空气弹簧动力学特性分析
高速动车组空气弹簧动力学特性及其故障模式

使用维护高速动车组空气弹簧动力学特性及其故障模式刘志贺(上海中车艾森迪海洋装备有限公司,上海201306)摘要:在我国高速铁路发展的过程中,动车的使用原来越广泛,其使用的安全性成为了当前中国铁路致力研究的问题。
在研究的过程中,空气弹簧悬挂系统成为了主要研究的装置之一,能够有效提高动车组的动力学性能,但是在应用中也显示出了一些问题。
据此,主要对其特性及故障模式下的运行展开探讨。
关键词:高速动车;空气弹簧动力学;故障模式随着我国经济的发展,高速铁路网日益的密集对高速列车运营的质量提出了更加严格的要求,人们出行次数的增加也对高速列车的舒适感提出了更高的要求。
在高速动车的运行装置中,在悬挂系统中应用空气弹簧能够有效提升动车运行的安全性和舒适性,研究其故障模式有利于进一步提升高速动车组的可靠性。
1高速动车组空气弹簧动力学特性空气弹簧是一种有弹性作用的非金属弹簧,它的弹性主要是通过在橡胶气囊里空气的可压缩性来实现的。
其应用在动车组的悬挂系统中,很大程度上提高了动车运行的质量,在实际使用中显示出了以下特性:(1)高度调整阀对空气弹簧进行充气和排气的工作,维持空气弹簧在工作时一定的高度,能够使高速动车组不管在什么载荷情况下都能保持车体和轨道面一定的距离。
(2)由于空气弹簧的垂向柔性较大,因此能够使高速动车的二系悬挂系统保持较低的固有频率,空气弹簧的作用类似于低通滤波器,能够隔离转向架较高频率的振动。
(3怪气弹簧具有垂向刚度,能够在载荷增加的时候也随之增加,帮助高速动车组在不同载荷的情况下都保持固有的频率,从而提升动车组的动力学性能。
(4:)空气弹簧的振动是以气体作为媒介的,气体对高频振动的吸收效果较好個此能减小动车运行的噪音,保证乘客乘坐动车的舒适感。
(5)空气弹簧在和附加空气室交换气体时产生的阻力能够在一定情况下代替垂向液压减振器,能够节省动车的结构空间,降低制造成本。
(6怪气弹簧X较低的水平刚度,保证了较大的横移量,因此在高速动车组的转向架中,可以取消摇动台装置,简化转向架的结构,减轻车辆自身的重量。
空气弹簧的分类及特点.

空气弹簧的分类及特点近年来,非线性课题一直是各学科的研究前沿,在隔振领域也不例外。
随着隔振设计中对隔振系统各种性能指标要求的提高,迫使人们不断探索新型的隔振器。
非线性隔振器能够自动避开共振,有效抑制振动幅值、隔离冲击,因而受到广泛的关注。
线性隔振器却不能自动避开共振。
非线性隔振器的刚度是随隔振器变形量的不同而变化的,因而由非线性隔振器组成的隔振系统其固有频率与振动幅值有关。
如果隔振器是非线性硬特性的,固有频率随振幅的增加而上升;如果隔振器是非线性软特性的,固有频率随振幅的增加而下降。
当设备在启动过程中经过共振点时,被隔振设备的振动幅值将出现峰值,高出静态位移许多倍。
随着振幅的迅速增长,由非线性隔振器组成的隔振系统其固有频率将上升或下降,从而避开共振频率。
对于线性隔振器,其刚度值是不变的,只能通过阻尼作用控制共振振幅。
但是过了共振点之后,隔振器的隔振效率因为阻尼的作用而下降。
此外非线性隔振器还能有效防止冲击。
对于非线性硬特性的隔振器其刚度随变形量的增加而上升,遇到冲击时,簧上载荷的加速度随变形量的增加而增大,因而在较小的变形下冲击速度迅速降低。
对于非线性软特性的隔振器其刚度随变形量的增加而降低,因而能够起到缓冲作用,但隔振器的变形量较大。
在很多情况下不允许有太大的变形量,就应该选择非线性硬特性隔振器来防止冲击。
根据上述分析,空气弹簧是一种理想的隔振元件。
空气弹簧是在柔性密闭容器中加入压力空气,利用空气压缩的非线性恢复力来实现隔振和缓冲作用的一种非金属弹簧。
它具有优良的非线性硬特性,因而能够有效限制振幅,避开共振,防止冲击。
空气弹簧隔振系统的固有频率可以设计得很低,甚至达1Hz 以下,而橡胶隔振器的自振频率一般为5-7 H z 。
所以空气弹簧的隔振效率比起其它隔振元件高得多,而且能够隔离低频振动。
特别是因为空气弹簧隔振系统容易实施主动控制,作为一种具有可调非线性静、动态刚度及阻尼特性的隔振元件,空气弹簧的应用越来越广泛。
囊式空气弹簧力学特性分析与研究

