细胞生物学研究方法
举例说明细胞生物学的研究方法的种类

举例说明细胞生物学的研究方法的种类细胞生物学是研究细胞结构、功能和生理过程的学科,它使用多种方法来进行研究。
下面列举了十种常见的细胞生物学研究方法。
1. 光学显微镜观察:光学显微镜是一种常用的工具,用于观察细胞的形态、结构和功能。
通过调节镜头和使用染色剂,可以更清晰地观察细胞的细节。
2. 电子显微镜观察:电子显微镜是一种高分辨率的显微镜,可以观察到更小的细胞结构,如细胞器、细胞膜等。
它可以提供细胞的高分辨率图像。
3. 细胞培养:细胞培养是将细胞从生物体中分离出来,在含有营养物质的培养基中进行培养的过程。
这种方法可以研究细胞的生长、增殖和功能。
4. 免疫细胞化学:免疫细胞化学是通过使用抗体来标记和检测特定蛋白质的方法。
这种方法可以帮助研究人员了解细胞内不同蛋白质的位置和功能。
5. 细胞分离和纯化:细胞分离和纯化是将特定类型的细胞从混合细胞群中分离出来的方法。
这种方法可以帮助研究人员研究特定细胞类型的功能和特性。
6. 分子生物学技术:分子生物学技术包括PCR、DNA测序、基因克隆等,可以帮助研究人员了解细胞的基因组、基因表达和遗传变异。
7. 蛋白质分析:蛋白质分析是研究细胞内蛋白质的种类、结构和功能的方法。
常用的蛋白质分析方法包括SDS-PAGE、Western blot 等。
8. 细胞生物物理学:细胞生物物理学是研究细胞力学、细胞形态学和细胞力学等方面的学科。
常用的方法包括细胞变形实验、细胞力学模拟等。
9. 高通量筛选:高通量筛选是一种通过自动化实验系统进行大规模筛选的方法。
它可以帮助研究人员快速筛选和鉴定特定分子对细胞的影响。
10. 生物信息学分析:生物信息学分析是利用计算机和统计学方法对细胞数据进行分析的方法。
它可以帮助研究人员从大量数据中提取有用的信息,揭示细胞的复杂性。
细胞生物学的研究方法

细胞生物学的研究方法
细胞生物学是研究细胞的结构、功能和生理过程的科学。
在细胞生物学的研究中,有许多常用的方法。
以下是其中一些常见的研究方法:
1. 细胞培养:将细胞从其天然环境中分离出来,并在实验室中以适当的培养基中培养细胞。
细胞培养使得研究人员能够对细胞进行控制和观察。
2. 显微镜观察:使用光学显微镜或电子显微镜观察细胞的形态、结构和运动。
光学显微镜可以用来观察活细胞,而电子显微镜则能够提供更高分辨率的细胞图像。
3. 免疫细胞化学:使用特异性抗体与细胞中的特定蛋白质结合,然后通过染色或荧光探针,观察并分析这些蛋白质在细胞中的分布和表达水平。
4. 分子生物学技术:包括PCR、DNA克隆、基因测序和蛋白质表达等技术,可以用于研究细胞中的基因和蛋白质。
5. 细胞色素分析:利用生物化学检测方法,测定细胞内特定生物分子的含量和代谢活性,以研究细胞功能和代谢过程。
6. 分离和纯化细胞器:通过细胞破碎和离心技术,将细胞内不同的细胞器分离和纯化出来,以研究它们的结构和功能。
7. 基因编辑技术:如CRISPR/Cas9,可以对细胞中的基因进行精确编辑和改变,以研究基因对细胞功能的影响。
8. 活体成像:利用荧光探针或标记的蛋白质,观察和记录活细胞的动态变化,如细胞分裂、运动和细胞内信号传导等。
以上只是细胞生物学研究中的一些常见方法,实际研究中可能还会使用其他特定的技术和方法,具体取决于研究的目的和需要。
细胞生物学的实验方法和技术

细胞生物学的实验方法和技术细胞生物学是研究细胞结构、功能和生命活动的学科,可以帮助我们了解生命的起源和本质。
