专题一 求数列的通项公式

合集下载

求数列通项公式的十种方法(教师版)

求数列通项公式的十种方法(教师版)

专题----通项公式的求法总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法 适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解;由1231nn n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n 练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和 n a n 12-=二、累乘法1.适用于: 1()n n a f n a += ----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na a af f f n a a a +=== ,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

求数列通项公式专题典型例题精校版

求数列通项公式专题典型例题精校版

数列的通项公式专题题型一【积差求商】形如11++⋅=-n n n n a ka a a 例1:已知数列}{n a 满足112++⋅=-n n n n a a a a ,且211=a ,求数列}{n a 的通项公式.变式训练1:已知数列}{n a 满足113++⋅=-n n n n a a a a ,且911=a ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 满足113++⋅=-n n n n a a a a ,且21=a ,求数列}{n a 的通项公式.题型二【n a 与n S 】例2:已知数列}{n a 的前n 项和22+=n S n ,求数列}{n a 的通项公式.变式训练1:已知数列}{n a 的前n 项和n S 满足1)1(log 2+=+n S n ,求数列}{n a 的通项公式.变式训练2:已知数列}{n a 的前n 和为n S ,21=a ,且)1(1++=+n n S na n n ,求n a .变式训练3:已知数列}{n a 的前n 和为n S ,且满足21),2(,0211=≥=⋅+-a n S S a n n n ,求n a .变式训练4:已知数列}{n a 的前n 项和n S 满足2)1(41+=n n a S 且0>n a ,求}{n a 通项公式.变式训练5:数列{}n a 满足11154,3n n n a S S a ++=+=,求n a .题型三【累加法】形如已知1a 且()1n n a a f n +-=(()f n 为可求和的数列)的形式均可用累加法。

例3:已知数列}{n a ,且21=a ,n a a n n =-+1,求通项公式n a .变式训练1:已知数列}{n a 满足21=a ,231++=+n a a n n ,求}{n a 的通项公式.变式训练2:已知数列}{n a ,且21=a ,n n n a a 21+=+,求通项公式n a .变式训练3:数列{}n a 中已知11=a ,3231+++=+n a a n n n ,求{}n a 的通项公式.加强训练1:已知数列}{n a 满足11=a ,)11ln(1na a n n ++=+,求}{n a 的通项公式.加强训练2:已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

专题一数列通项公式求法详解八种方法

专题一数列通项公式求法详解八种方法

关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 答案:(1)110-=nn a (2);122++=n n n a n (3);12+=n a n (4)1)1(1+⋅-=+n na n n .公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A) 122-=n a n (B)42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D)例4. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项 公式.简析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,易得)1()1(1+=⋅+=-q q q q q b nn n .点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比.公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n .例5:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式.(1)13-+=n n S n . (2)12-=n s n答案:(1)n a =3232+-n n ,(2)⎩⎨⎧≥-==)2(12)1(0n n n a n 点评:先分n=1和2≥n 两种情况,然后验证能否统一.【型如)(1n f a a n n +=+的地退关系递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得例5:已知数列6,9,14,21,30,…求此数列的一个通项. .答案:)(52N n n a n ∈+=例6. 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a .答案:n a =12+n例7.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:na n 12-=(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例8:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式. 例9: 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a . . 答案:.)12(12(1-+=n n a n 思考题1:已知1,111->-+=+a n na a n n ,求数列{a n }的通项公式.分析:原式化为 ),1(1+=+n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1形式,累积得解.构造1:【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c dλ,所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例10:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a . 答案:12-=nn a构造2:相邻项的差为特殊数列例11:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .提示:变为)(31112n n n n a a a a --=-+++. 构造3:倒数为特殊数列【形如sra pa a n n n +=--11】例12: 已知数列{n a }中11=a 且11+=+n n n a a a (N n ∈),,求数列的通项公式. 答案 nb a n n 11==例13:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解析:设1)1(-+-+=n n bqd n a c 建立方程组,解得.点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .例14:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ① 2≥n 时, )2(2121-=+++-n a a a n ② 由①、②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{a n }的通项公式(3)已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a . 八、【讨论法-了解】(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为 其通项分为奇数项和偶数项来讨论. (2)形如)(1n f a a n n =⋅+型①若p a a n n =⋅+1(p 为常数),则数列{n a }为“等 积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;②若f(n)为n 的函数(非常数)时,可 通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项. 例15: 数列{n a }满足01=a ,21=++n n a a ,求数列{a n }的通项公式.专题二:数列求和方法详解(六种方法)1、等差数列求和公式:d n n na a a n a a n a a n S n n n n 2)1(2)(2)(2)(123121-+==+=+=+=-- 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 答案xx x s n n --=1)1([例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n n S n S n f 的最大值. 答案n =8时,501)(max =n f方法简介:此法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①(1≠x )解析:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积:设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=…②①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--.∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+. 试一试1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 答案: 1224-+-=n n n S方法简介:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,然后再除以2得解.[例4] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 . 答案S =44.5 方法简介:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组;[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 答案 2)13(11n n a a a s n n -+--=-.试一试1 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和 .简析:由于与n k k k a =-=⋅⋅⋅⨯=⋅⋅⋅)110(91999991111111个个、分别求和. 方法简介:这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项及分母有理化)如:(1))()1(n f n f a n -+= ; (2)11++=n n a n =n n -+1;(3)n n n n tan )1tan()1cos(cos 1sin -+=+;4)111)1(1+-=+=n n n n a n(5))121121(211)12)(12()2(2+--+=+-=n n n n n a n . [例6] 求数列⋅⋅⋅++⋅⋅⋅++,21,,421,311n n 的前n 项和.[例7] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 试一试1:已知数列{a n }:)3)(1(8++=n n a n ,求前n 项和. 试一试2:1003211321121111+++++++++++ ..方法简介:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例8] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 答案 0 [例9] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.(周期数列)[例10] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值; 答案 10。

