严蔚敏数据结构习题集答案

合集下载

数据结构课后习题答案_(C语言版_严蔚敏)

数据结构课后习题答案_(C语言版_严蔚敏)
3
for(j=i; j<=n; j++) @ k++; } (5) for(i=1; i<=n; i++) { for(j=1; j<=i; j++) { for(k=1; k<=j; k++) @ x += delta; } (6) i=1; j=0; while(i+j<=n) { @ if(i>j) j++; else i++; } (7) x=n; y=0; // n 是不小于 1 的常数 while(x>=(y+1)*(y+1)) { @ y++; } (8) x=91; y=100; while(y>0) { @ if(x>100) { x -= 10; y--; } else x++; } 解:(1) n-1 (2) n-1 (3) n-1 (4) n+(n-1)+(n-2)+...+1=
6
for(i=0;i<k+1;i++){ if(i<k-1) p[i]=0; else p[i]=1; } for(i=k+1;i<n+1;i++){ x=p[0]; for(j=0;j<k;j++) p[j]=p[j+1]; p[k]=2*p[k-1]-x; } return p[k]; } 1.18 假设有 A,B,C,D,E 五个高等院校进行田径对抗赛,各院校的单项成绩均已存入计 算机,并构成一张表,表中每一行的形式为 项目名称 性别 校名 成绩 得分 编写算法,处理上述表格,以统计各院校的男、女总分和团体总分,并输出。 解: typedef enum{A,B,C,D,E} SchoolName; typedef enum{Female,Male} SexType; typedef struct{ char event[3]; //项目 SexType sex; SchoolName school; int score; } Component; typedef struct{ int MaleSum; //男团总分 int FemaleSum; //女团总分 int TotalSum; //团体总分 } Sum; Sum SumScore(SchoolName sn,Component a[],int n) { Sum temp; temp.MaleSum=0; temp.FemaleSum=0; temp.TotalSum=0; int i; for(i=0;i<n;i++){ if(a[i].school==sn){ if(a[i].sex==Male) temp.MaleSum+=a[i].score; if(a[i].sex==Female) temp.FemaleSum+=a[i].score; } } temp.TotalSum=temp.MaleSum+temp.FemaleSum; return temp;

严蔚敏版数据结构课后习题答案

严蔚敏版数据结构课后习题答案

第1章绪论1.1 简述下列术语:数据,数据元素、数据对象、数据结构、存储结构、数据类型和抽象数据类型。

解:数据是对客观事物的符号表示。

在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。

数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。

数据对象是性质相同的数据元素的集合,是数据的一个子集。

数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

存储结构是数据结构在计算机中的表示。

数据类型是一个值的集合和定义在这个值集上的一组操作的总称。

抽象数据类型是指一个数学模型以及定义在该模型上的一组操作。

是对一般数据类型的扩展。

1.2 试描述数据结构和抽象数据类型的概念与程序设计语言中数据类型概念的区别。

解:抽象数据类型包含一般数据类型的概念,但含义比一般数据类型更广、更抽象。

一般数据类型由具体语言系统内部定义,直接提供给编程者定义用户数据,因此称它们为预定义数据类型。

抽象数据类型通常由编程者定义,包括定义它所使用的数据和在这些数据上所进行的操作。

在定义抽象数据类型中的数据部分和操作部分时,要求只定义到数据的逻辑结构和操作说明,不考虑数据的存储结构和操作的具体实现,这样抽象层次更高,更能为其他用户提供良好的使用接口。

1.3 设有数据结构(D,R),其中{}4,3,2,1d d d d D =,{}r R =,()()(){}4,3,3,2,2,1d d d d d d r =试按图论中图的画法惯例画出其逻辑结构图。

解:1.4 试仿照三元组的抽象数据类型分别写出抽象数据类型复数和有理数的定义(有理数是其分子、分母均为自然数且分母不为零的分数)。

解: ADT Complex{ 数据对象:D={r,i|r,i 为实数} 数据关系:R={<r,i>} 基本操作:InitComplex(&C,re,im)操作结果:构造一个复数C,其实部和虚部分别为re和imDestroyCmoplex(&C)操作结果:销毁复数CGet(C,k,&e)操作结果:用e返回复数C的第k元的值Put(&C,k,e)操作结果:改变复数C的第k元的值为eIsAscending(C)操作结果:如果复数C的两个元素按升序排列,则返回1,否则返回0IsDescending(C)操作结果:如果复数C的两个元素按降序排列,则返回1,否则返回0Max(C,&e)操作结果:用e返回复数C的两个元素中值较大的一个Min(C,&e)操作结果:用e返回复数C的两个元素中值较小的一个}ADT ComplexADT RationalNumber{数据对象:D={s,m|s,m为自然数,且m不为0}数据关系:R={<s,m>}基本操作:InitRationalNumber(&R,s,m)操作结果:构造一个有理数R,其分子和分母分别为s和mDestroyRationalNumber(&R)操作结果:销毁有理数RGet(R,k,&e)操作结果:用e返回有理数R的第k元的值Put(&R,k,e)操作结果:改变有理数R的第k元的值为eIsAscending(R)操作结果:若有理数R的两个元素按升序排列,则返回1,否则返回0IsDescending(R)操作结果:若有理数R的两个元素按降序排列,则返回1,否则返回0Max(R,&e)操作结果:用e返回有理数R的两个元素中值较大的一个Min(R,&e)操作结果:用e返回有理数R的两个元素中值较小的一个}ADT RationalNumber1.5 试画出与下列程序段等价的框图。

