数学建模实验 ――曲线拟合与回归分析
sup曲线拟合与回归分析 ppt课件

在一般情況下,只能找到一組 ,使得等號兩邊的
差異為最小,此差異可寫成
yA 2(yA )T(yA )
此即為前述的總平方誤差 E
MATLAB 提供一個簡單方便的「左除」(\)指
令,來解出最佳的
2020/12/27
10
線性迴歸:曲線擬合
利用「左除」來算出最佳的 值,並同時畫出 具有最小平方誤差的二次曲線
、
0
a
1、a
的一次式
2
令上述導式為零之後,我們可以得到一組三元一次
線性聯立方程式,就可以解出參數 佳值。
a
0、
a
1、a
的最
2
2020/12/27
8
線性迴歸:曲線擬合
假設 21 個觀察點均通過此拋物線,將這 21 個點帶入拋物線方程式,得到下列21個等式:
a0 a1 x1 a2 x12 y1 a0 a1 x2 a2 x2 2 y2
範例10-2: census01.m
load census.mat plot(cdate, pop, 'o');
% 載入人口資料 % cdate 代表年度,pop 代表人口總數
A = [ones(size(cdate)), cdate, cdate.^2];
y = pop; theta = A\y;
a0 a1 x21 a2 x212 y21
亦可寫成
1 1
x1
x2
x12 x22
1
2
y1
y2
1
x 21
x
212
3
y21
A
y
其中 2020/12/27
回归分析曲线拟合通用课件

研究生物标志物与疾病之间的 关系,预测疾病的发生风险。
金融市场分析
分析股票价格、利率等金融变 量的相关性,进行市场预测和 风险管理。
社会科学研究
研究社会现象之间的相关关系 ,如教育程度与收入的关系、 人口增长与经济发展的线性回归模型
线性回归模型是一种预测模型,用于描 述因变量和自变量之间的线性关系。
SPSS实现
SPSS实现步骤 1. 打开SPSS软件; 2. 导入数据;
SPSS实现
01
3. 选择回归分析命令;
02
4. 设置回归分析的变量和选项;
03
5. 运行回归分析;
04
6. 查看并解释结果。
THANKS
感谢观看
回归分析曲线拟合通用课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 曲线拟合方法 • 回归分析的实践应用 • 回归分析的软件实现
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变异关系, 找出影响因变量的主要因素,并 建立回归方程,用于预测和控制 因变量的取值。
线性回归模型的假设包括:误差项的独立性、误差项的同方差性、误差 项的无偏性和误差项的正态性。
对假设的检验可以通过一些统计量进行,如残差图、Q-Q图、Durbin Watson检验等。如果模型的假设不满足,可能需要重新考虑模型的建立 或对数据进行适当的变换。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
回归分析的分类
01
02
03
一元线性回归
第八章 曲线拟合、回归和相关分析

yx xxy a , 2 2 n x ( x ) nxy xy b , 其中b也可以写成 2 2 n x ( x )
1 1 0 z ln( ), z 2 1 0
1 n3
z
1
2
这里
Z Z Z Z , Z Z
1 2 1 2 1 2
2 1
2 2
1 1 n1 3 n2 3
是近似正态分布。
回归的概率解释
从同一总体抽取不同的样本作拟合,我们会 得到不同的回归曲线。 给定两个随机变量X和Y的联合密度函数和概 率函数。如果使E{[Y-g(X)]2}=最小值的y=g(x) 曲线称为Y关于X的最小二乘回归曲线有如下 定理: 定理一:y=g(x)=E(Y|X=x)满足E{[Y-g(X)]2}= 最小值,所以它是Y关于X的最小二乘曲线。
定理二:如果X和Y是具有二元正态分布的随机变量, 那么Y关于X的最小二乘回归曲线是一条回归直线,为
y Y
Y
(
x X
X
)
这里
XY = XY
前面对样本的最小二乘回归的叙述容易推广到总体上。 例如,总体情况下的估计的标准误差用方差和相关系数 2 2 2 ( 1 ) 项给定为 Y . X Y
曲线拟合、回归和相关
曲线拟合
实践中寻求两个(或多个) 变量间存在的关系,拟 合给定数据用以确定变 量间的近似曲线方程, 此过程叫曲线拟合。
数学建模回归分析实验报告[1]
![数学建模回归分析实验报告[1]](https://img.taocdn.com/s3/m/039578ef9e314332396893fb.png)
beta = 21.0058 19.5285
所以:养护日期 x(日)及抗压强度 y(kg/cm2)的回归方程:y=21.0050+19.5288ln(x)
(2)、主程序如下: x=[2 3 4 5 7 9 12 14 17 21 28 56]; y=[35 42 47 53 59 65 68 73 76 82 86 99]; beta0=[1 1]'; [beta,r,J]=nlinfit(x',y','volum',beta0); beta
(3)、输出结果:
实验目的 1、直观了解回归分析基本内容。 2、掌握用数学软件求解回归分析问题。 实验内容 1、回归分析的基本理论。 2、用数学软件求解回归分析问题。
程序设计
1、考察温度 x 对产量 y 的影响,测得下列 10 组数据:
温度(℃) 20 25 30
35
40
45
50
55
60
65
产量(kg) 13.2 15.1 16.4 17.1 17.9 18.7 19.6 21.2 22.5 24.3
差的置信区间均包含零点,这说明回归模型 y=9.1212+0.2230x 能较好的符合原 始数据,没有异常点.
(5)、预测及作图: z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')
预测 x=42℃时产量的估值.y=18.4872
2、某零件上有一段曲线,为了在程序控制机床上加工这一零件,需要求这段曲 线的解析表达式,在曲线横坐标 xi 处测得纵坐标 yi 共 11 对数据如下:
s=[0.6 2.0 4.4 7.5 11.8 17.1 23.3 31.2 39.6 49.7 61.7];
数学建模与数学实验 回归分析