在细胞生物学领域,实验是非常重要的,因为只有通过实验才能获取丰富的数据和信息。
接下来,我们将介绍一些常用的细胞生物学实验方法和技术。
1. 细胞培养细胞培养是一种将细胞放置在含有营养物的培养基上的实验方法。
这种方法可以被应用于很多方面,例如研究基因表达、病理生理学和新药发现等领域。
细胞培养通常要求细胞处于可能生长和分裂的特定生长条件下,培养基的配方和组成要根据细胞类型进行调整。
2. 免疫荧光染色免疫荧光染色是一种将抗体特异性地与待检测蛋白质结合,然后用荧光染色剂标记抗体的实验方法。
这种方法被广泛应用于检测蛋白质的组织学定位、蛋白质相互作用和细胞信号传导等方面的研究。
3. 细胞色素c释放实验细胞色素c释放实验是通过检测细胞色素c的释放来检测细胞凋亡状况的实验方法。
这种实验需要将细胞暴露在合适的刺激条件下,然后收集细胞,用针头机械破碎并分离出线粒体,接着用色素c检测试剂。
此方法可以被应用于癌症治疗、新药研发和基础细胞生物学研究等领域。
4. 网格溶解实验网格溶解实验是一种检测细胞侵袭和扩散能力的实验方法,常用于研究细胞恶性生长、转移和肿瘤治疗等领域。
这种实验需要在培养皿中放置一层含有孔的膜,将预处理好的细胞悬浮在孔上方的区域,然后留置一段时间等待细胞穿过孔隙层次,最后收集并处理细胞样本,通过各种方式检测细胞侵袭和扩散的情况。
5. 蛋白-蛋白相互作用实验蛋白-蛋白相互作用实验是一种检测蛋白质互相作用的实验方法。
这种实验有几种方法,包括酵母对二杂交法、共免疫沉淀法和化学交联法等。
这些方法可以帮助我们了解蛋白质相互作用的机制,为研究信号转导、基因表达和疾病机理等领域提供参考资料。
以上是几种常用的细胞生物学实验方法和技术。
每一种方法都有自己独特的适用范围和步骤,研究者们需要根据具体的实验内容选择合适的方法。
细胞生物学的研究方法

细胞生物学的研究方法细胞生物学是研究生物体内细胞结构、功能和生理过程的科学。
细胞是生命的基本单位,它们构成了所有生物体的组织和器官。
细胞生物学的研究方法包括许多实验技术和技术工具,以便观察和理解细胞的结构和功能。
一种用于研究细胞结构的重要方法是光学显微镜。
使用光学显微镜可以观察细胞的形态、大小和内部结构。
通过显微镜观察细胞样本时,常使用特殊染色剂来突出显示细胞内的不同结构。
除了光学显微镜外,还有电子显微镜,它能够提供更高分辨率的图像,可以观察到更小的细胞结构,如细胞器和细胞膜。
除了显微镜技术,细胞生物学研究还经常使用细胞培养技术。
通过将细胞以培养物中的无菌条件下培养,可以进行各种实验,如细胞增殖、细胞分化和细胞信号传导等。
细胞培养技术也是生物医学研究的关键手段,可以用于体外药物筛选、细胞治疗等。
分子生物学技术在细胞生物学研究中也扮演着重要的角色。
PCR技术可以扩增DNA片段,从而方便进行基因克隆和表达分析。
蛋白质的表达和定位可以通过免疫荧光染色或原位杂交等技术进行观察。
另外,基因编辑技术如CRISPR/Cas9也为细胞生物学研究提供了新的手段,可以用于精确编辑细胞基因组,从而研究基因功能。
细胞生物学研究中,流式细胞仪也是不可或缺的工具。
流式细胞仪可以快速检测单个细胞的大小、形状、表面标记和内部分子表达等信息。
这对于研究那些需要分析大量细胞的生物学问题是特别有用的。
除了实验技术外,计算生物学和生物信息学也在细胞生物学研究中发挥了重要作用。
生物信息学技术可以用于分析大规模生物学数据,如基因组、转录组和蛋白质组等数据。
这些数据分析可以帮助研究者理解细胞内分子的互作关系、信号通路、基因调控等重要生物学过程。