囊式空气弹簧力学特性分析与研究佟雪峰;陈克;王新芳;张中生;贺鹏【摘要】空气弹簧是空气悬架的关键部件,空气弹簧的力学性能对空气悬架的影响很大.空气悬架具有变刚度非线性阻尼特性,可改善汽车的操纵稳定性和行驶平顺性,其特征曲线可设计成符合车辆振动规律的理想特性曲线.本文根据气体状态方程,推导囊式双变角型空气弹簧刚度与形状系数、内压、容积的关系表达式,建立空气弹簧的数学模型,仿真分析空气弹簧刚度与几何形状系数、弹簧内压、弹簧容积的变化关系.为空气弹簧的设计提供参考和依据.%Air spring is the key component of the air suspension. The mechanical properties of air spring play a great role in air suspension. The air suspension has the characteristics of nonlinear variable spring rate. To improve vehicle handling stability and ride comfort, the characteristic curve can be designed to comply with the vehicle vibration. According to the basic theory of mechanics, the geometric shape factors and spring rate of dual variable angle air spring is derived, the mathematical model of dual-angle-type air springs is established, the geometric shape factor, the relationship between the air spring stiffness and spring pressure and the spring volume are simulated and analyzed. As a result a reference and basis for the air spring design are obtained.【期刊名称】《沈阳理工大学学报》【年(卷),期】2011(030)005【总页数】5页(P63-67)【关键词】空气弹簧;弹簧刚度;力学特性;弹簧容积;弹簧内压【作者】佟雪峰;陈克;王新芳;张中生;贺鹏【作者单位】沈阳理工大学汽车与交通学院,辽宁沈阳110159;沈阳理工大学汽车与交通学院,辽宁沈阳110159;沈阳理工大学汽车与交通学院,辽宁沈阳110159;中国北方车辆研究所,北京100072;大连交通大学软件学院,辽宁大连116028【正文语种】中文【中图分类】TB533+.2空气弹簧作为空气悬架中重要的弹性元件具有良好的弹性特性,用于车辆悬架装置中可明显改善车辆的行驶平顺性和操纵稳定性。
高速车辆空气弹簧悬挂系统动力学及故障影响分析

高速车辆空气弹簧悬挂系统动力学及故障影响分析高速车辆空气弹簧悬挂系统动力学及故障影响分析悬挂系统是汽车的重要组成部分,对于车辆的行驶安全和舒适性有着重要的影响。
在高速行驶中,悬挂系统的性能尤为重要,一旦出现故障将对车辆的操控性产生重大影响。
其中,空气弹簧悬挂系统因其调节性能好、适应性强等特点,在高速车辆中得到广泛应用。
本文将对高速车辆空气弹簧悬挂系统的动力学特性和故障影响进行分析。
首先,我们需要了解空气弹簧悬挂系统的工作原理。
空气弹簧通过车辆悬挂系统上的气囊进行支撑,通过增减气囊内气体的压力来调节悬挂系统的硬度。
当车辆在高速行驶中遇到颠簸路面时,空气弹簧可以根据路况变化实时调节气囊内的气压,从而使车身始终保持在合适的高度和位置,提供良好的悬挂效果。
对于空气弹簧悬挂系统的动力学分析,我们首先需要关注的是其固有频率。
固有频率是指车辆在悬挂系统中自然振动的频率。
当车辆行驶在高速公路等平坦路面时,由于路面的接触和车辆的惯性作用,会产生上下颠簸的振动,此时悬挂系统的固有频率能够使车辆进行稳定的自然振动,提供舒适的行驶体验。
然而,假如固有频率与路面不匹配,就会产生共振效应,导致车辆失去稳定性,甚至发生“跳跃”现象,给驾驶员的操控带来极大困扰。
