数学建模期末作业-谈层次分析法在就业中的应用

合集下载

数学建模 层次分析 高校毕业生择业影响因素问题的层次分析法

数学建模 层次分析 高校毕业生择业影响因素问题的层次分析法

实验(实训报告)课程名称数学建模综合实训实验(实训)名称(一)高校毕业生择业影响因素问题的层次分析法班级组别姓名同组者实验(实训)日期完成日期本实验(实训)所用学时统计预习实验(实训)报告总计评阅意见:成绩高校毕业生择业的影响因素问题一、问题重述高校毕业生就业问题牵动着千千万万的家庭,历年来都是高校的工作重点,受到了社会,高校和教育界的普遍关注。

对毕业生进行正确,高效的就业指导,应该建立在了解学生的就业心态,尤其要了解在学生心目中影响其就业岗位选择的因素及它们的重要性程度。

影响就业岗位选择的因素是多方面的、复杂的。

通过调查一些研究学者认为,这些因素有:贡献、关系、收入、声誉、发展等等。

这些因素所组成的是一个相互关联、相互制约而又往往缺少定量数据的复杂系统。

运用层次分析法原理,对这一系统进行分析并建立一个数学模型,能够简单方便地找出影响毕业生择业的主要因素,有助于对毕业生开展有针对性的就业指导,提高工作的有效性。

二、模型建立及求解挑选合适的工作。

经双方恳谈,已有三个单位表示愿意录用某毕业生。

该生根据已有信息建立了一个层次结构模型,如下图所示:A-B 判断矩阵表A 1B 2B 3B 4B 5B 6B1B 1 1 1 4 1 1/2 2B 1 1 2 4 1 1/2 3B 1 1/2 1 5 3 1/2 4B 1/4 1/4 1/5 1 1/3 1/35B 1 1 1/3 3 1 1 6B 2 2 2 3 3 1(方案层)B1-C 判断矩阵表 B2-C 判断矩阵表1B 1C 2C 3C 2B 1C 2C 3C1C 1 1/4 1/2 1C 1 1/4 1/52C 4 1 3 2C 4 1 1/23C 2 1/3 1 3C 5 2 1B3-C 判断矩阵表 B4-C 判断矩阵表3B 1C 2C 3C 4B 1C 2C 3C 1C 1 3 1/3 1C 1 1/3 52C 1/3 1 7 2C 3 1 73C 3 1/7 1 3C 1/5 1/7 1B5-C 判断矩阵表 B6-C 判断矩阵表5B 1C 2C 3C 6B 1C 2C 3C 1C 1 1 7 1C 1 7 92C 1 1 7 2C 1/7 1 13C 1/7 1/7 1 3C 1/9 1 1根据层次总排序权值,该生最满意的工作为工作1。

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用作者:韦晓静孙庆来源:《科技风》2019年第29期摘要:随着就业形势的不断发展,双向选择、自由择业已经成为当今大学生就业的主要就业方式,大学生在众多就业机会面前如何选择出自己满意的工作是一个值得探讨的问题。

本文对大学生在就业中所关注的个人因素、心理因素、经济因素、技能因素进行细分,得出影响各因素的重要指标,利用1-9标度建立相应的判断矩阵,并用几何平均法计算出各因素下的权重向量,得到各因素下权重向量的排序,由此得出相应的决策信息为大学生就业选择提供相应的参考依据。

关键词:层次分析法;大学生;就业;权重向量中图分类号:O223Abstract:With the continuous development of the employment situation,two-way choice,free choice has become the main way of employment in the employment of university students,It is a worthy of problem of how to choose a satisfactory job in front of many employment opportunities for college students.In this paper,personal factors,psychological factors,economic factors,skills factors of college students are subdivided,and the important indexes affecting factors are obtained,judgment matrix was established by using 1-9 scale,and the weights are got by the geometric average method,The order of weights of each factor is obtained,So the corresponding decision information is obtained to provide the corresponding reference for the college students' employment choice.Key words:analytic hierarchy process;college students;employment;weights決策是从若干个备选方案中选择出最优方案的一种行为活动,决策往往受个人的主观意愿影响较大。

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用
层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决多指标决策问题的方法。