细胞生物学的研究方法是不断发展和进步的,随着技术的不断更新,研究者可以更准确、全面地理解细胞的结构和功能。
通过综合运用这些方法,可以更深入地探索细胞的生物学特性,为生命科学领域的发展做出更大的贡献。
细胞生物学的研究方法及其应用

细胞生物学的研究方法及其应用细胞生物学是一门研究生物体最基本单位——细胞的科学,它的研究对象是细胞的形态、结构、功能及其相互作用等。
随着科技的发展,细胞生物学的研究手段也在不断更新,使我们对细胞的了解更加深入。
本文将介绍细胞生物学的几种研究方法及其应用。
一、细胞培养技术细胞培养技术是细胞生物学中比较基础的研究手段,它是将组织和细胞移植到含有营养物质和生长因子的培养基中进行培养和繁殖,使其在体外长期存活和生长。
通过细胞培养,研究人员可以从难以获得的生物材料中获得大量的细胞,进行多种实验和研究。
细胞培养技术在药物筛选、细胞变异、细菌感染等方面都有广泛的应用。
例如,在肿瘤治疗中,通过培养患者的肿瘤细胞,可以对其进行敏感性测试,筛选出最佳的治疗方案。
此外,还可以通过细胞培养的方法提取细胞内的 mRNA 或 DNA 进行一系列的分子生物学实验。
二、细胞分离技术细胞分离技术是指将复杂的细胞混合物中的不同类型的细胞分离出来,以便进一步研究。
细胞分离技术有多种方法,比较常用的有洗涤法、筛选法和离心法等。
细胞分离技术的应用十分广泛,如在干细胞移植中,为了避免移植的细胞类型过于复杂,需要先将干细胞分离出来。
此外,在癌症研究中,通过分离出癌细胞和正常细胞,可以更好地研究其生长机理和治疗方法。
三、光学显微镜技术光学显微镜技术是最基础的细胞观察手段,通过光学显微镜可以观察到细胞的形态、结构和运动等。
随着测量技术和计算机视觉的不断发展,现在研究人员可以对细胞及其内部结构进行三维成像和动态观察。
光学显微镜技术可用于对细胞的形态、生理学特征、代谢和运动等状态进行观察。
例如,在生长发育的研究中,光学显微镜可以被用来跟踪细胞分裂和发育过程的中间几个阶段,从而更好地理解细胞生长与分裂的机理。
四、电镜技术电镜技术是对细胞结构和形态的高级观察手段。
通过电镜技术可以观察细胞超微结构,如细胞核、内质网、线粒体和细胞膜等。
电子显微镜技术主要有透射电镜和扫描电镜两种。
细胞生物学的研究方法与技术

细胞生物学的研究方法与技术细胞生物学是研究细胞结构、功能及其在生物过程中作用的学科。
细胞生物学的发展离不开许多研究方法和技术的支持,这些方法和技术涉及多方面的学科,包括生物学、化学、物理学等,为细胞生物学的研究提供了有力的工具和手段。
常见的细胞生物学研究方法包括显微镜技术、细胞培养、各种分离和纯化技术、蛋白质组学、基因组学、转基因技术以及细胞途径和信号传导的研究等。
显微镜技术是细胞生物学的基础工具之一,早在17世纪就有学者发现了显微镜的作用。
如今,显微镜已经发展到了高倍率、高分辨率水平,并且应用范围越来越广。
荧光显微镜能够将酶标法和细胞组织学高效结合,使得研究人员能够看到细胞中特定蛋白质的位置及其在细胞内的转移过程,这种技术促进了细胞和分子生物学的研究进展。
另一个广泛应用的细胞生物学技术是细胞培养技术。
细胞培养可以使研究人员通过体外实验的方法来探究细胞生物学的许多方面,例如细胞增殖、代谢、分化以及感染和治疗等方面。
同时,细胞培养技术也为其他科学领域如医学和药物研发提供了重要工具和方法。
分离和纯化技术也是细胞生物学研究的重要方法之一。
这些技术用于从细胞中分离出不同的细胞结构和分子,以便对它们进行研究和分析。
例如,对蛋白质的分离和纯化可使研究人员了解蛋白质的功能和结构,以及它们如何参与到多种细胞过程中。
