红外系统光学系统
code v红外光学系统设计流程

code v红外光学系统设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!《红外光学系统设计流程》一、需求分析阶段。
在进行红外光学系统设计之前,首要任务是明确设计需求。
试论红外偏振成像系统光学设计

试论红外偏振成像系统光学设计随着科技的发展,人们对于影像的需求也变得越来越高。
而在红外成像领域,紫外成像和可见光成像在某些应用方面存在一定的局限,因此红外成像技术应运而生。
红外偏振成像系统是红外成像技术的一种表现形式,它通过提取红外偏振信息来实现高精度成像,具有较高的应用前景。
本文将针对红外偏振成像系统的光学设计进行探讨。
1. 红外偏振成像系统的光学原理红外偏振成像系统是基于红外成像技术和偏振光成像技术的结合。
在光学上,红外偏振成像系统采用了偏振光,利用偏振光在被扫描的表面反射或透射时的性质来提取目标物的偏振信息,从而实现对目标物的高精度成像。
2. 光学设计方法光学设计是红外偏振成像系统设计中的重要部分。
其主要目的是设计出合适的光路和光学元件,以保证系统能够满足特定应用的成像要求。
对于红外偏振成像系统的光学设计,可采用以下方法:2.1 光学系统的基本参数设计首先,需要确定红外偏振成像系统的基本参数,如成像倍率、视场角、分辨率等。
这些参数直接影响到整个系统的成像质量和性能。
例如,成像倍率是成像的重要指标之一,它可以决定系统的分辨率和细节的清晰度。
因此,在进行光学设计时,需要根据所需的成像要求来确定这些基本参数,以满足特定的应用。
2.2 光路的设计光路设计是红外偏振成像系统中的核心部分。
光路的设计包括确定透镜组合、光源、探测器以及其他光学元件等。
在确定透镜组合时,需要根据系统的要求来选择相应的透镜形式,如平面透镜、非球面透镜等。
同时,还需要考虑透镜的直径、焦距、材料等因素。
在确定光源时,需要根据目标物的性质和照明范围来选择最合适的光源。
通常采用红外LED、激光等光源。
在确定探测器时,需要考虑探测器灵敏度、分辨率和响应时间等参数,以便达到最佳效果。
2.3 其他光学元件的设计除了透镜组合、光源和探测器之外,红外偏振成像系统中还需要其他一些光学元件,如滤波器、偏振器等。
滤波器的作用是将特定波长的光线传递到目标物表面。
红外线热成像仪的原理

红外线热成像仪的原理红外线热成像仪是一种非接触式的温度测量仪器,其原理基于物体的红外辐射特性。
红外线热成像仪利用光学系统将物体的红外辐射聚焦到探测器上,然后通过电子系统处理信号,最终在显示器上呈现物体的热图像。
一、红外辐射原理所有物体都会发出红外辐射,这是由于物体内部的微观粒子的振动和运动产生的。
温度越高,物体发出的红外辐射的强度越高。
红外线热成像仪通过测量物体发出的红外辐射强度来推断物体的温度。
二、工作原理红外线热成像仪由光学系统、探测器和电子系统三部分组成。
1.光学系统光学系统的作用是将目标物体的红外辐射聚焦到探测器上。
它通常由透镜或反射镜组成,具有过滤和聚焦的功能。
通过过滤器,光学系统只允许特定波长的红外辐射进入,以减少其他干扰信号的影响。
2.探测器探测器是红外线热成像仪的核心部分,负责接收和测量目标物体的红外辐射。
探测器通常由一系列的热电偶或热电阻组成,能够将红外辐射转换为电信号。
探测器的性能决定了红外线热成像仪的灵敏度和精度。
3.电子系统电子系统负责处理探测器输出的信号,将其转换为可显示的图像。
电子系统通常包括放大器、信号处理器和显示器等组件。
放大器将探测器输出的微弱电信号放大,信号处理器对信号进行进一步处理和修正,最后在显示器上呈现目标物体的热图像。
三、特点及应用红外线热成像仪具有非接触、快速、高精度和高灵敏度等特点,广泛应用于军事、工业、医疗等领域。
在军事领域,红外线热成像仪用于夜视侦查和瞄准目标;在工业领域,红外线热成像仪用于设备故障检测和产品质量检测;在医疗领域,红外线热成像仪用于疾病诊断和治疗监测。
总之,红外线热成像仪是一种基于物体红外辐射特性的温度测量仪器,其工作原理主要包括光学系统、探测器和电子系统三部分。
由于具有非接触、快速、高精度和高灵敏度等特点,红外线热成像仪在军事、工业、医疗等领域得到了广泛应用。
随着技术的不断发展,红外线热成像仪的应用前景将更加广阔。