2、多项式回归
设变量 x、Y 的回归模型为 Y 0 1x 2 x2 ... p x p
其中 p 是已知的,i (i 1,2,, p) 是未知参数, 服从正态分布 N (0, 2 ) .
Y 0 1x 2 x2 ... k xk
腿长
88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi) 在平面直角坐标系上标出.
解答
102
100
98
y 0 1x
96
949290 Nhomakorabea88
86
84
140
145
150
155
160
165
2019/7/8
17
二、模型参数估计
1、对 i 和 2 作估计
用最小二乘法求0 ,..., k 的估计量:作离差平方和
n
Q yi 0 1xi1 ... k xik 2 i 1
选择 0 ,..., k 使 Q 达到最小。
解得估计值 ˆ
进行检验.
假设 H 0 : 1 0 被拒绝,则回归显著,认为 y 与 x 存在线性关 系,所求的线性回归方程有意义;否则回归不显著,y 与 x 的关系 不能用一元线性回归模型来描述,所得的回归方程也无意义.
2019/7/8
8
(Ⅰ)F检验法
当 H 0 成立时,
F
U
~F(1,n-2)
Qe /(n 2)
变量的值 x1* ,..., xk ,用 yˆ * ˆ0 ˆ1 x1* ... ˆk xk * 来预测
数学建模实验3-曲线拟合

%做出数据点和拟合曲线的图形
z=polyval(A,x);
plot(x,y,'k+',x,z,'r')
h=(y-z).^2;
disp('抛物线拟合函数的残差平方和')
Q=[1 1 1 1 1 1 1 1 1 1]*h'
A = 0.4356 -9.3114 74.3258
A=polyfit(1./x,y,1)
%做出数据点和拟合曲线的图形
z=polyval(A,1./x);
plot(1./x,y,'k+',1./x,z,'r')
A =87.3300 18.1604
五、实验心得(质疑、建议):
A =-8.0803 17.9488 0.5429
3.
x=[2 3 4 5 6 7 8 9 10 11];
y=[58 50 44 38 34 30 29 26 25 24];
A=polyfit(x,y,1)
%做出数据点和拟合曲线的图形
z=polyval(A,x);
plot(x,y,'k+',x,z,'r')
湖南第一师范学院数学系实验报告
姓名:
学号:
专业:
数学与应用数学
班级:
课程名称:
线性规划与数学建模
实验名称:
曲线拟合
实验类型:
基础实验
实验室名称:
实验地点:
实A302
实验时间:
2016年5月17日
指导教师:
成绩评定:
一、实验目的与要求:
1、了解曲线拟合基本原理。
数学建模——回归分析