数列通项公式大全

数列通项公式大全

数列{}n a 通项公式专题☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆前言:递推公式就是用等式给出一个数列任意相邻项之间存在的规律,是对数列规律的一种呈现方式。

最简单的是给出任意相邻两项之间的规律,并给出第一项的值;也有给出任意相邻三项之间的规律,并给出第一项和第二项的值。

根据这样的递推公式,我们可以依次求出已知项的后一项,再后一项……,还可以求出数列的通项公式。

递推公式与通项公式的相同之处都是揭示数列存在的规律;不同之处在于前者揭示的是任意相邻项之间的规律,后者揭示的是任一项与项数之间的规律。

(一)整式型 1.累加法 2.累乘法 3.构造法 4.对数法 (二)分式型 1.倒数法 2.函数不动点法 深圳金桥家教网(三)其它类型 1.特征方程法 2.分段数列 3.周期数列 4.数学归纳法 5.迭代法6.含n S 型(公式法)7.逐代法+解方程法☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆(一)整式型1.累加法形如)(1n f a a n n =-+型,若f(n)为n 的函数时,用累加法.1.(2003天津文)已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a2.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .4.(2008福建文)已知{}n a 是整数组成的数列,11a =,且点*1)()n a n N +∈在函数21y x =+的图像上:(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足111,2n an n b b b +==+,求证:221n n n b b b ++⋅< 5.(2007北京文、理)(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =L ,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值; (II )求{}n a 的通项公式.2.累乘法形如)(1n f a a nn =+型,当f(n)为n 的函数时,用累乘法.1.已知数列{}n a 满足321=a ,n n a n n a 11+=+,求数列{}n a 的通项公式。