新型红外光学系统的结构特点与技术分析

S r c u a a u e n c ni a t u t r lFe t r s a d Te h c lAna y i fNe I f a e l s s o w n r r d Optc lS s e ia y tm
LI Qu — n U n l g ,W U npn ,Z o Ha — ig HANG n ,HU —u Ya Daj n
Ab ta tW i h e e p n fifa e e h oo y h f c fifa e p ia s se s o l o e sr c : t t ed v l me to n rrd tc n lg ,t eef to n rrd o t l y tm h ud n tb h o e c
n w n r r d o t a s s e . e if a e p i l y t m c
Ke r s i fa e ptc y wo d :n r r d o is;sr c u a e t r s;t c ia n l ss t u t r lf a u e e hn c la ay i
新 型 红 外 光 学 系统 的 结 构 特 点 与 技 术 分 析
刘 群 龙 吴 晗平 一张 焱 胡 大 军 , ,, ,
(. 汉工程大学理学院 , 北 1武 湖 武汉 4 0 0 ; . 汉 工 程 大 学 光 电 子 系 统技 术 研 究 所 , 北 3252武 湖 武汉 400 ) 32 5
n r pi l yt a da a t eo t a ss m )weea a zdo h ai o h u ayo t a ss m n dpi pi l yt c e v c e r n l e n teb s ftesmmain rdt n ln y s r i t io a i— zg a i fae pi l ytm (uha f cie R o t a sse , erci R o t a sse a dct i ti I pi rrdo t a sse sc s el t pi ly t c r e v I c m rf t eI pi lytm n aa o r R o t a v c d p c — cl ytm) Th d a tgs n i d a tgs f rdt n lnrrd pi lytms n d r f rdo t a a sse . e v nae dds vna e aio a if e t a sse dmo eni r e pi l a a a ot i a o c a n a c
一种高性能双视场长波红外光学系统

一种高性能双视场长波红外光学系统何红星;赵劲松;唐晗;徐参军;陶亮;康丽珠【摘要】A compact dual fields of view infrared optical system with high performance is designed, which consists of a front fixed group, a zoom focus group, a rear fixed group and a relay group. The vertical and horizontal dimensions of the optical system are designed to be minimum by adopting mechanically compensated zoom, the entrance pupil matching the exit pupil, reimage, and twice folding optical axis. The three-dimensional figure is 220mm×95mm×50mm. The ther mal aberration is controlled between-40 to 70℃ by choosing optical material and structural material, and optimizing the optical system parameters. The line of sight of the optical