因此,对于高速车辆的悬挂系统来说,保持合适的固有频率至关重要。
当空气弹簧悬挂系统发生故障时,其对车辆的影响主要包括:车高异常、悬挂系统僵硬或过软、悬挂系统失去调节能力等。
首先,当悬挂系统发生故障导致车高异常时,会影响到车辆的操控性和稳定性。
例如,空气弹簧气囊漏气或气囊过度膨胀,会导致车身降低或抬高,使得车辆的重心位置发生变化,影响到车辆的行驶稳定性。
其次,当悬挂系统僵硬或过软时,悬挂系统无法对车身的上下振动进行适当的调节,使得车辆在行驶过程中容易受到路面的影响,给驾驶员带来不稳定感。
再次,当悬挂系统失去调节能力时,无法根据路况变化时实时调节气囊内的气压,使得车身无法保持合适的高度和位置,影响到车辆的悬挂效果和行驶安全性。
空气弹簧失效对车辆动力学性能的影响

空气弹簧失效对车辆动力学性能的影响摘要:空气弹簧作为二系悬挂的主要部件,它不但起着隔离和衰减二系振动的作用,而且还起着支撑车体的作用。
空气弹簧的橡胶囊一旦发生大的破裂将会造成空气弹簧的支撑作用瞬间消失,应急弹簧开始代替空气弹簧起作用,由于空气弹簧失气的过程十分短暂,导致二系悬挂系统的刚度瞬间发生剧烈的变化,二系悬挂力也会随着发生较大的改变,造成对车体和构架产生大的冲击。
这不仅影响到车辆的运行品质,还会危机到车辆的运行安全。
所以对空气弹簧失效对车辆动力学性能影响的研究是十分重要的。
关键词:轨道车辆;空气弹簧;动力学性能;失效分析1.前言目前,铁道客车二系悬挂大部分采用空气弹簧,国内外学者对空气弹簧的刚度特性和减振特性进行了大量的研究,在以往的动力学计算中假设空气弹簧在正常工作范围内的刚度为线性,采用线性弹簧和阻尼模拟空气弹簧。
一些学者也采用了有限元法和气体状态方程建立空气弹簧模型等方法研究空气弹簧的动态特性。
但这些研究是基于空气弹簧正常工作状态下的,目前对空气弹簧失效的研究还很少,因此空气弹簧失效后对车辆动力学性能影响的研究十分必要。
2.空气弹簧失效的动力学模型空气弹簧既是二系悬挂系统的主要部件,同时也是二系悬挂系统中的易损件。
空气弹簧的故障有很多种,比如高度调节阀故障、差压阀故障以及橡胶囊出现故障等。
其中橡胶囊破裂是最常见的故障,由于橡胶囊的破裂会使空气弹簧内的空气瞬间释放出去,空气弹簧失去支撑车体的能力,车体开始支撑于应急弹簧上面。
因为空气弹簧中气体释放的时间非常短暂,导致二系悬挂系统的刚度发生剧烈的变化,同时二系悬挂系统中的悬挂力也随之发生剧烈的变化,当车辆在较差的线路上行驶时轮轨间会产生较大的横向和垂向冲击,危及到了车辆运行的安全性,本文中研究的是空气弹簧橡胶囊破裂时完全失效的情况。
由于空气弹簧失效后,二系悬挂系统中的横向和纵向的定位作用大大减弱。
当空气弹簧中的应急弹簧开始起作用后,车体的垂向有应急弹簧起支撑作用,横向和纵向由应急弹簧和上下磨耗板共同起着定位的作用。
空气弹簧动力学特性参数分析

/0123454 67 830195: ;<1=1:>?=54>5: @1=19?>?= 67 /5= AB=50C
!" #$ , #% &’()*’+ , ,%-./ 0$1)*$’
(D=1:>560 @6E?= F?4?1=:< ;?0>?=,A6G><E?4> H516>60C I05J?=45>3,;<?0CKG ($""%$,;<501)
! #
[
(
)
]
(#*)
将式 (##) (#*) 用泰劳级数展开, 仅考虑其线性部分, 同时假定空气弹簧和附加空气室具有较好的绝热 +式 性, 则温度及压力的微分方程可由下式表示: $ !# !") !! ) $ ’ % !! ) $ ’ & + ( $% % $# &# $ # &# $ # &# ) , $ !! $# $ "# $# $ "! $# !") # + $ &# ) , , ! ( ") $ ’ % $ ’ & "( - ! % #) ) ! % #) +, $ % % &# !) &# ) $# $# ! "( ) ! % #) +, $ !) &# )
4 %! - . 0 / ! 0 /( 4 1 , - 1 :)0 /( ; 1 , - 1 :) , # / 8 0 /( / 8 0 /( 9 1 , - 1 :) 9 1 , - 1 :)
(!)