数列求通项公式完美版八种方法

数列求通项公式完美版八种方法

数列求通项公式的方法(八种方法)(一)由数列的前几项求数列的通项公式(观察法)1.(1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n=________.(2)数列{a n}的前4项是32,1,710,917,则这个数列的一个通项公式a n=________.解析:(1)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n=(-1)n1n(n+1).(2)数列{a n}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n=2n+1n2+1.答案:(1)(-1)n1n(n+1)(2)2n+1n2+1由数列的前几项求数列通项公式的策略根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等.(二)由a n与S n的关系求通项a n(公式法)2.(2017·东营模拟)设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.解析:(1)令n=1时,T1=2S1-1,∵T1=S1=a1,∴a1=2a1-1,∴a1=1.(2)n≥2时,T n-1=2S n-1-(n-1)2,则S n=T n-T n-1=2S n-n2-[2S n-1-(n-1)2]=2(S n-S n-1)-2n+1=2a n-2n+1.因为当n=1时a1=S1=1也满足上式,所以S n=2a n-2n+1(n≥1),当n≥2时,S n-1=2a n-1-2(n-1)+1,两式相减得a n=2a n-2a n-1-2,所以a n=2a n-1+2(n≥2),所以a n+2=2(a n-1+2),因为a1+2=3≠0,所以数列{a n+2}是以3为首项,公比为2的等比数列.所以a n+2=3×2n-1,∴a n=3×2n-1-2,当n=1时也成立,所以a n=3×2n-1-2.1.规律方法已知S n求a n的3个步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.(三)由递推关系求数列的通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有:(1)形如a n +1=a n f (n ),求a n . (累乘法) (2)形如a n +1=a n +f (n ),求a n . (累加法)(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . (构造法一)(4)形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n . (取倒数法,构造二)命题点1 形如a n +1=a n f (n ),求a n3.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解析:因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .命题点2 形如a n +1-a n =f (n ),求a n4.在数列{a n }中,a 1=2,a n +1=a n +3n +2,求数列{a n }的通项公式. 解析:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2. 命题点3 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n5.在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式.解析:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n-1-1.1111()n n n n n n n n a pa qa a xa pa q x px q x a x p a x ++++=+===+⇒=+⇒-=-数列第一类型解释:代换 代入 原式命题点4 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n6.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解析:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).课堂练习 a n 与S n 的关系求通项a n (公式法)1.已知数列{}n a 的前n 项和为23nn S =-,则n a = .2.已知n S 是数列{}n a 的前n 项和,且11=a ,12n n na S +=.则n a = .3.数列{}n a 满足112n n S a =-,则n a = . 4.若数列{a n }的前n 项和为S n ,且满足S n =32a n -3,则数列{a n }的前n 项和S n 等于5.各项为正数的数列{}n a 满足2421n n n a S a =--(*n ∈N ),其中n S 为{}n a 前n 项和.(1)求1a ,2a 的值; (2)求数列{}n a 的通项公式6.已知2a 、5a 是方程027122=+-x x 的两根,数列{}n a 是递增的等差数列,数列{}n b 的前n 项和为n S ,且n n b S 211-=(*∈N n ).求数列{}n a ,{}n b 的通项公式; 7.已知数列{}n a 的前n 项和为S n ,且312n n S a =-*()n ∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在数列{}n b 中,15b =,1n n n b b a +=+,求数列{}n b 的通项公式.8.数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ; ( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.9、已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. (累加法)10、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

专题一 数列通项公式的求法含答案

专题一  数列通项公式的求法含答案

专题一 数列通项公式的求法各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

本节总结几种求解数列通项公式的方法。

一、用观察法求数列的通项:例1:根据数列的前几项,写出它的一个通项公式;(1) 1716,109,54,21 (2) 1,0,,0 1(3) 3231,1615,87,43二、定义法:直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d ∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………① ∵255a S =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

三、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项na 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解。

例3:已知数列{}n a 的前n 项和为322++=n n S n ,求数列的通项公式。

(名49例2)变式训练:已知数列{}n a 的前n 项和为323-=n n a S ,求数列的通项公式。

(名师一号P70)点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.四、累加法形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。

专题一:求数列的通项公式

专题一:求数列的通项公式

[类题通法]
已知数列{an}的前 n 项和 Sn,求数列的通项公式,其求解 过程分为三步:
(1)先利用 a1=S1 求出 a1;
(2)用 n-1 替换 Sn 中的 n 得到一个新的关系,利用 an=Sn-Sn-1(n≥2)便可求出当 n≥2 时 an 的表达式;
(3)对 n=1 时的结果进行检验,看是否符合 n≥2 时 an 的表达式,如果符合,则可以把数列的通项公式合写; 如果不符合,则应该分 n=1 与 n≥2 两段来写.
[类题通法]
用观察法求数列的通项公式的技巧
(1)根据数列的前几项求它的一个通项公式,要注意观察每 一项的特点,观察出项与 n 之间的关系、规律,可使用添项、 通分、分割等办法,转化为一些常见数列的通项公式来求.对 于正负符号变化,可用(-1)n 或(-1)n 1 来调整.