蛋白质组学和基因组学是近年来迅速发展起来的研究领域。
随着研究的深入,我们了解到不同细胞中的蛋白质和基因组成具有多种不同的功能。
可以通过分析这些蛋白质和基因组以探究它们在不同疾病中的作用,并且这些研究可为新药物的开发提供重要参考。
转基因技术是一种较新兴的细胞生物学研究方法。
通过转基因技术,研究人员可将指定的基因嵌入宿主细胞,以进一步研究这些基因的功能和影响。
转基因技术在药物研发和基因工程等领域有着广泛的应用,并是细胞生物学领域的重要组成部分。
最后一个细胞生物学研究方法是研究细胞途径和信号传导。
细胞途径和信号传导可使研究人员了解到不同的生物分子之间相互作用的机制,以及它们如何在生物过程中发挥作用。
细胞生物学研究的新方法及其应用

细胞生物学研究的新方法及其应用细胞生物学,是一门研究细胞结构、功能、发育、分化、演变及生理生化过程等方面的学科。
随着科学技术的不断进步,细胞生物学的研究方法也在不断创新和更新。
本文将介绍细胞生物学研究的新方法及其应用。
一、荧光显微镜技术荧光显微镜技术是目前常用于观察生物学分子、细胞和组织结构的主要手段之一。
通过生物发光分子的特异性荧光信号,使细胞产生明亮的荧光,从而获得有关于细胞的有关信息。
该方法还可以通过对细胞进行染色,使得不同结构的细胞产生不同的荧光,从而实现对细胞内部细节的研究。
目前,荧光显微镜技术已被广泛应用于生命科学的各个领域,如细胞和分子生物学、免疫学、药理学和神经生物学等,特别是在微生物和细胞培养、组织切片和活体成像方面,更是有着较为广泛的应用。
二、蛋白质组学技术蛋白质组学技术是一种研究蛋白质表达和功能的方法,特别是通过分析蛋白质组,研究蛋白质在细胞内的相互作用、修饰、降解等方面的过程。
目前,蛋白质组学技术主要包括蛋白质质谱、二维蛋白质电泳、DNA微阵列等多种方法。
与传统的单核苷酸多态性和序列分析相比,蛋白质组学技术具有许多优势。
它能够全面地研究一个细胞、一个组织或一个生物样品中的所有蛋白质,并确定关键的调控蛋白质。
这种方法结合基因组学技术,能够更准确地分析分子之间的关系,以及它们如何影响细胞、组织和生物体的发育和功能。
三、单细胞测序技术传统的DNA测序取决于从足够数量细胞中提取DNA,并将其扩增成足够的数量。
这种方法忽略了每一个细胞的特异性,因为每个单一细胞都有自己不同的表达模式,其中包括转录水平和基因组学特征。
随着单细胞测序技术的发展,我们现在可以了解良好血液细胞含有那一组基因,以及为什么他们在个别人或群体中都有不同表达特征。
单细胞测序技术的特点是无需大量的数据点或分析,就可以深入了解每个细胞内部的变化。
这项技术已经被广泛应用于癌症、免疫学、神经学和衰老等领域,这已经产生了一些有想象力的研究,帮助人们更好地理解人类生命的组成部分。
细胞生物学研究方法

细胞生物学研究方法细胞生物学是研究细胞结构、功能和过程的科学学科,主要研究对象是细胞的组成、分裂、分化、代谢、运动、增殖和死亡等。
为了深入研究细胞相关问题,细胞生物学采用了多种研究方法。
第一,显微镜观察法。
显微镜是细胞生物学中最常用的工具之一。
通过显微镜观察,可以观察到细胞的形态、结构和各种细胞器的分布情况。
常用的显微镜有光学显微镜和电子显微镜。
光学显微镜适用于观察活细胞,电子显微镜适用于观察细胞内部细节,如细胞核、线粒体和内质网等。
第二,细胞培养法。
细胞培养是指将细胞在无菌条件下培养于含有营养物质的培养基中,使其持续生长和繁殖。
通过细胞培养,可以研究细胞的生长特性、分裂过程以及对外界刺激的反应。