图! "#$% !
新型长方体形囊式空气弹簧垂向动态特性研究

第37卷第7期振动与冲击JO U RN AL O F V IBR A TIO N A N D SH O C K V ol.37N o.7 2018新型长方体形囊式空气弹簧垂向动态特性研究徐国敏$’2,周炜$’2,何琳$’2,帅长庚$&2(1.海军工程大学振动与噪声研究所,武汉430033; 2.船舶振动噪声重点实验室,武汉430033)摘要:空气弹簧是一种刚度可变,同时固有频率基本不随载荷变化的非线性隔振元件。
在狭长空间中,长方体形空气弹簧比回转体空气弹簧具有更高的空间利用率。
在现有回转体空气弹簧动态特性理论研究基础上,考虑了系统振动频率对多变指数与垂向动态特性的影响,建立了空气弹簧非线性刚度模型,推广了垂向刚度计算公式,并提出概念绝热频率阈值。
设计了一种新型长方体形囊式空气弹簧并进行了试验研究,结果与理论预测符合良好。
同时通过与商用空气弹簧的动态特性对比,展现了该设计承载能力大、空间适用性高的优点。
关键词:空气弹簧;垂向刚度;多变指数;有效面积中图分类号#O328 文献标志码:A DOI:10.13465/ki.0s.2018.07.037V e r tic a l d y n a m ic c h a ra c te ris tic s o f c u b o id ty p e a ir sp rin g sXU Guomin1,2 ’ ZHOU Wei^’2 ’ HE Lin1,2 ’ SHUAI Changgeng1,2(1.I n s t i t u t e o f Noise and Vibration’Naval U n i v e r s i t y o f Engineering’Wuhan430033 ’China;2.N a t i o n a l Key Lab or atory〇n Ship V i b r a t i o n& Noise’Wuhan430033 ’China)Abstract:Air springs are nonlinear vibration iso lat ors with variable s t i f f n e s s and natural frequency unvarying with loads.Cuboid ai r springs have a higher space-utilizing rate than conventional rotator a i r existing theoretical studies on dynamic characteristics of rotator air springs’considering influences of system natural frequency on polytropic exponent and vertical dynamic characteristics’a nonlinear s t i f f n e s s model of air springs was established and the ver tical s t i f f n e s s calculation formula was extended.The conceptual adiabatic proposed.A new cuboid a i r spring was designed and tested.Test results agreed well with those of theoretical prediction. Compared w i t l i the dynamic features of commercial air springs’i t was shown that t l i e advantages of a larger load-bearing a b il ity and a higher space-utilizing rate.Key words:a i r spring;vertical stiffness;polytropic exponent;effective area空气弹簧作为一类非线性隔振器,承载能力大,固有频率低,并且其固有频率在载荷变化时几乎保持不 变,与橡胶隔振器相比性能优势明显。