system is stabilized. The error of the line of sight of the narrow field of view is less than 0.04mrad after environment test, the error of the line of sight between the narrow field of view and the wide field of view is less than 0.1mrad. The performance of the imager of the LWIR optical system is improved, the MRTD value is 0.07K at 3cyc/mrad, the NETD valueis 30mK. The optical systems' imaging quality is perfect, it can be satisfied to the imager.%设计了一款高性能的紧凑型双视场长波红外光学系统,该光学系统由前固定组、变倍调焦组、后固定组、中继组组成.采用机械补偿变焦方式、光瞳匹配技术、二次成像和二次折叠,有效地对光学系统纵向和横向尺寸进行了约束,外形包络在220 mm×95 mm(局部135 mm)×50 m m(局部110 mm)范围内,系统紧凑,体积小.通过光学和结构材料的优选搭配及光学系统参数优化配置,在-40℃~70℃范围内,控制了光学系统热差,光学系统光轴稳定,小视场光轴稳定性<0.04 mrad,大/小视场转换光轴平行性<0.1 mrad;应用该光学系统的热像仪性能高,MRTD(3 cyc/mrad)=0.07 K,NETD=30 mK.设计结果表明光学系统像质良好,满足热像仪使用要求.【期刊名称】《红外技术》【年(卷),期】2017(039)005【总页数】5页(P394-398)【关键词】双视场光学系统;长波红外;机械补偿;光瞳匹配【作者】何红星;赵劲松;唐晗;徐参军;陶亮;康丽珠【作者单位】昆明物理研究所,云南昆明 650223;昆明物理研究所,云南昆明650223;昆明物理研究所,云南昆明 650223;昆明物理研究所,云南昆明 650223;昆明物理研究所,云南昆明 650223;昆明物理研究所,云南昆明 650223【正文语种】中文【中图分类】TN216红外光学系统是红外成像仪的重要组成部分,用于汇聚红外辐射能量并把红外辐射能量聚焦到焦面上,通过探测器的光电转换和后续图像处理实现对景物目标的成像;红外光学系统还具有变倍调焦和热补偿功能。
现代红外光学系统设计的开题报告

现代红外光学系统设计的开题报告题目:现代红外光学系统设计一、问题的提出和研究意义随着科技的不断进步和人们对高精度、高分辨率、光学同步的需求的不断增加,在光学领域,现代红外光学系统日益受到关注。
而现代红外光学系统设计又是实现光电信息采集、测量和控制等应用的基础。
现代红外光学系统具有成像速度快、无源探测、非接触式探测等优点,可以广泛应用于无人机、车载/舰载、导弹识别、军事监视、成像仪器、医学、地质探测等领域。
设计一个性能优良的现代红外光学系统是满足这些应用场景的前提。
因此,本文旨在探讨现代红外光学系统的设计方法和实现技术,以及其在军事、医学、地质等领域的应用,为红外光学系统的研究和应用提供有益的参考。
二、研究内容和技术路线1.现代红外光学系统的基本原理和组成2.现代红外光学系统的设计方法3.现代红外光学系统的实现技术4.红外成像技术的应用案例5.现代红外光学系统在军事、医学、地质等领域的应用6.现代红外光学系统的未来发展方向研究方法主要采用文献资料法和实验研究法。
文献资料法主要是对现有的理论和技术文献进行梳理,了解现代红外光学系统设计和实现技术的最新进展;实验研究法主要是基于红外探测器和光学镜头构建实验平台,进行成像实验,分析实验结果并对其进行评估。
三、预期成果和应用1.掌握现代红外光学系统的基本原理和组成结构;2.深入分析现代红外光学系统的设计方法;3.研究现代红外光学系统的实现技术,并基于实验平台进行系统性能测试和分析;4.归纳总结现代红外光学系统在军事、医学、地质等领域的应用案例,分析其适用场景和实际效果;5.展望现代红外光学系统的未来发展方向。