常用的细胞培养方法有原代培养、细胞株培养和三维培养等。
第三,细胞分离和纯化法。
细胞分离和纯化是将不同类型的细胞从混合细胞群中分离出来,以便对某种细胞进行独立的研究。
常用的方法有细胞悬浮液经过离心分离、细胞表面标记技术以及细胞排序等。
第四,分子生物学技术。
分子生物学技术可以用于研究细胞的基因表达、代谢等分子机制。
其中,PCR技术可以复制DNA序列,用于检测细胞内特定基因的存在和表达水平。
原位杂交技术可以检测细胞内特定mRNA的定位和表达情况。
第五,蛋白质分析技术。
蛋白质分析技术主要用于研究细胞内蛋白质的分布、结构和功能。
常用的方法有蛋白质电泳、质谱分析、免疫印迹等。
第六,遗传学方法。
遗传学方法可以用于研究细胞的遗传特征和突变。
如基因敲除和基因敲入技术可以研究基因在细胞中的作用;细胞杂交技术可以研究细胞核酸的互补性和杂交情况。
细胞生物学研究方法的不断更新和发展,使我们对细胞的理解越来越深入。
这些方法的应用使得我们能够更好地揭示细胞的机制和功能,为解决许多重大疾病和生物学问题提供了有力的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扫描隧道显微镜原理
STM image, Benzene molecules accumulate at step edges on Cu
三、显微操作技术 micromanipulation technique
1. 环形光阑(annular diaphragm):位于光源与聚光器之间。 2. 相位板(annular phaseplate):物镜中加了涂有氟化镁的
相位板,可将直射光或衍射光的相位推迟1/4λ。
原理
用途:观察未经染色的玻片标本
(六)偏光显微镜polarizing microscope
• 用于检测具有双折射性的物质,如纤维丝、纺锤体、胶 原、染色体等。
• 为了使标本表面发射出次级电子,标本在固定、脱水后, 要喷涂上一层重金属膜,重金属在电子束的轰击下发出次 级电子信号。
扫描电子显微镜原理
人类红细胞
酵母
人类精子
(三)扫描隧道显微镜 scanning tunneling microscope,STM
• 原理:根据隧道效应而设计,当原子尺度的针尖在不到一 个纳米的高度上扫描样品时,此处电子云重叠,外加一电 压(2mV~2V),针尖与样品之间形成隧道电流。电流强 度与针尖和样品间的距离有函数关系,将扫描过程中电流 的变化转换为图像,即可显示出原子水平的凹凸形态。
• 将 RNA 转 移 到 薄 膜 上 , 用 探 针 杂 交 , 则 称 为 Northern杂交。
六、PCR 技术
• PCR即:polymerase chain reaction。 • 反应体系:①样品DNA;②引物(primer),约15-20个
核苷酸;③4种dNTP;④Tag DNA聚合酶,来自于嗜热 水生菌Thermus aquaticus,最适作用温度75~80℃,短 时间在95℃下不失活。⑤缓冲体系和Mg2+。 • 反应过程:①变性:约90-95℃;②复性:约60℃左右; ③延伸:70-75℃;④重复 “变性——复性——延伸” 过程20-30次循环。
显微操作仪
第二节 生物化学与分子生物学技术
一、细胞化学技术
• 组织化学和细胞化学染色方法(histochemical and cytochemical staining method)用于对某些 细胞成分进行定性和定位研究。
• (一)固定 1. 物理固定:血膜空气快速干燥、冷冻干燥。 2. 化学固定:如甲醇、乙醇、丙酮、甲醛、戊二醛