体重/kg 48 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
解:1、选取身高为自变量x,体重为因变量y,作散点图:
由于解释变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为 128.361,所以解析变量的效应为
354-128.361=225.639 这个值称为回归平方和。
解析变量和随机误差的总效应(总偏差平方和) =解析变量的效应(回归平方和)+随机误差的效应(残差平方和)
我们可以用相关指数R2来刻画回归的效果,其计算公式是
R2越接近1,表示回归的效果越好(因为R2越接近1,表示解释变量和预报变量的 线性相关性越强)。
如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值 来做出选择,即选取R2较大的模型作为这组数据的模型。
总的来说:
相关指数R2是度量模型拟合效果的一种指标。
在线性模型中,它代表自变量刻画预报变量的能力。
虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它 所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的 回归含义是相同的。
不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用 于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。
回归分析:研究一个随机变量Y对另一个(X)或一组(X1, X2,…,Xk)变量的相依关系的统计分析方法
回归分析(regression analysis)是确定两种或两种以上变数 间相互依赖的定量关系的一种统计分析方法。运用十分广泛, 回归分析按照涉及的自变量的多少,可分为一元回归分析和 多元回归分析;按照自变量和因变量之间的关系类型,可分 为线性回归分析和非线性回归分析。如果在回归分析中,只 包括一个自变量和一个因变量,且二者的关系可用一条直线 近似表示,这种回归分析称为一元线性回归分析。如果回归 分析中包括两个或两个以上的自变量,且因变量和自变量之 间是线性关系,则称为多元线性回归分析。
回归分析曲线拟合

19
实例分析
例:某单位对8名女工进行体检,体检项目包括体重和肺 活量,数据如下:
体重
42 42 46 46 46 50 50 50
肺活量 2.55 2.2 2.75 2.4 2.8 2.81 3.41 3.1
利用回归分析描述其关系。
整理ppt
20
整理ppt
21
结果分析
描述性统计量
整理ppt
22
整理ppt
43
雇员对其主管满意度的调查
整理ppt
44
整理ppt
45
模型拟差分析
整理ppt
47
回归分析结果
拟合结果为:Y=A*X1+B*X2+C**X3+D ?
整理ppt
48
结果解读
剔除变量列表
整理ppt
49
共线性检验指标
整理ppt
3、因变量与自变量之间的关系用一个线性
方程来表示
整理ppt
5
线性回归的过程
一元线性回归模型确定过程
一、做散点图(Graphs ->Scatter->Simple) 目的是为了以便进行简单地观测(如:
Salary与Salbegin的关系)。 二、建立方程
若散点图的趋势大概呈线性关系,可以建立线性方 程,若不呈线性分布,可建立其它方程模型,并比较R2 (-->1)来确定一种最佳方程式(曲线估计)。
计或预测因变量的取值
整理ppt
2
回归分析的模型
一、分类 按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归和多元回归
二、基本的步骤
利用SPSS得到模型关系式,是否是我们所要的? 要看回归方程的显著性检验(F检验)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线拟合与回归分析
1、有 10个同类企业的生产性固定资产年平均价值和工业总产值资料如下:
(1说明两变量之间的相关方向;
(2建立直线回归方程;
(3计算估计标准误差;
(4估计生产性固定资产(自变量为 1100万元时的总资产
(因变量的可能值。
解:
(1工业总产值是随着生产性固定资产价值的增长而增长的,存
在正向相关性。
用 spss 回归
(2 spss 回归可知:若用 y 表示工业总产值(万元,用 x 表示生产性固定资产,二者可用如下的表达式近似表示:
567
.
395
896
. 0+
=x
y
(3 spss 回归知标准误差为 80.216(万元。
(4当固定资产为 1100时,总产值为:
(0.896*1100+395.567-80.216~0.896*1100+395.567+80.216 即(1301.0~146.4这个范围内的某个值。
MATLAB 程序如下所示:
function [b,bint,r,rint,stats] = regression1
x = [318 910 200 409 415 502 314 1210 1022 1225];
y = [524 1019 638 815 913 928 605 1516 1219 1624];
X = [ones(size(x', x'];
[b,bint,r,rint,stats] = regress(y',X,0.05;
display(b;
display(stats;
x1 = [300:10:1250];
y1 = b(1 + b(2*x1;
figure;plot(x,y,'ro',x1,y1,'g-';
生产性固定资产价值 (万元
工业总价值 (万元
industry = ones(6,1; construction = ones(6,1; industry(1 =1022; construction(1 = 1219; for i = 1:5
industry(i+1 =industry(i * 1.045;
construction(i+1 = b(1 + b(2* construction(i+1; end
display(industry; display( construction; end
运行结果:b = 395.5670 0.8958 stats = 1.0e+004 *
0.0001 0.0071 0.0000 1.6035 industry = 1.0e+003 * 1.0220 1.0680 1.1160 1.1663
1.2188 1.2736 construction = 1.0e+003 * 1.2190 0.3965 0.3965 0.3965 0.3965 0.3965。