它可以将复杂的问题分解成多个层次,并通过对比不同层次的指标重要性,找
出最优的决策方案。

在大学生就业中,层次分析法可以应用于以下几个方面:
1. 就业选择:大学生毕业后面临着各种就业选择,如何在众多的职位中找到最适合
自己的就业方向是一个重要的问题。

层次分析法可以帮助大学生将自己的职业需求和个人
能力进行比较,从而找到最适合自己的就业选择。

2. 就业岗位评价:大学生在面临就业选择时,需要对不同的职位进行评价,包括工
作条件、薪酬待遇、职业发展前景等方面的考虑。

层次分析法可以将这些评价指标进行量化,并通过层次比较,得出不同职位的综合评价,帮助大学生做出更加准确的就业决策。

3. 就业准备:大学生在面临就业时,需要根据自身的专业能力和实际需求,进行一
系列的就业准备工作。

层次分析法可以帮助大学生确定哪些准备工作是最重要的,如何合
理分配时间和精力。

4. 就业机构选择:大学生在找工作时,也需要选择合适的就业机构,如企事业单位、政府机构、民营企业等。

层次分析法可以帮助大学生对不同的就业机构进行评价,并根据
自身需求和目标,选择最适合自己的就业机构。

层次分析法在大学生就业中的应用可以帮助他们更加科学地做出就业决策,提高就业
的质量和效果。

在使用层次分析法进行决策时,大学生也需要注意客观性和实用性,尽量
避免主观偏见的影响,确保决策结果的有效性。

还可以结合其他决策方法进行综合分析,
使决策更加全面和准确。

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用1. 引言1.1 引言在当今社会,大学生就业问题备受关注。

随着社会经济的发展和就业形势的变化,大学生就业面临着诸多困难和挑战。

面对这一现实,如何科学地指导大学生选择就业方向,提高就业成功率,成为亟待解决的问题。

本文将从层次分析法的基本原理、在大学生就业中的应用案例、优势以及展望等方面进行探讨,旨在为大学生就业提供更科学、更系统的指导方法。

通过深入研究层次分析法在大学生就业中的应用,有助于帮助大学生更好地应对就业挑战,实现个人职业发展目标。

2. 正文2.1 层次分析法的基本原理层次分析法(Analytic Hierarchy Process,AHP)是一种多准则决策方法,由美国运筹学家Saaty于20世纪70年代提出。

其核心思想是通过对各因素之间的比较和评价,建立一个层次结构,将复杂的问题分解为若干层次,从而帮助决策者做出最佳选择。

在层次分析法中,首先确定决策目标,然后构建目标层、准则层、方案层等多层结构,将决策问题分解为不同的层次。

接着,对每个层次的元素进行两两比较,使用判断矩阵来量化各元素之间的相对重要性。

通过计算各元素的权重,最终得出最优决策结果。

层次分析法的基本原理在大学生就业中得到广泛应用。

在面对复杂的就业选择时,大学生可以利用AHP方法建立决策框架,明晰各自的就业目标、准则和方案,有助于他们做出科学、客观的职业选择。

通过量化和比较各因素的重要性,大学生可以更加清晰地认识自己的就业需求和优势,从而更好地规划自己的就业道路。

层次分析法通过建立层次结构、比较和评价各元素的相对重要性,为大学生提供了一种科学、系统的决策方法,有助于他们在就业选择中做出更加准确和合理的决策。

随着大学生就业环境的不断变化,层次分析法在大学生就业指导中的应用前景将会更加广阔。

2.2 层次分析法在大学生就业中的应用案例层次分析法在大学生就业中的应用案例可以从不同角度进行探讨。

我们可以以大学生个人的就业选择为例。

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用层次分析法是一种多目标决策分析方法,已被广泛应用于各个领域,特别是在大学生就业领域中。