严蔚敏数据结构题集解答224页

严蔚敏数据结构题集解答224页

严蔚敏数据结构题集解答224页第一章基本概念和术语1.1数据结构的定义和作用数据结构是指数据对象中数据元素之间的关系,以及对这些关系的操作。

它在计算机科学中起着重要的作用,可以帮助我们更好地组织和管理数据。

1.2算法的定义和特性算法是一系列解决问题的清晰指令,它包含了一系列的步骤和规则,能够将输入转换为输出。

算法需要具备以下特性:确定性、有限性、可行性和输入输出。

第二章线性表2.1线性表的基本概念和表示线性表是由零个或多个数据元素组成的有限序列,它是一种常用的数据结构。

线性表可以使用顺序存储结构或链式存储结构进行表示。

2.2线性表的基本操作线性表的基本操作包括插入、删除、查找等。

插入操作可以在指定的位置插入一个新元素,删除操作可以删除指定位置的元素,查找操作可以根据给定条件来查找满足要求的元素。

第三章栈和队列3.1栈的定义和基本操作栈是一种特殊的线性表,它只允许在栈的一端进行插入和删除操作,这一端称为栈顶。

栈的基本操作包括进栈和出栈,以及栈空和栈满的判断。

3.2队列的定义和基本操作队列是一种特殊的线性表,它只允许在一端进行插入操作,在另一端进行删除操作,插入端称为队尾,删除端称为队头。

队列的基本操作包括入队和出队,以及队空和队满的判断。

第四章串4.1串的基本概念和表示方法串是由零个或多个字符组成的有限序列,它是一种特殊的线性表。

串的表示方法有两种:顺序存储和链式存储。

4.2朴素的模式匹配算法朴素的模式匹配算法是一种简单而有效的模式匹配算法,它通过逐个字符地比较主串和模式串的字符来进行匹配。

第五章数组和广义表5.1数组的定义和基本操作数组是一种线性表,它由一系列相同类型的元素组成。

数组的基本操作包括插入和删除元素,以及数组的查找和排序等。

5.2广义表的定义和基本操作广义表是一种扩展的线性表,它可以包含任意类型的元素,不仅可以是数据元素,还可以是另一个广义表。

广义表的基本操作包括对表头和表尾的操作,以及广义表的插入和删除等。

清华大学严蔚敏数据结构习题集(C版)答案

清华大学严蔚敏数据结构习题集(C版)答案

清华大学严蔚敏数据结构习题集(C版)答案清华大学严蔚敏数据结构习题集(C版)答案第一章绪论1.16void print_descending(int x,int y,int z)//按从大到小顺序输出三个数{scanf("%d,%d,%d",&x,&y,&z);if(x<y) x<->y; //<->为表示交换的双目运算符,以下同if(y<z) y<->z;if(x<y) x<->y; //冒泡排序printf("%d %d %d",x,y,z);}//print_descending1.17Status fib(int k,int m,int &f)//求k阶斐波那契序列的第m项的值f {int tempd;if(k<2||m<0) return ERROR;if(m<k-1) f=0;else if (m==k-1) f=1;else{for(i=0;i<=k-2;i++) temp=0;temp[k-1]=1; //初始化for(i=k;i<=m;i++) //求出序列第k至第m个元素的值{sum=0;for(j=i-k;j<i;j++) sum+=temp[j];temp=sum;}f=temp[m];}return OK;}//fib分析:通过保存已经计算出来的结果,此方法的时间复杂度仅为O(m^2).如果采用递归编程(大多数人都会首先想到递归方法),则时间复杂度将高达O(k^m).1.18typedef struct{char *sport;enum{male,female} gender;char schoolname; //校名为'A','B','C','D'或'E'char *result;int score;} resulttype;typedef struct{int malescore;int femalescore;int totalscore;} scoretype;void summary(resulttype result[ ])//求各校的男女总分和团体总分,假设结果已经储存在result[ ]数组中{scoretype score;i=0;while(result.sport!=NULL){switch(result.schoolname){case 'A':score[ 0 ].totalscore+=result.score;if(result.gender==0) score[ 0 ].malescore+=result.score; else score[ 0 ].femalescore+=result.score;break;case 'B':score.totalscore+=result.score;if(result.gender==0) score.malescore+=result.score;else score.femalescore+=result.score;break;………………}i++;}for(i=0;i<5;i++){printf("School %d:\n",i);printf("Total score of male:%d\n",score.malescore);printf("Total score of female:%d\n",score.femalescore);printf("Total score of all:%d\n\n",score.totalscore);}}//summary1.19Status algo119(int a[ARRSIZE])//求i!*2^i序列的值且不超过maxint {last=1;for(i=1;i<=ARRSIZE;i++){a[i-1]=last*2*i;if((a[i-1]/last)!=(2*i)) reurn OVERFLOW;last=a[i-1];return OK;}}//algo119分析:当某一项的结果超过了maxint时,它除以前面一项的商会发生异常.1.20void polyvalue(){float ad;float *p=a;printf("Input number of terms:");scanf("%d",&n);printf("Input the %d coefficients from a0 to a%d:\n",n,n);for(i=0;i<=n;i++) scanf("%f",p++);printf("Input value of x:");scanf("%f",&x);p=a;xp=1;sum=0; //xp用于存放x的i次方for(i=0;i<=n;i++){sum+=xp*(*p++);xp*=x;}printf("Value is:%f",sum);}//polyvalue第二章线性表2.10Status DeleteK(SqList &a,int i,int k)//删除线性表a中第i个元素起的k个元素{if(i<1||k<0||i+k-1>a.length) return INFEASIBLE;for(count=1;i+count-1<=a.length-k;count++) //注意循环结束的条件 a.elem[i+count-1]=a.elem[i+count+k-1];a.length-=k;return OK;}//DeleteK2.11Status Insert_SqList(SqList &va,int x)//把x插入递增有序表va中{if(va.length+1>va.listsize) return ERROR;va.length++;for(i=va.length-1;va.elem>x&&i>=0;i--)va.elem[i+1]=va.elem;va.elem[i+1]=x;return OK;}//Insert_SqList2.12int ListComp(SqList A,SqList B)//比较字符表A和B,并用返回值表示结果,值为正,表示A>B;值为负,表示A<B;值为零,表示A=B{for(i=1;A.elem||B.elem;i++)if(A.elem!=B.elem) return A.elem-B.elem;return 0;}//ListComp2.13LNode* Locate(LinkList L,int x)//链表上的元素查找,返回指针{for(p=l->next;p&&p->data!