本文的研究成果和技术路线可以为现代红外光学系统的研究和应用提供有益的参考,同时也可以为相关领域的科研工作者提供新思路和灵感。
红外生命探测仪用光学系统的设计

z o r to o .S n e i u e n S a e i l f r isl n ,isF u b r i g e t r t a . ih o m a i f3 i c t s s Ge a d Zn e m t ra s o t e s t n m e s r a e h n 1 i wh c
sai eu nyo 1 / p t l q e c f 5 pmm. f r h mp rtr n e fh pi l ytm a dte aa ee f af r l A e te e eaue ag e t a ss n rm tr o t t r ot o c e hp s
Abs r c : ta t To lt t e o tc l s s e o n i ra e i e e t r h v a g r d t c i n a e ,a n w e h p i a y t m fa nf r d l e d t c o a e a l r e e e to r a e f
为变 倍
为补偿组 , ( 为后 固定组 。图 1 j 5 中,上
0 引 言
以往 的红 外 生命探 测仪 一 般都 是采 用 固定 焦距 透 镜 的单 视场 系统 。该 系统 所用 的透 镜 片
数少 , 并且能够 较好地 吸收红 外辐射 能量 , 但是
性, 无法很好地适 应灾后 复杂多变 的环境 。 随着 技术 的改进 ,变焦 距视 场 系统 逐渐 取代 了单 视
i fa e a ed o i w p i a e e to y t m s p o o e . Th p ia yse i o m y t m . n r r d du lf l fv e o tc l d t c i n s s e i r p s d i e o tc ls t m s a z o s s e Be a s sl n r u o m sa d c m p n a e e pe a ur y a i l c u e i e sg o p z o n o t e s tstm r t e b x a to , t l c r m e h n c l y t m mo i n isee t o c a ia s e s i i p i e ssm l d.Th y t m a n o e a i n wa e ba d o o 1 m . c l a e o 5 t 4 n a d a i f e s s e h s a p r t o v n f8 t 4 u a f a ng f o 1 0 i n o r 3 ni
红外热像仪的组成及原理

红外热像仪的组成及原理红外热像仪(Infrared Thermal Imagers),是一种能够侦测和显示红外辐射热图像的设备。
它采用红外探测器,通过检测目标物体所发出的红外辐射,将其转化成电信号,并经过处理后在屏幕上显示出热图像。
红外热像仪的组成主要包括光学系统、红外探测器、信号处理系统和显示系统等。
1. 光学系统红外热像仪的光学系统主要包括透镜、孔径、滤波器等组件。
透镜用于收集目标物体发出的红外辐射,并将其聚焦在红外探测器上;孔径用于控制光线的进入角度和量,以提高红外辐射的清晰度和准确性;滤波器则用于屏蔽掉可见光和大部分的可见光带来的干扰,使只有红外辐射能够通过。
2. 红外探测器红外探测器是红外热像仪的核心部件,主要用于将目标物体发出的红外辐射转化为电信号。
根据不同的工作原理,红外探测器可分为热电偶型(Thermoelectric detector)、热电效应型(Pyroelectric detectors)、半导体型(Semiconductor detectors)和焦平面型(Focal plane array detector)等。
热电偶型红外探测器是最早应用于红外热像仪的一种探测器,它通过将红外辐射能量转化为温度变化,并进一步转化成电压信号。
热电偶型探测器具有较高的灵敏度和稳定性,但响应速度较慢,适用于静态热像图像的获取。
热电效应型红外探测器则基于热电功效,它通过检测目标物体在光照辐射下产生的温度变化,将红外辐射转化为电荷信号。