层次分析法主要通过对各种因素进行系统性的分析和比较,从而帮助决策者确定最优决策方案。

本文将阐述层次分析法在大学生就业中的应用。

第一,确认目标层次体系。

在大学生就业领域中,层次分析法的第一步是确认目标层次体系。

目标层次体系是将决策问题分解成具有明确层次关系的几个层次。

对于大学生就业问题,目标层次体系可能包括以下内容:就业岗位的类型、工作地点和薪水水平、工作环境和福利、职业发展前景等。

第二,确定各层次因素的权重。

确定各层次因素的权重是层次分析法的第二步。

在大学生就业中,决策者需要考虑各因素的重要程度,以便通过合适的权重分配来决策。

通常情况下,权重的确定可以根据问卷调研、专家访谈等方式来确定。

第三,建立评价指标体系。

建立评价指标体系是层次分析法的第三步。

大学生就业问题中,评价指标有很多,如受教育程度、专业技能、语言能力等。

在建立评价指标体系的过程中,需要将目标内部不同层次之间的关系转化为矩阵,并在矩阵中填入各指标的重要程度。

第四,进行层次比较和评估。

进行层次比较和评估是层次分析法的第四步。

在这一步骤中,决策者需要将各因素相互比较,评估它们之间的优先级和作用。

这个过程结束后,就可以得出每个决策因素的权重。

第五,制定最优决策方案。

最后,根据以上步骤得出的数据,决策者可以制定出最优决策方案。

在这种情况下,最优决策方案指的是从各个决策方案中选择最佳的一个。

总之,层次分析法是一种有效的多目标决策分析方法,适用于大学生就业问题中。

本文介绍了层次分析法的五个步骤,决策者可以根据这些步骤进行决策,最终得出最优决策方案。

层次分析法解决就业问题

层次分析法解决就业问题

层次分析法解决大学生就业问题摘要:针对为大学生对所提供的工作,运用层次分析法来分析大学生对所提供的工作的满意程度,根据所得数据解决问题。

关键词:就业、层次分析法、决策、目标、权向量一.问题的提出对一个毕业生在找工作,现有四个单位可以供他选择。

即:C1政府机构,C2化工厂,C3清洁工人,C4销售。

通过研究,最终确定了四个准则作为参照依据,来判断出最适合且最让他满意的工作。

准则:B1课题研究,B2发展前途,B3待遇,B4同事关系,B5地理位置,B6单位名气;通过这四个标准来评判出最满意的工作。

二.模型的假设一.该毕业生是文科生,但在大学期间也辅修了很多理科方面的学科,文理科兼懂。

二.四个单位对毕业生所具备的客观条件一样。

三.该毕业生对这四个工作岗位的工作都可以胜任。

1.层次结构模型的建立。

第一层:目标层,即对可供选择的工作的满意程度A ;第二层:准则层,即B1课题研究,B2发展前途,B3待遇,B4同事关系,B5地理位置,B6单位名气;第三层:方案层,即政府机构C1,化工厂C2,清洁工人C3,销售C4。

根据以上层次结构模型,对100名在校大学生进行抽样调查。

首先让被调查者针对图示的某一层对其上一层某种因素影响的重要性进行打分,再将数据的分值看作服从随机变量的分布,再利用数学期望计算出平均分。

设ξ表示某个问题的分值,根据概率论以及数理统计所学的知识点,得出ξ服从离散型分布如下。

(其中i n 为打分值为i ξξ=的人数,N 为被调查的总人数) 根据数学期望的定义,我们有离散型随机变量ξ的数学期望:5i i i E P ξξ==∑由调查数据和公式可以得到就业选择的整体评分表(表2,表3)表3就业选择的整体评分表2.画出结构图目标层 A3.构造成对比较矩阵和计算权向量:构造成对比较矩阵A,第二层准则层对第一层目标层的成对矩阵A:即A=111420.5112420.510.51530.5 0.250.250.210.3330.333 0.50.50.333310.333222331⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦求解得出A的最大特征根及其对应的特征向量,即W13=0.38122380.44265620.40457180.10565730.26943220.6413177⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦归一化0.1700.1970.1800.0470.1200.286⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,λ=6.5856436一致性检验:一致性比率0.11712871.24CICRRI===0.0944586<0.1,则一致性检验通过,W13可以作为权向量。

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用【摘要】层次分析法是一种常用的决策分析方法,可以帮助大学生在就业选择时做出更加科学合理的决策。

本文首先介绍了层次分析法的基本原理,然后探讨了在大学生就业中的具体应用。

通过确定影响大学生就业的因素并建立层次分析模型,我们可以分析出各个因素对于就业选择的优先级,帮助大学生更好地理解自己的优势和劣势,从而更加明智地做出决策。

本文总结了层次分析法在大学生就业中的价值,并展望了未来的研究方向。

层次分析法的应用不仅可以指导大学生更好地规划自己的未来,还可以为大学生提供科学依据,帮助他们更好地适应社会就业环境。

【关键词】层次分析法、大学生就业、因素、优先级、模型、价值、展望、总结1. 引言1.1 研究背景大学生就业一直是社会关注的焦点,随着我国高等教育规模不断扩大,大学生就业压力也在逐渐增大。