和锇酸等试剂。显示多糖常用乙醇固定,显示酶 类多用甲醛丙酮缓冲液固定。
(二)显示方法
1. 金属沉淀法:如磷酸酶分解磷酸酯底物后,反应产物最 终生成CoS或PbS有色沉淀,而显示出酶活性。
2. Schiff反应:细胞中的醛基可使Schiff试剂中的无色品红 变 为 红 色 。 用 于 显 示糖和 脱 氧核糖 核 酸 (Feulgen反 应)。
• 光源前有偏振片(起偏器),使进入显微镜的光线为偏 振光,镜筒中有检偏器 (与起偏器方向垂直的偏振 片)。
• 载物台是可以旋转。
淀粉
(七)微分干涉差显微镜 Differential interference contrast microscope (DIC)
• 1952年,Nomarski发明,利 用两组平面偏振光的干涉, 加强影像的明暗效果,能显 示结构的三维立体投影。标 本可略厚一点,折射率差别 更大,故影像的立体感更强。
3)冰冻蚀刻 freeze-etching
• 亦称冰冻断裂。标本置于 干冰或液氮中冰冻。然后 断开,升温后,冰升华, 暴露出了断面结构。向断 裂面上喷涂一层蒸汽碳和 铂。然后将组织溶掉,把 碳和铂的膜剥下来,此膜 即为复膜(replica)。
A Yeast Cell
(二)扫描电子显微镜
• 20世纪60年代问世,用来观察标本表面结构。 • 分辨力为6~10nm,由于人眼的分辨力(区别荧光
二、电子显微镜
(一)透射电子显微镜 transmission electron microscope, TEM
1. 原理
• 以电子束作光源,电磁场作透镜。电子束的波长短,并且 波长与加速电压(通常50~120KV)的平方根成反比。
• 由电子照明系统、电磁透镜成像系统、真空系统、记录系 统、电源系统等5部分构成。
(八)倒置显微镜 inverse microscope
• 物镜与照明系统颠倒,前 者在载物台之下,后者在 载物台之上,用于观察培 养的活细胞,通常具有相 差物镜,有的还具有荧光 装置。
(九)当代显微镜的发展趋势
• 采用组合方式,集 普通光镜加相差、 荧光、暗视野、 DIC、摄影装置于 一体。
• 自动化与电子化。
包埋,以热膨胀或螺旋推进的方式切片,重金属(铀、铅) 盐染色。
2)负染技术
• 用重金属盐(如磷钨 酸)对铺展在载网上 的样品染色;吸去 染料,干燥后,样 品凹陷处铺了一层 重金属盐,而凸的 出地方没有染料沉 积,从而出现负染 效果,分辨力可达 1.5nm左右。
Negative Stained Actin
• 特点:光源为紫外线,波 长较短,分辨力高于普通 显微镜;
• 有两个特殊的滤光片; • 照明方式通常为落射式。
• 用于观察能激发出荧光的结构。用途:免疫荧光 观察、基因定位、疾病诊断。
Fluorescence image of epithelial cell, DNA in blue and Microtubules in green
• (一)原位杂交(in situ hybridization)。 • 用于检测染色体上的特殊DNA序列。最初是使用带放射性
的DNA探针,后来又发明了免疫探针法。
(二)Southern杂交
• 是体外分析特异DNA序列的方法,操作时先用限 制性内切酶将核DNA或线粒体DNA切成DNA片段, 经凝胶电泳分离后,转移到醋酸纤维薄膜上,再 用探针杂交,通过放射自显影,即可辨认出与探 针互补的特殊核苷序列。
表二、不同光线的波长
名 称 可见光 紫外光 X 射线 α 射线
电子束