=x;p=p->next);return p;}//Locate2.14int Length(LinkList L)//求链表的长度{for(k=0,p=L;p->next;p=p->next,k++);return k;}//Length2.15void ListConcat(LinkList ha,LinkList hb,LinkList &hc)//把链表hb 接在ha后面形成链表hc{hc=ha;p=ha;while(p->next) p=p->next;p->next=hb;}//ListConcat2.16见书后答案.2.17Status Insert(LinkList &L,int i,int b)//在无头结点链表L的第i个元素之前插入元素b{p=L;q=(LinkList*)malloc(sizeof(LNode));q.data=b;if(i==1){q.next=p;L=q; //插入在链表头部}{while(--i>1) p=p->next;q->next=p->next;p->next=q; //插入在第i个元素的位置}}//Insert2.18Status Delete(LinkList &L,int i)//在无头结点链表L中删除第i个元素{if(i==1) L=L->next; //删除第一个元素else{p=L;while(--i>1) p=p->next;p->next=p->next->next; //删除第i个元素}}//Delete2.19Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L中值大于mink且小于maxk的所有元素{while(p->next->data<=mink) p=p->next; //p是最后一个不大于mink 的元素if(p->next) //如果还有比mink更大的元素{q=p->next;while(q->data<maxk) q=q->next; //q是第一个不小于maxk的元素 p->next=q;}}//Delete_Between2.20Status Delete_Equal(Linklist &L)//删除元素递增排列的链表L中所有值相同的元素{p=L->next;q=p->next; //p,q指向相邻两元素while(p->next){if(p->data!=q->data){p=p->next;q=p->next; //当相邻两元素不相等时,p,q都向后推一步 }else{while(q->data==p->data){free(q);q=q->next;}p->next=q;p=q;q=p->next; //当相邻元素相等时删除多余元素}//else}//while}//Delete_Equal2.21void reverse(SqList &A)//顺序表的就地逆置{for(i=1,j=A.length;i<j;i++,j--)A.elem<->A.elem[j];}//reverse2.22void LinkList_reverse(Linklist &L)//链表的就地逆置;为简化算法,假设表长大于2{p=L->next;q=p->next;s=q->next;p->next=NULL;while(s->next){q->next=p;p=q;q=s;s=s->next; //把L的元素逐个插入新表表头}q->next=p;s->next=q;L->next=s;}//LinkList_reverse分析:本算法的思想是,逐个地把L的当前元素q插入新的链表头部,p为新表表头.2.23void merge1(LinkList &A,LinkList &B,LinkList &C)//把链表A和B合并为C,A和B的元素间隔排列,且使用原存储空间{p=A->next;q=B->next;C=A;while(p&&q){s=p->next;p->next=q; //将B的元素插入if(s){t=q->next;q->next=s; //如A非空,将A的元素插入}p=s;q=t;}//while}//merge12.24void reverse_merge(LinkList &A,LinkList &B,LinkList &C)//把元素递增排列的链表A和B合并为C,且C中元素递减排列,使用原空间{pa=A->next;pb=B->next;pre=NULL; //pa和pb分别指向A,B的当前元素 while(pa||pb){if(pa->data<pb->data||!pb){pc=pa;q=pa->next;pa->next=pre;pa=q; //将A的元素插入新表}else{pc=pb;q=pb->next;pb->next=pre;pb=q; //将B的元素插入新表}pre=pc;}C=A;A->next=pc; //构造新表头}//reverse_merge分析:本算法的思想是,按从小到大的顺序依次把A和B的元素插入新表的头部pc处,最后处理A或B的剩余元素.2.25void SqList_Intersect(SqList A,SqList B,SqList &C)//求元素递增排列的线性表A和B的元素的交集并存入C中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<B.elem[j]) i++;if(A.elem>B.elem[j]) j++;if(A.elem==B.elem[j]){C.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素, i++;j++; //就添加到C中}}//while}//SqList_Intersect2.26void LinkList_Intersect(LinkList A,LinkList B,LinkList &C)//在链表结构上重做上题{p=A->next;q=B->next;pc=(LNode*)malloc(sizeof(LNode));while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else{s=(LNode*)malloc(sizeof(LNode));s->data=p->data;pc->next=s;pc=s;p=p->next;q=q->next;}}//whileC=pc;}//LinkList_Intersect2.27void SqList_Intersect_True(SqList &A,SqList B)//求元素递增排列的线性表A和B的元素的交集并存回A中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<B.elem[j]) i++;else if(A.elem>B.elem[j]) j++;else if(A.elem!=A.elem[k]){A.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素i++;j++; //且C中没有,就添加到C中}}//whilewhile(A.elem[k]) A.elem[k++]=0;}//SqList_Intersect_True2.28void LinkList_Intersect_True(LinkList &A,LinkList B)//在链表结构上重做上题{p=A->next;q=B->next;pc=A;while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else if(p->data!=pc->data){pc=pc->next;pc->data=p->data;p=p->next;q=q->next;}}//while}//LinkList_Intersect_True2.29void SqList_Intersect_Delete(SqList &A,SqList B,SqList C){i=0;j=0;k=0;m=0; //i指示A中元素原来的位置,m为移动后的位置 while(i<A.length&&j<B.length&& k<C.length){if(B.elem[j]<C.elem[k]) j++;else if(B.elem[j]>C.elem[k]) k++;else{same=B.elem[j]; //找到了相同元素same while(B.elem[j]==same) j++;while(C.elem[k]==same) k++; //j,k后移到新的元素while(i<A.length&&A.elem<same)A.elem[m++]=A.elem[i++]; //需保留的元素移动到新位置while(i<A.length&&A.elem==same) i++; //跳过相同的元素}}//whilewhile(i<A.length)A.elem[m++]=A.elem[i++]; //A的剩余元素重新存储。

数据结构习题集答案(c版)(清华大学严蔚敏)

数据结构习题集答案(c版)(清华大学严蔚敏)