当前,我国大学生就业形势严峻,就业渠道日益狭窄,就业竞争日益激烈,大学生就业面临着诸多挑战和困难。

如何有效地提升大学生就业竞争力,帮助他们更好地实现就业和发展,成为一个亟待解决的问题。

本研究旨在探讨层次分析法在大学生就业中的应用,借助层次分析法,深入分析大学生就业中的关键因素,建立相应的模型,为大学生提供更科学合理的就业选择,促进其顺利就业和职业发展。

就在于探究如何有效利用层次分析法解决大学生就业问题,提高大学生就业质量和效率。

1.2 研究目的大于2000字的内容,请稍等片刻,我马上为您生成。

1.3 研究意义大的统计,排版格式等。

:大学生就业一直是社会关注的焦点之一,随着经济社会的不断发展,大学生就业形势也日益严峻。

通过层次分析法在大学生就业中的应用研究,可以帮助我们更好地了解影响大学生就业的因素,提高大学生就业的效率和质量。

通过确定影响大学生就业的因素和建立层次分析模型,我们可以更加科学地评价和比较各种影响因素,为大学生提供更合适的就业选择建议。

分析大学生就业选择的优先级可以有效指导学生们制定更合理和有效的就业规划,提高他们的就业竞争力。

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用

层次分析法在大学生就业中的应用【摘要】层次分析法是一种较为科学的决策分析方法,在大学生就业领域也有广泛的应用。

本文首先介绍了层次分析法的基本原理,然后针对大学生就业需求分析、岗位选择、意向排名和方案评价等方面进行了具体应用讨论。

通过层次分析法,大学生能更科学地选择职业方向,提高对自身职业发展的认知,并具有重要的指导意义。

层次分析法的使用可以帮助大学生更好地规划自己的职业生涯,提高就业成功率。

在大学生就业过程中,层次分析法是一种有益的工具,能够帮助他们做出更加合理和有效的决策。

通过本文的讨论,可以进一步认识到层次分析法在大学生就业中的重要作用,促进大学生们取得更好的职业发展。

【关键词】层次分析法, 大学生就业, 应用, 就业需求分析, 就业岗位选择, 就业意向排名, 就业方案评价, 职业方向选择, 自我认知, 指导意义1. 引言1.1 层次分析法在大学生就业中的应用层次分析法在大学生就业中的应用是一种系统性的决策方法,通过对不同因素的比较和权重分配,帮助大学生更科学地进行职业选择和规划。

在大学生就业中,层次分析法可以帮助他们理清自己的需求和优先排列自己的目标,从而更好地找到适合自己的职业方向。

层次分析法在大学生就业中具有重要的作用,可以帮助他们更好地理清自己的职业规划,提高对自身职业发展的认知,从而更好地实现自己的职业目标。

2. 正文2.1 层次分析法的基本原理层次分析法是一种系统性的决策分析工具,它通过将复杂问题分解为层次结构,然后利用专家判断矩阵对各层次的因素进行两两比较,最终确定各因素的权重,从而得出最终的决策结果。

在层次分析法中,首先确定目标,然后将目标分解成若干个层次,每个层次包含若干个因素,形成一个层次结构。

接着,对于每个层次的因素,利用专家意见或实证数据,构建判断矩阵,进行两两比较,确定各因素之间的重要程度。

通过计算特征值和特征向量,计算出各因素的权重,最终得出最佳决策方案。

层次分析法的基本原理是建立层次结构,通过专家判断矩阵确定各因素之间的相对重要性,利用数学计算方法得出各因素的权重,进而做出最佳决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谈层次分析法在就业中的应用摘要近年高校毕业生数量急剧膨胀就业的难题似乎变得更加严峻和突出——全国就业工作座谈会传来消息,2010年应届毕业生规模是本世纪初的6倍,2011年高校毕业生人数为660万人,“十二五”时期应届毕业生年平均规模将达到近700万人。