0.1Kv 10Kv
波长(nm) 390~760 13~390 0.05~13 0.005~1 0.123 0.0122
2、制样技术
• 1)超薄切片 • 电子束穿透力很弱,用于电镜观察的标本须制成厚度仅
50nm的超薄切片,用超薄切片机(ultramicrotome)制作。 • 通常以锇酸和戊二醛固定样品,丙酮逐级脱水,环氧树脂
• 一般用14C和3H标记 。常用3H-TDR来显示DNA, 用3HUDR显示RNA;用3H氨基酸研究蛋白质,用3H甘露糖、 3H岩藻糖研究多糖。
– 14C半衰期为5730年,3H为12.5年。
五、分子杂交技术
• 具有互补核苷酸序列的两条单链核苷酸分子片段,在适当 条 件 下 , 通 过 氢 键 结 合 , 形 成 DNA-DNA , DNA-RNA 或 RNA-RNA杂交的双链分子。这种技术可用来测定单链分子 核苷酸序列间是否具有互补关系。
3. 联苯胺反应:过氧化酶分解H202。产生新生氧,后者再 将无色联苯胺氧化成联苯胺蓝,进而变成棕色化合物。
4. 脂溶染色法:借苏丹染料溶于脂类而使脂类显色。 5. 茚三酮反应:显示蛋白质。
二、免疫细胞化学 immunocytochemistry
• 根据免疫学原理,利用抗体同特定抗原专一结合,对抗原 进行定位测定的技术。常用的标记物有荧光素和酶。
(四)暗视野显微镜 dark field microscope
• 聚光镜中央有挡光片,照明光 线不直接进人物镜,只允许被 标本反射和衍射的光线进入物 镜,因而视野的背景是黑的, 物体的边缘是亮的。
• 可观察 4~200nm的微粒子, 分辨率比普通显微镜高50倍。
(五)相差显微镜
• 把透过标本的可见光的光程差变成振幅差,从而提高了各 种结构间的对比度,使各种结构变得清晰可见。在构造上, 相差显微镜有不同于普通光学显微镜两个特殊之处。
– sin α /2的最大值必然小于1;介质为空气,镜口率一般 为0.05~0.95;油镜头用香柏油为介质,镜口率可接近 1.5。
– 普通光线的波长为400~700nm,分辨力数值不会小于 0.2μm,人眼的分辨力为0.2mm,因此显微镜的最大设 计倍数为1000X。
(二)荧光显微镜 Fluorescence microscope
屏上距离最近两个光点的能力)为0.2mm,扫描 电镜的有效放大倍率为0.2mm/10nm=20000X。
Scanning electron microscope( SEM)
• 工作原理:是用一束极细的电子束扫描样品,在样品表面 激发出次级电子,次级电子的多少与样品表面结构有关, 次级电子由探测器收集,信号经放大用来调制荧光屏上电 子束的强度,显示出与电子束同步的扫描图像。
• 分辨力0.2nm,放大倍数可达百万倍。 • 用于观察超微结构(ultrastructure),即小于0.2µm、光
学显微镜下无法看清的结构,又称亚显微结构 (submicroscopic structures)。
TRANSMISSION ELECTRON
透M射IC电RO子SC显OP微E,镜TEM
• 细胞中有一些成分具有特定的吸收光谱,核酸、 蛋白质、细胞色素、维生素等都有自己特征性的 吸收曲线。
• 可利用显微分光光度计对某些成分进行定位、定 性和定量测定。
四、放射自显影术
• 用于研究标记化合物在机体、组织和细胞中的分布、定位、 排出以及合成、更新、作用机理、作用部位等等。
• 原理:将放射性同位素标记的化合物导入生物体内,经过 一段时间后,制取切片,涂上卤化银乳胶,经放射性曝光, 使乳胶感光。