1.16void print_descending(int x,int y,int z)//按从大到小顺序输出三个数{scanf("%d,%d,%d",&x,&y,&z);if(x<y) x<->y; //<->为表示交换的双目运算符,以下同if(y<z) y<->z;if(x<y) x<->y; //冒泡排序printf("%d %d %d",x,y,z);}//print_descending1.17Status fib(int k,int m,int &f)//求k阶斐波那契序列的第m项的值f{int tempd;if(k<2||m<0) return ERROR;if(m<k-1) f=0;else if (m==k-1) f=1;else{for(i=0;i<=k-2;i++) temp=0;temp[k-1]=1; //初始化for(i=k;i<=m;i++) //求出序列第k至第m个元素的值{sum=0;for(j=i-k;j<i;j++) sum+=temp[j];temp=sum;}f=temp[m];}return OK;}//fib分析:通过保存已经计算出来的结果,此方法的时间复杂度仅为O(m^2).如果采用递归编程(大多数人都会首先想到递归方法),则时间复杂度将高达O(k^m).1.18typedef struct{char *sport;enum{male,female} gender;char schoolname; //校名为'A','B','C','D'或'E'char *result;int score;} resulttype;typedef struct{int malescore;int femalescore;int totalscore;} scoretype;void summary(resulttype result[ ])//求各校的男女总分和团体总分,假设结果已经储存在result[ ]数组中{scoretype score;i=0;while(result.sport!=NULL){switch(result.schoolname){case 'A':score[ 0 ].totalscore+=result.score;if(result.gender==0) score[ 0 ].malescore+=result.score;else score[ 0 ].femalescore+=result.score;break;case 'B':score.totalscore+=result.score;if(result.gender==0) score.malescore+=result.score;else score.femalescore+=result.score;break;……?……?……}i++;}for(i=0;i<5;i++){printf("School %d:\n",i);printf("Total score of male:%d\n",score.malescore);printf("Total score of female:%d\n",score.femalescore);printf("Total score of all:%d\n\n",score.totalscore);}}//summary1.19Status algo119(int a[ARRSIZE])//求i!*2^i序列的值且不超过maxint{last=1;for(i=1;i<=ARRSIZE;i++){a[i-1]=last*2*i;if((a[i-1]/last)!=(2*i)) reurn OVERFLOW;last=a[i-1];return OK;}}//algo119分析:当某一项的结果超过了maxint时,它除以前面一项的商会发生异常.1.20void polyvalue(){float ad;float *p=a;printf("Input number of terms:");scanf("%d",&n);printf("Input the %d coefficients from a0 to a%d:\n",n,n);for(i=0;i<=n;i++) scanf("%f",p++);printf("Input value of x:");scanf("%f",&x);p=a;xp=1;sum=0; //xp用于存放x的i次方for(i=0;i<=n;i++){sum+=xp*(*p++);xp*=x;}printf("Value is:%f",sum);}//polyvalue2.10Status DeleteK(SqList &a,int i,int k)//删除线性表a中第i个元素起的k个元素{if(i<1||k<0||i+k-1>a.length) return INFEASIBLE;for(count=1;i+count-1<=a.length-k;count++) //注意循环结束的条件a.elem[i+count-1]=a.elem[i+count+k-1];a.length-=k;return OK;}//DeleteK2.11Status Insert_SqList(SqList &va,int x)//把x插入递增有序表va中{if(va.length+1>va.listsize) return ERROR;va.length++;for(i=va.length-1;va.elem>x&&i>=0;i--)va.elem[i+1]=va.elem;va.elem[i+1]=x;return OK;}//Insert_SqList2.12int ListComp(SqList A,SqList B)//比较字符表A和B,并用返回值表示结果,值为正,表示A>B;值为负,表示A<B;值为零,表示A=B{for(i=1;A.elem||B.elem;i++)if(A.elem!=B.elem) return A.elem-B.elem;return 0;}//ListComp2.13LNode* Locate(LinkList L,int x)//链表上的元素查找,返回指针{for(p=l->next;p&&p->data!=x;p=p->next);return p;}//Locate2.14int Length(LinkList L)//求链表的长度{for(k=0,p=L;p->next;p=p->next,k++);return k;}//Length2.15void ListConcat(LinkList ha,LinkList hb,LinkList &hc)//把链表hb接在ha后面形成链表hc{hc=ha;p=ha;while(p->next) p=p->next;p->next=hb;}//ListConcat2.16见书后答案.2.17Status Insert(LinkList &L,int i,int b)//在无头结点链表L的第i个元素之前插入元素b{p=L;q=(LinkList*)malloc(sizeof(LNode));q.data=b;if(i==1){q.next=p;L=q; //插入在链表头部}else{while(--i>1) p=p->next;q->next=p->next;p->next=q; //插入在第i个元素的位置}}//Insert2.18Status Delete(LinkList &L,int i)//在无头结点链表L中删除第i个元素{if(i==1) L=L->next; //删除第一个元素else{p=L;while(--i>1) p=p->next;p->next=p->next->next; //删除第i个元素}}//Delete2.19Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L 中值大于mink且小于maxk的所有元素{p=L;while(p->next->data<=mink) p=p->next; //p是最后一个不大于mink的元素if(p->next) //如果还有比mink更大的元素{q=p->next;while(q->data<maxk) q=q->next; //q是第一个不小于maxk的元素p->next=q;}}//Delete_Between2.20Status Delete_Equal(Linklist &L)//删除元素递增排列的链表L中所有值相同的元素{p=L->next;q=p->next; //p,q指向相邻两元素while(p->next){if(p->data!=q->data){p=p->next;q=p->next; //当相邻两元素不相等时,p,q都向后推一步}else{while(q->data==p->data){free(q);q=q->next;}p->next=q;p=q;q=p->next; //当相邻元素相等时删除多余元素}//else}//while}//Delete_Equal2.21void reverse(SqList &A)//顺序表的就地逆置{for(i=1,j=A.length;i<j;i++,j--)A.elem<->A.elem[j];}//reverse2.22void LinkList_reverse(Linklist &L)//链表的就地逆置;为简化算法,假设表长大于2 {p=L->next;q=p->next;s=q->next;p->next=NULL;while(s->next){q->next=p;p=q;q=s;s=s->next; //把L的元素逐个插入新表表头}q->next=p;s->next=q;L->next=s;}//LinkList_reverse分析:本算法的思想是,逐个地把L的当前元素q插入新的链表头部,p为新表表头.2.23void merge1(LinkList &A,LinkList &B,LinkList &C)//把链表A和B合并为C,A和B的元素间隔排列,且使用原存储空间{p=A->next;q=B->next;C=A;while(p&&q){s=p->next;p->next=q; //将B的元素插入if(s){t=q->next;q->next=s; //如A非空,将A的元素插入}p=s;q=t;}//while}//merge12.24void reverse_merge(LinkList &A,LinkList &B,LinkList &C)//把元素递增排列的链表A 和B合并为C,且C中元素递减排列,使用原空间{pa=A->next;pb=B->next;pre=NULL; //pa和pb分别指向A,B的当前元素while(pa||pb){if(pa->data<pb->data||!pb){pc=pa;q=pa->next;pa->next=pre;pa=q; //将A的元素插入新表}else{pc=pb;q=pb->next;pb->next=pre;pb=q; //将B的元素插入新表}pre=pc;}C=A;A->next=pc; //构造新表头}//reverse_merge分析:本算法的思想是,按从小到大的顺序依次把A和B的元素插入新表的头部pc处,最后处理A或B的剩余元素.2.25void SqList_Intersect(SqList A,SqList B,SqList &C)//求元素递增排列的线性表A和B 的元素的交集并存入C中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<B.elem[j]) i++;if(A.elem>B.elem[j]) j++;if(A.elem==B.elem[j]){C.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素,i++;j++; //就添加到C中}}//while}//SqList_Intersect2.26void LinkList_Intersect(LinkList A,LinkList B,LinkList &C)//在链表结构上重做上题{p=A->next;q=B->next;pc=(LNode*)malloc(sizeof(LNode));while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else{s=(LNode*)malloc(sizeof(LNode));s->data=p->data;pc->next=s;pc=s;p=p->next;q=q->next;}}//whileC=pc;}//LinkList_Intersect2.27void SqList_Intersect_True(SqList &A,SqList B)//求元素递增排列的线性表A和B的元素的交集并存回A中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<B.elem[j]) i++;else if(A.elem>B.elem[j]) j++;else if(A.elem!=A.elem[k]){A.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素i++;j++; //且C中没有,就添加到C中}}//whilewhile(A.elem[k]) A.elem[k++]=0;}//SqList_Intersect_True2.28void LinkList_Intersect_True(LinkList &A,LinkList B)//在链表结构上重做上题{p=A->next;q=B->next;pc=A;while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else if(p->data!=pc->data){pc=pc->next;pc->data=p->data;p=p->next;q=q->next;}}//while}//LinkList_Intersect_True2.29void SqList_Intersect_Delete(SqList &A,SqList B,SqList C){i=0;j=0;k=0;m=0; //i指示A中元素原来的位置,m为移动后的位置while(i<A.length&&j<B.length&& k<C.length){if(B.elem[j]<C.elem[k]) j++;else if(B.elem[j]>C.elem[k]) k++;elsesame=B.elem[j]; //找到了相同元素samewhile(B.elem[j]==same) j++;while(C.elem[k]==same) k++; //j,k后移到新的元素while(i<A.length&&A.elem<same)A.elem[m++]=A.elem[i++]; //需保留的元素移动到新位置while(i<A.length&&A.elem==same) i++; //跳过相同的元素}}//whilewhile(i<A.length)A.elem[m++]=A.elem[i++]; //A的剩余元素重新存储。