空气弹簧特性研究

空气弹簧特性研究本文旨在研究空气弹簧特性。
空气弹簧是指一类由流体或液体运动而成的减震器,它是运用空气体压学学理论设计出来的,其主要功能是调节前后轮的动态刚度,有效的减少振动。
一、空气弹簧的原理1、原理介绍:空气弹簧是一种利用气体动力学原理制造的减震器,空气弹簧包括活塞、减震器壳体、活塞棒及其它附件组成。
空气弹簧利用空气体压计理跳动,当空气体压降低时,空气弹簧能够吸收前轮和后轮受力之间的差异,从而改变车辆胎压,使振动减小。
2、构造特点:活塞和减震器壳体之间可以进行伸缩,可以有效的减小振动,维持车辆的行驶稳定,提高乘员的乘坐舒适性。
空气弹簧的优点是可以简单调节,采用空气压力控制,当低车辆行车振动,增加有效行车通过空气弹簧即可调整车辆的高度,实现简单的调节。
二、空气弹簧特性1、减振性能:空气弹簧具有良好的减振性能,承受较大的负载,耐磨性强,在恶劣环境下仍能发挥很好的效果,对车辆路面振动变化有良好的配合能力。
2、稳定性:空气弹簧具有较高的稳定性,采用液压设计,可以提高车辆的稳定性,以保持车辆行驶的稳定性。
3、调节灵活性:空气弹簧采用气体原理,有较高的可调性,可以根据需要随时调节出发和力度较大的减振效果,以保持驾驶安全和舒适。
三、空气弹簧研发应用1、柴油机:柴油机可以采用空气弹簧减震,可以在柴油机设备上安装一个小型空气弹簧减震器,空气弹簧可以更好的表现柴油机的稳定性,提高机器的耐用性和安全性。
2、汽车行驶:由于空气弹簧可以增加行车减振效果,汽车可以在行驶中增加平稳性,提高乘员的舒适性,以及车辆的稳定性,降低不良路况对车辆行驶的影响。
3、机器工业:机器工业可以采用空气弹簧减震技术,减少机器运转时的噪音和感和误差,确保机器发挥最大的功能,提高工业机械的使用效果。
综上所述,空气弹簧具有良好的减振性能,稳定性和可调性,因此应用前景广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空气弹簧是一种在柔性密闭橡胶气囊中冲入压缩空气,利用空气的压缩弹性进行工作的非金属弹性元件,它的的振动固有频率较低,且不同载荷下几乎保持不变,是一种隔振性能优良的隔振器。
担架支架是伤员运送车辆在行驶途中承载、固定卧姿伤病员担架的主要设备。
担架支架的隔振系统设计在很大程度上决定了伤病员在运送途中的乘卧舒适性。
性能优异的担架支架隔振系统能有效提高伤员运送车辆的运送能力。
空气弹簧是较为合适的可用于担架支架系统的隔振器,它是利用空气的压缩弹性进行工作的非金属弹性元件。
作为隔振元件,空气弹簧具有非线性变刚度特性,通过内压的调整,可以得到不同的承载能力;承受轴向载荷和径向载荷,可产生相对较好的缓冲隔振效果;还具有结构简单、安装高度低、更换方便、工作可靠、质量轻、单位质量储能量高等优点。
将空气弹簧增加附加气室能显著降低空气弹簧的刚度及固有频率。
本文对应用于急救车担架支架装置的空气弹簧隔振器的动态特性进行了理论分析、实验测试、实验建模等方面的研究,为今后进一步研究半主动控制的空气弹簧隔振系统提供了参考依据。
本文首先介绍了空气弹簧的研究与发展现状,对空气弹簧的性能和优缺点进行了比较。
并对空气弹簧的动力学特性进行研究,推导了空气弹簧动刚度计算公式,分析了其动力学特性的影响因素,建立了带附加气室与不带附加气室空气弹簧的力学模型。
其次做了空气弹簧的动力学特性实验,得到如下结论:不带附加气室时,当初始气压、激振振幅增加时,空气弹簧动刚度随之增加;当激振频率增加时,空气弹簧的动刚度随之减小。
空气弹簧的固有频率几乎保持不变。
而带附加气室空气弹簧在节流孔孔径4-7mm范围内,当孔径增大时,空气弹簧动刚度随之减小;当初始气压、激振频率、激振振幅增加时,空气弹簧动刚度随之增加。
在高频(8Hz)左右时,振幅、频率的变化对动刚度的改变已不明显。
在低频率时,带附加气室能显著降低空气弹簧的动刚度,而在较高频率时,带附加气室会使空气弹簧的动刚度增加。
最后对带附加气室空气弹簧力学模型进行了简化,通过实验数据运用最小二乘法对模型参数进行了识别,并用四个指标对模型拟合精度进行了评价。
分析结果表明误差较小,模型能够比较准确的反映出应用空气弹簧隔振器的力学特性。