热电效应型探测器具有较快的响应速度和较低的噪声水平,适用于动态或高速热像图像的获取。
半导体型红外探测器是一种基于半导体材料特性的探测器,如铜锗(CuGe)和硬脂酸铟(InSb)等。
它利用材料的半导体能带结构和载流子浓度的变化来接收红外辐射,并将其转化成电信号。
半导体型探测器具有高灵敏度、快速响应以及较宽的波段范围。
焦平面型红外探测器(Focal Plane Array Detector)是当前红外热像仪中最常见的探测器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中波红外连续变焦光学系统
红外成像技术由于具有众多优势而应用于侦查、制导等军事领域。
连续变焦光学系统是解决大视场搜索小视场分辨的最佳途径。
因此对红外连续变焦光学系统的需求会日益增强。
本文将介绍中波红外连续变焦光学系统的设计方法,并给出设计实例。
设计采用中波红外凝视型焦平面320 μm×240μm像元制冷探测器,探测器像元为30μm×30μm。
系统工作波段为3.7~4.8μm;焦距变化范围20~200 mm;F数为2.5;像高12 mm。
光学补偿型的工作方式是变倍组固定,通过聚焦组与补偿组的移动来实现系统焦距的变化,像面位置在变焦过程中有漂移,如图1所示。
聚焦组与补偿组的移动是同方向等速度的,只需用机械把两镜组连在一起作线形移动即可,因此其机械结构简单、不需要凸轮。
不过镜组必须移动到某些特殊的位置才能得到稳定清晰地像面。
适用于变倍范围和数值孔径较小的系统。
机械补偿型的工作方式是聚焦组固定,变倍组与补偿组按不同的运动规律作较复杂移动以实现变化焦距,像面位置在变焦过程中保持稳定,如图2所示。
机械补偿法可以实现焦距连续变化,但其机械结构复杂、凸轮加工难度大。
不过随着机械加工工艺的提高,机械补偿法的优势越来越明显。
故选择机械补偿式的变焦系统。
共口径双通道红外扫描成像光学系统
该系统包括前端共用的双反射系统、分束镜、准直镜组、扫描镜和成像镜组。
光波经过双反射系统在主镜之后被分束镜分成中波红外通道(3μm~5μm)和长波红外通道(10μm~12μm),经准直镜组及成像镜组会聚探测器上,实现中波红外系统与长波红外系统共口径同步成像。
长波红外光学系统设计
①共用结构两反系统
对于两反系统,主镜相对口径的选择主要和两反系统的相对口径有关。
若两反系统焦距较长,主镜相对口径可以取小一些,即焦距长一些,容易加工。
若两反系统焦距较短,主镜的焦距也就越短,在口径一定的情况下,主镜焦距越短,主镜的相对口径就越大,从缩短镜筒长度来说,当然主镜相对口径越大越有利,但加工难度增加,加工难度同相对口径的立方成正比,所以两反系统的相对口径不能取得太小。
图3 双反射光学系统
考虑到系统结构尺寸应尽量小,在保证主镜焦比合理、焦点伸出量也一定的情况下,遮拦比与次镜的放大率成反比,如果两反系统的F数取值过小,必然导致次镜对主镜的放大率较小,最终导致遮拦比过大,中心遮光损失太大,尤其是对于红外系统,接收的能量本来就很紧张。
综合考虑,取两反系统相对口径为1:4主镜相对口径1:0.9。
②长波红外准直镜组
准直镜组与前面共用的两反系统组成一个望远系统,本系统采用普通的三片式结构可以满足要求。
对于长波红外可选的玻璃材料较为有限,本系统中只采用了一种玻璃——锗。
图4 长波红外准直系统
红外R-C光学系统设计
R-C系统是由两块反射镜组成的共轴双反射镜系统。
它具有如下优点: 1) 利用反射镜折叠光路, 缩小了镜头的体积和减轻了重量; 2) 它完全没有色差; 3) 可以在紫外到红外的很大波长范围内工作; 4) 反射镜的镜面材料比透射镜的材料容易制造, 特别是对大口径零件更是如此。
因此, R-C 系统广泛的应用在大型天文望远系统、航天光学遥感、紫外和红外仪器以及聚光照明等方面。
另一方面, 经典的R-C系统的视场受限于彗差, R-C系统可以消除初级彗差, 而像散却不能消除, 因而, 视场不可能很大。
图5 红外光学系统结构图
R-C 光学系统的初始结构如图5。
这里在R-C 系统后加了一个负一倍透镜组, 它的作用是使系统的出瞳与热像仪的冷屏尽量相重合。
这样做的好处是使背景杂光、镜筒热辐射杂光不能入射到热像仪的靶面上, 避免造成干扰, 提高信噪比。