数据结构习题集答案(c版)(清华大学严蔚敏)

数据结构习题集答案(c版)(清华大学严蔚敏)

数据结构习题集答案(c版)(清华大学严蔚敏)1.16void print_descending(int x,int y,int z)//按从大到小顺序输出三个数{scanf("%d,%d,%d",&x,&y,&z);if(x<-="">y; //<->为表示交换的双目运算符,以下同if(y<-="">z;if(x<-="">y; //冒泡排序printf("%d %d %d",x,y,z);}//print_descending1.17Status fib(int k,int m,int &f)//求k阶斐波那契序列的第m项的值f{int tempd;if(k<2||m<0) return ERROR;if(melse if (m==k-1) f=1;else{for(i=0;i<=k-2;i++) temp=0;temp[k-1]=1; //初始化for(i=k;i<=m;i++) //求出序列第k至第m个元素的值{sum=0;for(j=i-k;jtemp=sum;}f=temp[m];}return OK;}//fib分析:通过保存已经计算出来的结果,此方法的时间复杂度仅为O(m^2).如果采用递归编程(大多数人都会首先想到递归方法),则时间复杂度将高达O(k^m).1.18typedef struct{char *sport;enum{male,female} gender;char schoolname; //校名为'A','B','C','D'或'E'char *result;int score;} resulttype;typedef struct{int malescore;int femalescore;int totalscore;} scoretype;void summary(resulttype result[ ])//求各校的男女总分和团体总分,假设结果已经储存在result[ ]数组中{scoretype score;i=0;while(result.sport!=NULL){switch(result.schoolname){case 'A':score[ 0 ].totalscore+=result.score;if(result.gender==0) score[ 0 ].malescore+=result.score;else score[ 0 ].femalescore+=result.score;break;case 'B':score.totalscore+=result.score;if(result.gender==0) score.malescore+=result.score;else score.femalescore+=result.score;break;……?……?……}i++;}for(i=0;i<5;i++){printf("School %d:\n",i);printf("T otal score of male:%d\n",score.malescore);printf("T otal score of female:%d\n",score.femalescore);printf("T otal score of all:%d\n\n",score.totalscore);}}//summary1.19Status algo119(int a[ARRSIZE])//求i!*2^i序列的值且不超过maxint{last=1;for(i=1;i<=ARRSIZE;i++){a[i-1]=last*2*i;if((a[i-1]/last)!=(2*i)) reurn OVERFLOW;last=a[i-1];return OK;}}//algo119分析:当某一项的结果超过了maxint时,它除以前面一项的商会发生异常.1.20void polyvalue(){float ad;float *p=a;printf("Input number of terms:");scanf("%d",&n);printf("Input the %d coefficients from a0 to a%d:\n",n,n);for(i=0;i<=n;i++) scanf("%f",p++);printf("Input value of x:");scanf("%f",&x);p=a;xp=1;sum=0; //xp用于存放x的i次方for(i=0;i<=n;i++){sum+=xp*(*p++);xp*=x;}printf("Value is:%f",sum);}//polyvalue2.10Status DeleteK(SqList &a,int i,int k)//删除线性表a中第i个元素起的k个元素{if(i<1||k<0||i+k-1>a.length) return INFEASIBLE;for(count=1;i+count-1<=a.length-k;count++) //注意循环结束的条件a.elem[i+count-1]=a.elem[i+count+k-1];a.length-=k;return OK;}//DeleteK2.11Status Insert_SqList(SqList &va,int x)//把x插入递增有序表va 中{if(va.length+1>va.listsize) return ERROR;va.length++;for(i=va.length-1;va.elem>x&&i>=0;i--)va.elem[i+1]=va.elem;va.elem[i+1]=x;return OK;}//Insert_SqList2.12int ListComp(SqList A,SqList B)//比较字符表A和B,并用返回值表示结果,值为正,表示A>B;值为负,表示A< p="">{for(i=1;A.elem||B.elem;i++)if(A.elem!=B.elem) return A.elem-B.elem;return 0;}//ListComp2.13LNode* Locate(LinkList L,int x)//链表上的元素查找,返回指针{for(p=l->next;p&&p->data!=x;p=p->next);return p;}//Locate2.14int Length(LinkList L)//求链表的长度{for(k=0,p=L;p->next;p=p->next,k++);return k;}//Length2.15void ListConcat(LinkList ha,LinkList hb,LinkList &hc)//把链表hb接在ha后面形成链表hc{hc=ha;p=ha;while(p->next) p=p->next;p->next=hb;}//ListConcat2.16见书后答案.2.17Status Insert(LinkList &L,int i,int b)//在无头结点链表L的第i个元素之前插入元素b{p=L;q=(LinkList*)malloc(sizeof(LNode));q.data=b;if(i==1){q.next=p;L=q; //插入在链表头部}else{while(--i>1) p=p->next;q->next=p->next;p->next=q; //插入在第i个元素的位置}}//Insert2.18Status Delete(LinkList &L,int i)//在无头结点链表L中删除第i个元素{if(i==1) L=L->next; //删除第一个元素else{p=L;while(--i>1) p=p->next;p->next=p->next->next; //删除第i个元素}}//Delete2.19Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L 中值大于mink且小于maxk的所有元素{p=L;while(p->next->data<=mink) p=p->next; //p是最后一个不大于mink的元素if(p->next) //如果还有比mink更大的元素{q=p->next;while(q->datanext; //q是第一个不小于maxk的元素p->next=q;}}//Delete_Between2.20Status Delete_Equal(Linklist &L)//删除元素递增排列的链表L中所有值相同的元素{p=L->next;q=p->next; //p,q指向相邻两元素while(p->next){if(p->data!