(2)根据数列的前几项写出数列的一个通项公式是不完全归 纳法,它蕴含着“从特殊到一般”的思想.
2 Sn , Sn -1 2 , -n3 -n4
1 1 1 (n 2) S n S n 1 2 1 3 1 1 1 1 n , (n 1)( ), 数列{ }是等差数列, 2 2 Sn S1 2 Sn
2 2 a n S n S n 1 , -n3 -n4
变式练习 3 : 数列 {an} 是首项为 1 的正项数列且 (n + 2 1)a2 - na n +1 n+an+1an=0(n=1,2,3,„),求它的通项公式.
2 【解析】 由已知(n+1)a2 „), n+1-nan+an+1an=0(n=1,2,3, 得(an+1+an)[(n+1)an+1-nan]=0. 又 an>0,∴an+1+an≠0. an+1 n ∴ a = . n+1 n n-1 1 an a2 a3 a4 an 1 2 3 ∴a =a · · „ =2· · · „· n =n. a a 3 4 an-1 1 1 2 3 1 ∴an=n.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列专题1:求数列的通项公式
一、观察法
例1、用观察法写出下列数列的一个通项公式: (1)1,6,15,28,45,…
(2)5,55,555,5555,55555,…
(3)1,2+3,3+4+5,4+5+6+7,5+6+7+8+9,… (4)21,65-,1211,2019-,30
29
,…
二、由n S 求n a (作差法)
给出数列{}n a 的前n 项和为n S 或1+n S 与n S 的递推关系,或者给出数列{}n a 的前n 项和
n S 与n a 的递推关系,求通项n a
型一:2
111
≥=⎩⎨
⎧-=-n n S S S a n n n
【法一】“1--n n S S ”代入消元消n a ; 【法二】写多一项,作差消元消n S . 【注意】检验1=n 的值,若1a 的值适合n a 的表达式,应把1a 合并到n a 中去,否则应 写成分段形式.
型二:⎪⎩⎪
⎨⎧≥==-)2( )
1( 1
1n T T n T a n n n
【法一】“
1
-n n
T T ”代入消元消n a , 【法二】写多一项,作商消元消n T . 例2、(1)若)1(21+-=+n n S n n ,求n a ; (2)若11=a ,)(12
3
*1N n S S n n ∈+=+,求n a .
【变式2】设数列{}n a 的前n 项和为n S (1)若)(3*2N n n n S n ∈-=,求n a .
(2)若n n a S 31+=(*
N n ∈),0≠n a ,求n a .
三、累加、类乘法
型一:)(1n f a a n n =--或)(1n f a a n n +=+,用累加法求通项公式
)
1()2()2()1(1223211f a a f a a n f a a n f a a n n n n +=+=-+=-+=---

的情况
检验,1)
()
1()2()2()1(21
1
11=+=-+-++++=≥∑-=n i f a n f n f f f a a n n i n
型二:
)(1
n f a a n n
=-或n n a n f a )(1=+,用累乘法求通项公式 )1()2()2()1(1
223211f f n f n f a a a a a a a a n n n n ⋅⋅⋅-⋅-=⋅⋅⋅⋅---
1)1()2()2()1(,2a f f n f n f a n n ⋅⋅⋅⋅-⋅-=≥ 检验1=n 的情况

例3、数列{}n a 中,
(1)若231++=+n a a n n ,21=a ,求n a ; (2)若n n n a a 21=+,11=a ,求n a ;
【变式3】数列{}n a 中,
(1)若n n n a a 21
1+=+,21=a ,求n a ; (2)若n n a n n a 21+=
+,且3
2
1=a ,求n a . (3)(2009广东高考)11=a ,n n n n a n a 21
)11(1+++=+.设n
a b n n =,求数列{}n b 和{}
n a 的通项公式.
四、待定系数法
型一:)1,1,( 1≠≠+=+p c p c p ca a n n 为非零常数,
说明:(1)若1=c ,则p a a n n +=+1,数列}{n a 为等差数列; (2)若0=p ,则n n ca a =+1,数列}{n a 为等比数列; 【方法】构造x c ca a x a c x a n n n n )1(),(11-+=+=+++即, 故p x c =-)1(, 即}1
{-+
c p
a n 为等比数列. 型二:)1,( 1≠+=+c k c kn ca a n n 为非零常数, 【方法】分拆n
设y x ,,满足)()1(1y xn a c y n x a n n ++=++++, 整理,得x y c xn c ca a n n +-+-+=+)1()1(1
即:⎪⎪⎩

