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为 __________.18.平面上有5个点,其中任意三点都不在同一条直线上,则这些点共可组成__________个不同的三角形.三、解答题19.如图,△ABC 是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.。
最新初二上册数学三角形的边练习题及答案

初二上册数学三角形的边练习题及答案一、选择题1.三角形是()2.假设△ABC三条边的长度分别为m,n,p,且,那么这个三角形为()3.试用学过的知识判断,以下说法正确的选项是()角形4.以下长度的三条线段能组成三角形的是()A.1,2,3B.2,2,4C.3,4,5D.3,4,85.一个三角形的两边长分别为3cm和7cm,那么此三角形第三边长可能是()6.一个三角形的两边长分别为3和5,第三边长是偶数,那么第三边长可以是()7.,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,.那么以下说法正确的选项是()C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远8.为2中三角柱ABCEFG的展开,其中AE、BF、CG、DH是三角柱的边.假设1中,AD=10,CD=2,那么以下何者可为AB长度?()二、填空题9.假设有一条公共边的两个三角形称为一对“共边三角形〞,那么中以BC为公共边的“共边三角形〞有________对10.△AB C的一个外角为50°,那么△ABC一定是________三角形11.假设等腰三角形两边长分别为3和5,那么它的周长是_______________.12.,在三角形中所对的边是________________.13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.14.,在1中互不重叠的三角形共有4个,在2中,互不重叠的三角形共有7个,在3中,互不重叠的三角形共有10个……那么在第n个形中,互不重叠的三角形共有__________个(用含n的代数式表示).15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,那么能摆出不同的三角形的个数有______.16.,1中共有3个三角形,2中共有6个三角形,3中共有10个三角形,…,以此类推,那么6中共有_____个三角形.17.,直角ABC的周长为2022,在其内部有五个小直角三角形,那么这五个小直角三角形的周长为18.平面上有5个点,其中任意三点都不在同一条直线上,那么这些点共可组成__________个不同的三角形.三、解答题19.两条平行直线上各有n个点,用这n对点按如下的规那么连接线段;①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;1展示了当n=1时的情况,此时中三角形的个数为0;2展示了当n=2时的一种情况,此时中三角形的个数为2;(1)当n=3时,请在3中画出使三角形个数最少的形,此时中三角形的个数为__________个;(2)试猜测当n对点时,按上述规那么画出的形中,最少有多少个三角形?(3)当n=2022时,按上述规那么画出的形中,最少有多少个三角形?20.过A、B、C、D、E五个点中任意三点画三角形;(1)其中以AB为一边可以画出__________个三角形;(2)其中以C为顶点可以画出__________个三角形.21.△ABC是某村一遍假设干亩土地的示意,在党的“十六大〞精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农〞种植,请你帮他们分一分,提供两种分法.要求:画出形,并简要说明分法.22.△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,中出现了3个不同的三角形,再连接BA2,中便有6个不同的三角形…(1)完成下表:连接个数出现三角形个数假设出现了45个三角形,那么共连接了多少个点?假设一直连接到An,那么中共有__________个三角形.23.一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长. 练习题答案一、选择题二、填空题三、解答题19.解:(1)4个;(2)当有n对点时,最少可以画2(n-1)个三角形;(3)2×(2022-1)=4010个.答:当n=2022时,最少可以画4010个三角形.20.解:(1),以AB为一边的三角形有△ABC、△ABD、△ABE共3个;(2),以点C为顶点的三角形有△ABC、△BEC、△BCD、△ACE、△ACD、△CDE 共6个.故答案为:(1)3,(2)6.21.解:第一种是取各边的中点,分别取,AB.BC,AC的中点D,E,Y,连接DE,EY和AE,所形成的四个三角形面积相等(如下).第二种,在BC边上取四等分点D,E,F,分别连接AD,AE,AF,所形成的四个三角形面积相等(如下).22.解:(1)连接个数123456出现三角形个数3610152128(2)8个点;(3)1+2+3+…+(n+1)=23.解:设三边长分别为2x,3x,4x,由题意得,2x+3x+4x=36,解得:x=4.故三边长为:8cm,12cm,16cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上册数学三角形的边练习题及答案
一、选择题
1.三角形是()
A.连接任意三角形组成的形
B.由不在同一条直线上的三条线段首尾顺次相接所组成的的形
C.由三条线段组成的形
D.以上说法均不对
2.若△ABC三条边的长度分别为m,n,p,且,则这个三角形为()
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
3.试用学过的知识判断,下列说法准确的是()
A.一个直角三角形一定不是等腰三角形
B.一个等腰三角形一定不是锐角三角形
C.一个等腰三角形一定不是等腰三角形
D.一个等腰三角形一定不是钝角三角形
4.下列长度的三条线段能组成三角形的是()
A.1,2,3
B.2,2,4
C.3,4,5
D.3,4,8
5.一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()
A.3cm
B.4cm
C.7cm
D.11cm
6.一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长能够是()
A.2
B.3
C.4
D.8
7.,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且
∠B=30°,∠C=100°,.则下列说法准确的是()
A.点M在AB上
B.点M在BC的中点处
C.点M在BC上,且距点B较近,距点C较远
D.点M在BC上,且距点C较近,距点B较远
8.为2中三角柱ABCEFG的展开,其中AE、BF、CG、DH是三角柱的边.若1中,AD=10,CD=2,则下列何者可为AB长度?()