=q->data){p=p->next;q=p->next; //当相邻两元素不相等时,p,q都向后推一步}else{while(q->data==p->data){free(q);q=q->next;}p->next=q;p=q;q=p->next; //当相邻元素相等时删除多余元素}//else}//while}//Delete_Equal2.21void reverse(SqList &A)//顺序表的就地逆置{for(i=1,j=A.length;i<j;i++,j--)< p="">A.elem<->A.elem[j];}//reverse2.22void LinkList_reverse(Linklist &L)//链表的就地逆置;为简化算法,假设表长大于2 {p=L->next;q=p->next;s=q->next;p->next=NULL;{q->next=p;p=q;q=s;s=s->next; //把L的元素逐个插入新表表头}q->next=p;s->next=q;L->next=s;}//LinkList_reverse分析:本算法的思想是,逐个地把L的当前元素q插入新的链表头部,p为新表表头.2.23void merge1(LinkList &A,LinkList &B,LinkList &C)//把链表A 和B合并为C,A和B的元素间隔排列,且使用原存储空间{p=A->next;q=B->next;C=A;while(p&&q){s=p->next;p->next=q; //将B的元素插入if(s){t=q->next;q->next=s; //如A非空,将A的元素插入}p=s;q=t;}//while}//merge12.24void reverse_merge(LinkList &A,LinkList &B,LinkList &C)//把元素递增排列的链表A 和B合并为C,且C中元素递减排列,使用原空间{pa=A->next;pb=B->next;pre=NULL; //pa和pb分别指向A,B 的当前元素{if(pa->datadata||!pb){pc=pa;q=pa->next;pa->next=pre;pa=q; //将A的元素插入新表}else{pc=pb;q=pb->next;pb->next=pre;pb=q; //将B的元素插入新表}pre=pc;}C=A;A->next=pc; //构造新表头}//reverse_merge分析:本算法的思想是,按从小到大的顺序依次把A和B的元素插入新表的头部pc处,最后处理A或B的剩余元素.2.25void SqList_Intersect(SqList A,SqList B,SqList &C)//求元素递增排列的线性表A和B 的元素的交集并存入C中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<="" p="">if(A.elem>B.elem[j]) j++;if(A.elem==B.elem[j]){C.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素,i++;j++; //就添加到C中}}//while}//SqList_Intersect2.26void LinkList_Intersect(LinkList A,LinkList B,LinkList &C)//在链表结构上重做上题{p=A->next;q=B->next;pc=(LNode*)malloc(sizeof(LNode));while(p&&q){if(p->datadata) p=p->next;else if(p->data>q->data) q=q->next;else{s=(LNode*)malloc(sizeof(LNode));s->data=p->data;pc->next=s;pc=s;p=p->next;q=q->next;}}//whileC=pc;}//LinkList_Intersect2.27void SqList_Intersect_True(SqList &A,SqList B)//求元素递增排列的线性表A和B的元素的交集并存回A中{i=1;j=1;k=0;while(A.elem&&B.elem[j]){if(A.elem<="" p="">else if(A.elem>B.elem[j]) j++;else if(A.elem!=A.elem[k]){A.elem[++k]=A.elem; //当发现了一个在A,B中都存在的元素i++;j++; //且C中没有,就添加到C中}}//whilewhile(A.elem[k]) A.elem[k++]=0;}//SqList_Intersect_True2.28void LinkList_Intersect_True(LinkList &A,LinkList B)//在链表结构上重做上题{p=A->next;q=B->next;pc=A;while(p&&q){if(p->datadata) p=p->next;else if(p->data>q->data) q=q->next;else if(p->data!=pc->data){pc=pc->next;pc->data=p->data;p=p->next;q=q->next;}}//while}//LinkList_Intersect_True2.29void SqList_Intersect_Delete(SqList &A,SqList B,SqList C){i=0;j=0;k=0;m=0; //i指示A中元素原来的位置,m为移动后的位置while(i<a.length&&j<b.length&& k<c.length)<="" p="">{if(B.elem[j]<="" p="">else if(B.elem[j]>C.elem[k]) k++;else{same=B.elem[j]; //找到了相同元素samewhile(B.elem[j]==same) j++;while(C.elem[k]==same) k++; //j,k后移到新的元素while(i<a.length&&a.elem<same)< p="">A.elem[m++]=A.elem[i++]; //需保留的元素移动到新位置while(i<a.length&&a.elem==same) i++;="" p="" 跳过相同的元素<="">}}//whilewhile(i<a.length)< p="">A.elem[m++]=A.elem[i++]; //A的剩余元素重新存储。