许多大学生处于就业十字路口,茫然不知所措。

这种心态下的种种决策难免造成失误,所以需要一种可靠的定量的容易操作的,并且具体的有说服力的方法来帮助做出决策。

本文提出了定性和定量相结合的层次分析法步骤,构成了工作满意度的评价指标体系,通过各因素重要程度比较与计算,最终确定出了6个具体指标在该体系下的权重并排序,这样在分析某种工作的满意程度时就可以按此权重进行衡量。

为此我们建立了层次结构模型,做成对比较矩阵:正互反矩阵为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=wn wn w wn w wn wn w w w w w w w wnw w w w w w w A /......2/1//2........3/22/21/2/1........3/12/11/1通过Matlab等数学工具,得到特征向量T w )083.0,201.0,139.0,154.0,076.0,347.0(1=,且∑==508.6)(max ii nw Aw λ,通过一致性指标得出1016.0)1()(max =--=n n CI λ,1.0082.024.11016.0<===RI CI CR , 如果有CI 偏差,那偏差是否在满意的一致性范围,引进平均随机一致性指标RI 。

平均随机一致性指标RI 数值通过比较,最后得出一致性检验通过。

关键词:大学生择业, 层次分析法,适用性。

1.1. 问题背景由于受到各高校扩招的影响,大学毕业生人数逐年增长,用人单位就业岗位日趋饱和,再加上08年金融危机的影响各类毕业生就业困难问题凸显.在就业选择时候,要考虑的因素很多,诸如:工资福利,专业和个人兴趣、工作环境、社会需求、工作的稳定性、单位发展前景,声誉,关系,位置,贡献等。

在做选择时,这些因素的重要性或者影响力的优先程度往往难以量化,人的主观因素往往会起着主要作用,会给解决实际问题带来一定的困难. 最近几年,我国大学毕业就业产生不少新变化。

首先,我国本土大学生面临国际联合办学机构竞争。

近几年来,我国高教市场逐步向国外资本开放,各种形式外国教育机构的进入,产生了更多类型的人才培养机构,他们不但提供了人才短期培训,不少教育机构还与国内大学进行联合办学,这种全新人才培养模式直接挑战了中国本土高校人才培养模式,对我国本土高校大学生就业增强了不少的竞争对手。

其次,人才市场更加偏重“好”专业。

所谓的“好”专业或“热”专业,是指当前就业市场较紧缺的专业。

近年来,影响大学生就业重要因素之一即大学所学专业是否与社会需求相一致,用人单位对大学生的专业偏好比大学知名度更高,一些名牌学校不合适市场专业学生就业不理想。

用人单位在看重“专业”同时,还对大学毕业生的“专长”很重视,有专长的复合型人才是用人单位竞相争聘的热点。

第三,海外归来学子对我国大学生就业冲击加剧。

近几年来,留学生回国潮一浪高过一浪,直接挤压国内大学生就业空间,这些海外学子对世界经济运行规则,各国法律制度等比较了解,在国外多年的锻炼,社会实践能力和驾驭各国社会文化、政治制度差异的能力比较强,竞争力较强,是国内大学生就业强劲对手。

大学生毕业生自身也存在不少问题对,对各种行业高不成低不就的心态以及许多就业误区诱惑都给找到合适的工作带来重重困镜。

为了能够做出一个客观的决策,我们希望找到一个定量相结合的方法,层次分析法是一个比较理想的选择. 一种可靠的定量的容易操作的,并且具体的有说服力的方法来帮助决策。

1.2 问题提出我们根据某大型网站对以大学毕业生做出的准确的工作满意度调查部分数据, 所得数据客观有效。

调查表内容:请毕业生在(a)-(i)中选择影响选择工作的最大的项指标:(a)职业是否有良好的发展前景;(b)是否可以建立起良好的同事关系;(c)是否有满意的工资、福利待遇;(d)地理环境是否优越;(e)是否符合个人的兴趣爱好;(f)是否提供住房、饮食等;;(g)单位是否有良好的声誉;(h)是否能为自己提供良好科研条件;(i)是否能为自己提供培训或出国深造的机会;(k)单位所处的地理位置;(j)该单位所提供岗位的贡献。