A.2
B.3
C.4
D.5
二、填空题
9.若有一条公共边的两个三角形称为一对“共边三角形”,则中以BC为公共边的“共边三角形”有________对
10.已知△ABC的一个外角为50°,则△ABC一定是________三角形
11.若等腰三角形两边长分别为3和5,则它的周长是
_______________.
12.,在三角形中所对的边是________________.
13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.
14.,在1中互不重叠的三角形共有4个,在2中,互不重叠的
三角形共有7个,在3中,互不重叠的三角形共有10个……则在第n 个形中,互不重叠的三角形共有__________个(用含n的代数式表示).
15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有______.
16.,1*有3个三角形,2*有6个三角形,3*有10个三角形,…,以此类推,则6*有_____个三角形.
17.,直角ABC的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为
18.平面上有5个点,其中任意三点都不在同一条直线上,则这
些点共可组成__________个不同的三角形.
三、解答题
19.两条平行直线上各有n个点,用这n对点按如下的规则连接
线段;
①平行线之间的点在连线段时,能够有共同的端点,但不能有其它交点;
②符合①要求的线段必须全部画出;
1展示了当n=1时的情况,此时中三角形的个数为0;
2展示了当n=2时的一种情况,此时中三角形的个数为2;
(1)当n=3时,请在3中画出使三角形个数最少的形,此时中三
角形的个数为__________个;
(2)试猜想当n对点时,按上述规则画出的形中,最少有多少个
三角形?
(3)当n=2006时,按上述规则画出的形中,最少有多少个三角形?
20.过A、B、C、D、E五个点中任意三点画三角形;
(1)其中以AB为一边能够画出__________个三角形;
(2)其中以C为顶点能够画出__________个三角形.
21.△ABC是某村一遍若干亩土地的示意,在党的“十六大”精神的指导下,为进一步增大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出形,并简要说明分法.
22.△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,中出现了3个不同的三角形,再连接BA2,中便有6个不同的三角形…
(1)完成下表:
连接个数
出现三角形个数
若出现了45个三角形,则共连接了多少个点?
若一直连接到An,则*有__________个三角形.
23.一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.
练习题答案
一、选择题
1.B
2.B
3.D
4.C
5.C
6.C
7.C
8.C
二、填空题
9.310.钝角11.11或
1312.AE,BD,AB13.214.(3n+1)15.316.2817.200818.10
三、解答题
19.解:(1)
4个;
(2)当有n对点时,最少能够画2(n-1)个三角形;
(3)2×(2006-1)=4010个.
答:当n=2006时,最少能够画4010个三角形.
20.解:(1),以AB为一边的三角形有△ABC、△ABD、△ABE共3个;
(2),以点C为顶点的三角形有△ABC、△BEC、△BCD、△ACE、△ACD、△CDE共6个.
故答案为:(1)3,(2)6.
21.解:第一种是取各边的中点,分别取,AB.BC,AC的中点D,E,Y,连接DE,EY和AE,所形成的四个三角形面积相等(如下).
第二种,在BC边上取四等分点D,E,F,分别连接AD,AE,AF,所形成的四个三角形面积相等(如下).
22.解:(1)
连接个数123456
出现三角形个数3610152128
(2)8个点;
(3)1+2+3+…+(n+1)=
23.解:设三边长分别为2x,3x,4x,
由题意得,2x+3x+4x=36,
解得:x=4.
故三边长为:8cm,12cm,16cm. 一年级下学期月考测试题
一、我比电脑算得快。
(16分)
30+4= 60+2= 4+30= 2+60=
34-4= 62-2= 34-30= 62-60=
70+3= 48-8= 5+70= 60+3=
66-6= 60-30= 50+7= 20+8=
二、看一看,想一想,填一填。
(33分)
2.100里面有()个百,有()个十,有()个一
3.46里面有()个十和()个一。
4.()里面有5个十和9个一。
5.十位上是5,个位上是2的数是()。
6.有一个两位数,个位上是3,十位上的数比个位上的数多2,这个数是()。
7. 分针指向12,时针指向3就是()。
分针指向6,时针指在3和4中间就是()。
8.47○74 59○55 100○97 60○70
9.把80、36、63、56、37按从小到大的顺序排列起来:()<()<()<(。