⎪⎨⎧
-=
-=⎩⎨⎧=--=-2)1(1 0)1()1(c k y c k x x y c k x c 数列})1(1{2
-+-+c k n c k a n 为等比数列. 型三:)1,,( 1≠⋅+=+c k c k ca a n n n 为非零常数λ除幂变换 【法一】分拆n
λ,两边同时除以1
+n λ

λ
λλk
ca a n n
n n +
=
+++1
1
1
,即
λ
λ
λλk a c a n n n n +⋅=
++1
1

若λ=c ,⎭
⎬⎫
⎩⎨
⎧n n a λ为等差数列;若λ≠c 时,转化为型一求解 【法二】两边同时除以1
+n c
得,111++++=n n
n n n n c
k c ca c a λ
若λ=c ,⎭
⎬⎫
⎩⎨⎧n n c a 为等差数列;若λ≠c 时,再用累加法求解
例4、(1)已知321+=+n n a a ,11=a ,求{}n a .
(2)已知1231++=+n a a n n ,11=a ,求{}n a . (3)已知n n n a a 231+=+,11=a ,求{}n a .
【变式4】设数列}{n a 中,(1)若1,32
1
11=+=
+a a a n n ,求n a . (2))2(123,411≥-+==-n n a a a n n ,求n a .
(3)已知数列}{n a 中,1
112131,65++⎪


⎝⎛+==n n n a a a ,求n a .
(4)若32-+=n a S n n ,求n a
型一:),,( 1为非零常数c p k d
ca ba a n n
n +=
+
【方法】两边取倒数,得
b
c
a b d a n n +⋅=+111,转化为待定系数法求解 (1)若d b =,则
n n a b c a 111+=+,故数列⎭
⎬⎫⎩⎨⎧n a 1是首项为1
1
a ,公差为
b
c 的等差数列.
b
c
n a a n )1(111-+=∴
,由此求出通项n a . (2)若d b ≠,令n
n a b 1
=
,则n n b b d b c b ⋅+=+1,转化为待定系数法求出n b ,进而求出n a .
型二:),,( 011为非零常数q p c qa pa a ca n n n n =++++ 【方法】两边同除以1+n n a a ,得01
11=⋅+⋅
++n
n a q a p c ,转化为数列⎭
⎬⎫⎩⎨⎧n a 1,再求解. 例5、(1)数列}{n a 中,若2
1
,3311=+=+a a a a n n n ,求n a . (2)已知数列}{n a 满足:1112,2
1
++-=-=n n n n a a a a a ,求432,,a a a 的值及数列}{n a 的通项公式.
【变式5】(1)数列}{n a 中,2
1
,1311=+=
+a a a a n n n ,求n a . (2)已知数列}{n a 满足2,2
211
11=+⋅=+++a a a a n n n
n n 且,求n a .
1、根据下列各数列的前4项,写出它的一个通项公式: (1)2,212
,313,41
4, (2)
21,52-,103,174-,…
(3)
3
2,154,356,63
8,… 2、设数列{}n a 的前n 项和为n S ,若31=a 且)(2*11N n a S S n n n ∈=+++,求通项公式n a .
3、数列{}n a 中,
(1)若12+=n a n ,21=b ,)2(1≥+=-n a b b n n n ,求n b ; (2)若21=a ,n n a n na )1(1+=+,求n a ; (3)若a 1=2,a n +1=a n +2n +1,求n a ; (4)若311=a ,32111+=-+n a a n
n ,求n a .
4、已知3
2
231341+⨯-=+n n n a S ,求1a 和n a .
5、已知数列{}n a 中,),2,1(14 =+=n a S n n ,11=a ,求n a .
6、若4
1
1=a ,)2(1≥-=-n S S a n n n ,求n a .
7、已知数列{}n a 满足1
112
2++++⋅=n n n
n n a a a ,且21=a ,求n a .
8、已知等差数列{}n a 的前n 项和为n S ,21=a ,当2≥n 时,11+-n S ,n a ,1+n S 成等差数列,求n a .。

相关文档
最新文档