【课后习题及答案】严蔚敏-数据结构课后习题及答案解析

【课后习题及答案】严蔚敏-数据结构课后习题及答案解析

6.算 法 的 五 个 重 要 特 性 是 _______、_______、______、_______、_______。 7.数据结构的三要素是指______、_______和________。 8.链式存储结构与顺序存储结构相比较,主要优点是 ________________________________。 9.设有一批数据元素,为了最快的存储某元素,数据结构宜用_________ 结构,为了方便插入一个元素,数据结构宜用____________结构。
四、算法分析题
for(i=1; i<=n; i++) for(j =1; j <=i ; j++) x=x+1; 分 析 :该 算 法 为 一 个 二 重 循 环 ,执 行 次 数 为 内 、外 循 环 次 数 相 乘 ,但 内 循环次数不固定,与外循环有关,因些,时间频度 T(n)=1+2+3+…+n=n*(n+1)/2 有 1/4≤T(n)/n2≤1,故它的时间复杂度为O(n2), 即T(n)与 n2 数 量级相同。 2、分析下列算法段的时间频度及时间复杂度 for (i=1;i<=n;i++) for (j=1;j<=i;j++) for ( k=1;k<=j;k++) x=i+j-k; 分析算法规律可知时间频度 T(n)=1+(1+2)+(1+2+3)+...+(1+2+3+…+n) 由于有 1/6 ≤ T(n)/ n3 ≤1,故时间复杂度为O(n3)
精品课程
课后习题答案数据结构-严来自敏 课后习题及答案解析第一章 绪论

严蔚敏数据结构各章习题及答案

严蔚敏数据结构各章习题及答案

严蔚敏数据结构各章习题及答案数据结构习题及解答第1章概述【例1-1】分析以下程序段的时间复杂度。

for(i=0;i解:该程序段的时间复杂度为O (m*n )。

【例1-2】分析以下程序段的时间复杂度。

i=s=0; ① while(s<="" ②="" ③="">解:语句①为赋值语句,其执行次数为1次,所以其时间复杂度为O (1)。

语句②和语句③构成while 循环语句的循环体,它们的执行次数由循环控制条件中s 与n 的值确定。

假定循环重复执行x 次后结束,则语句②和语句③各重复执行了x 次。

其时间复杂度按线性累加规则为O (x )。

此时s 与n 满足关系式:s ≥n ,而s=1+2+3+…+x 。

所以有:1+2+3+…+x ≥n ,可以推出:x=nn 241212811+±-=+±-x 与n 之间满足x=f(n ),所以循环体的时间复杂度为O (n ),语句①与循环体由线性累加规则得到该程序段的时间复杂度为O (n )。

【例1-3】分析以下程序段的时间复杂度。

i=1; ① while(i<=n) i=2*i; ②解:其中语句①的执行次数是1,设语句②的执行次数为f (n ),则有:n n f ≤)(2。

log)得:T(n)=O(n2【例1-4】有如下递归函数fact(n),分析其时间复杂度。

fact(int n){ if(n<=1)return(1);①elsereturn(n*fact(n-1));②}解:设fact(n)的运行时间函数是T(n)。