提出问题如下①利用层次分析法,确定可供选择的工作优先顺序②你认为这些准则合适吗?二、模型假设2.1假设1)假设文中所列准则因素均符合层次分析方法的具体机构要求2)模型中各个分析因素具有全面性3)假设在短时间内,题内各层因素结构不会发生变化4)一个学生遇到m个职业岗位并且每个职业岗位都有意愿接受这个大学生5)学生选择的职业岗位于要考虑N个主要因素6)对于学生选择的职业岗位,其有能力干好此项工作2.2说明1、满意度:是同学们的期望值与最终获得值之间的匹配程度.2、优先权重:是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度3 、组合权向量4、判断矩阵:两两比较结果构成的矩阵称作判断矩阵。

判断矩阵具有如下性质:三、符号说明四、问题分析问题一首先, 我们要解决的问题是尽量选择适合自己的最佳工作,在处理如何选择最佳职业的决策问题上,我们要考虑的因素有很多,能够发挥自己的才干为国家做贡献;丰厚的收入;适合个人的兴趣及发展;良好的声誉;人际关系;地理位置等。

在这些诸多因素中,对于岗位的相关性也是不一样的。

况且这些因素通常不易定量地测量。

因此我们将所有因素两两进行对比建立层次分析法模型。

问题二上述的这些准则是我们自己臆测的,是主观认为可能与选择岗位有关,那么,我们研究这些准则是不是合适。

每个人对于工作选择所要考虑的首要因素和次要因素都是有差异的。

于是,我们就要选择最重要的几个因素来研究,对于人群的相对考虑度比较低的我们不再考虑。

在所建立的层次分析模型中由一致性比率CR>0.1,不具有可信度,我们就说这些准则是不合适的。

五、模型的建立与求解5.1层次分析方法所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。

决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重。

5.1.1操作步骤:建立层次结构模型在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。

最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。

当准则过多时(譬如多于9个)应进一步分解出子准则层。

5.1.2构造成对比较阵从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。

表1 正互反矩阵中元素比较尺度及其含义5.1.3计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。

若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构追成对比较阵。

根据所得到的正互反矩阵,计算对于上一层因素而言的本层次各因素间相关重要性的权重方法有特征值法、方根法、和法等,采用和法计算。

a.将A 的每一列向量归一化得:∑-=ni ijijij aa w 1~.b.对w ~按行求和得:∑-=ni ij iw w 1~~. c.将i w ~归一化: ∑-*=ni iii ww w 1~~~ ,T n w w w W ),,,(21 =,即为近似特征向量.d.计算 ∑-=n i i inw Aw 11max )(λ ,作为最大特征根的近似值. 5.1.4计算组合权向量并做组合一致性检验计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

美国运筹学家A.L.saaty 于20世纪70年代提出的层次分析法(AnalyticHi~hyProcess ,简称AHP 方法),是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模型化、数量化。

应用这种方法,决策者通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案的权重,为最佳方案的选择提供依据。

运用AHP 方法,大体可分为以下三个步骤:步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵; 步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;步骤3:计算各层次对于系统的总排序权重,并进行排序。

最后,得到各方案对于总目标的总排序。

5.2模型的建立 目标层:工作的选择准则层:工作的发展,收入,环境,贡献,稳定性,地域 方案层:事业单位,政府单位,自主创业5.3模型的求解通过调查问卷,初步确定了影响毕业生工作选择的最重要的6个因素以及它们之间的重要度关系,根据上文中表按1~9标度得到如下表: A 发展1B 收入2B 环境3B 贡献4B 稳定性5B 地域6B 发展1B 1 6 3 3 2 5 收入2B 1/6 1 1/2 1/2 1/3 1/2 环境3B 1/3 2 1 2 1/2 1 贡献4B1/321/211/21/2从而建立正互反矩阵为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=12/12125/1212232/121211212112/12123/12/13/12/12/116/1523361A 5.4计算正互反矩阵A 的权向量和一致性检验,5.4.1计算正互反矩阵A 权向量采用层次分析法中的和法.对数据进行进一步的处理、运算,得到该矩阵的特征向量T w )083.0,201.0,139.0,154.0,076.0,347.0(1=,且∑==508.6)(max ii nw Aw λ,(其中i Aw )(为Aw 的第i 个分量,T n w ),......,(211ωωω=). 5.4.2对正互反矩阵A 进行一致性检验 因为1016.0)1()(max =--=n n CI λ,其中508.6max =λ.则对于6=n 的表一的矩阵数据,我们可以得到:1.0082.024.11016.0<===RI CI CR ,所以,一致性检验通过。

相关文档
最新文档