该函数中语句①的运行时间是O(1),语句②的运行时间是T(n-1)+ O(1),其中O(1)为常量运行时间。

由此可得fact(n)的时间复杂度为O(n)。

习题1一、单项选择题1.数据结构是指(1. A )。

A.数据元素的组织形式B.数据类型C.数据存储结构D.数据定义2.数据在计算机存储器内表示时,物理地址与逻辑地址不相同的,称之为(2. C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1.16void print_descending(int x,int y,int z)//按从大到小顺序输出三个数{scanf("%d,%d,%d",&x,&y,&z);if(x<y) x<->y; //<->为表示交换的双目运算符,以下同if(y<z) y<->z;if(x<y) x<->y; //冒泡排序printf("%d %d %d",x,y,z);}//print_descending1.17Status fib(int k,int m,int &f)//求k阶斐波那契序列的第m项的值f{int tempd;if(k<2||m<0) return ERROR;if(m<k-1) f=0;else if (m==k-1 || m==k) f=1;else{for(i=0;i<=k-2;i++) temp=0;temp[k-1]=1;temp[k]=1; //初始化sum=1;j=0;for(i=k+1;i<=m;i++,j++) //求出序列第k至第m个元素的值temp=2*sum-temp[j];f=temp[m];}return OK;}//fib分析: k阶斐波那契序列的第m项的值f[m]=f[m-1]+f[m-2]+......+f[m-k]=f[m-1]+f[m-2]+......+f[m-k]+f[m-k-1]-f[m-k-1]=2*f[m-1]-f[m-k-1]所以上述算法的时间复杂度仅为O(m). 如果采用递归设计,将达到O(k^m). 即使采用暂存中间结果的方法,也将达到O(m^2).1.18typedef struct{char *sport;enum{male,female} gender;char schoolname; //校名为'A','B','C','D'或'E'char *result;int score;} resulttype;typedef struct{int malescore;int femalescore;int totalscore;} scoretype;void summary(resulttype result[ ])//求各校的男女总分和团体总分,假设结果已经储存在result[ ]数组中{scoretype score[MAXSIZE];i=0;while(result.sport!=NULL){switch(result.schoolname){case 'A':score[ 0 ].totalscore+=result.score;if(result.gender==0)score[ 0 ].malescore+=result.score;else score[ 0 ].femalescore+=result.score;break;case 'B':score[ 0 ].totalscore+=result.score;if(result.gender==0)score[ 0 ].malescore+=result.score;else score[ 0 ].femalescore+=result.score;break;…… …… ……}i++;}for(i=0;i<5;i++){printf("School %d:\n",i);printf("Total score of male:%d\n",score.malescore);printf("Total score of female:%d\n",score.femalescore);printf("Total score of all:%d\n\n",score.totalscore); }}//summary1.19Status algo119(int a[ARRSIZE])//求i!*2^i序列的值且不超过maxint{last=1;for(i=1;i<=ARRSIZE;i++){a[i-1]=last*2*i;if((a[i-1]/last)!=(2*i)) reurn OVERFLOW;last=a[i-1];return OK;}}//algo119分析:当某一项的结果超过了maxint时,它除以前面一项的商会发生异常.1.20void polyvalue(){float temp;float *p=a;printf("Input number of terms:");scanf("%d",&n);printf("Input value of x:");scanf("%f",&x);printf("Input the %d coefficients from a0 to a%d:\n",n+1,n);p=a;xp=1;sum=0; //xp用于存放x的i次方for(i=0;i<=n;i++){scanf("%f",&temp);sum+=xp*(temp);xp*=x;}printf("Value is:%f",sum);}//polyvalue第二章线性表2.10Status DeleteK(SqList &a,int i,int k)//删除线性表a中第i个元素起的k个元素{if(i<1||k<0||i+k-1>a.length) return INFEASIBLE;for(count=1;i+count-1<=a.length-k;count++) //注意循环结束的条件a.elem[i+count-1]=a.elem[i+count+k-1];a.length-=k;return OK;}//DeleteK2.11Status Insert_SqList(SqList &va,int x)//把x插入递增有序表va中{if(va.length+1>va.listsize) return ERROR;va.length++;for(i=va.length-1;va.elem[i]>x&&i>=0;i--)va.elem[i+1]=va.elem[i];va.elem[i+1]=x;return OK;}//Insert_SqList2.12int ListComp(SqList A,SqList B)//比较字符表A和B,并用返回值表示结果,值为1,表示A>B;值为-1,表示A<B;值为0,表示A=B{for(i=1;i<=A.length&&i<=B.length;i++)if(A.elem[i]!=B.elem[i])return A.elem[i]>B.elem[i]?1:-1;if(A.length==B.length) return 0;return A.length>B.length?1:-1; //当两个字符表可以互相比较的部分完全相同时,哪个较长,哪个就较大}//ListComp2.13LNode* Locate(LinkList L,int x)//链表上的元素查找,返回指针{for(p=l->next;p&&p->data!=x;p=p->next);return p;}//Locate2.14int Length(LinkList L)//求链表的长度{for(k=0,p=L;p->next;p=p->next,k++);return k;}//Length2.15void ListConcat(LinkList ha,LinkList hb,LinkList &hc)//把链表hb接在ha后面形成链表hc{hc=ha;p=ha;while(p->next) p=p->next;p->next=hb;}//ListConcat2.16见书后答案.2.17Status Insert(LinkList &L,int i,int b)//在无头结点链表L 的第i个元素之前插入元素b{p=L;q=(LinkList*)malloc(sizeof(LNode));q.data=b;if(i==1){q.next=p;L=q; //插入在链表头部}else{while(--i>1) p=p->next;q->next=p->next;p->next=q; //插入在第i个元素的位置}}//Insert2.18Status Delete(LinkList &L,int i)//在无头结点链表L中删除第i个元素{if(i==1) L=L->next; //删除第一个元素else{p=L;while(--i>1) p=p->next;p->next=p->next->next; //删除第i个元素}}//Delete2.19Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L中值大于mink且小于maxk 的所有元素{p=L;while(p->next->data<=mink) p=p->next; //p是最后一个不大于mink的元素if(p->next) //如果还有比mink更大的元素{q=p->next;while(q->data<maxk) q=q->next; //q是第一个不小于maxk的元素p->next=q;}}//Delete_Between2.20Status Delete_Equal(Linklist &L)//删除元素递增排列的链表L中所有值相同的元素{p=L->next;q=p->next; //p,q指向相邻两元素while(p->next){if(p->data!=q->data){p=p->next;q=p->next; //当相邻两元素不相等时,p,q都向后推一步}else{while(q->data==p->data){free(q);q=q->next;}p->next=q;p=q;q=p->next; //当相邻元素相等时删除多余元素}//else}//while}//Delete_Equal2.21void reverse(SqList &A)//顺序表的就地逆置{for(i=1,j=A.length;i<j;i++,j--)A.elem[i]<->A.elem[j];}//reverse2.22void LinkList_reverse(Linklist &L)//链表的就地逆置;为简化算法,假设表长大于2{p=L->next;q=p->next;s=q->next;p->next=NULL; while(s->next){q->next=p;p=q;q=s;s=s->next; //把L的元素逐个插入新表表头}q->next=p;s->next=q;L->next=s;}//LinkList_reverse分析:本算法的思想是,逐个地把L的当前元素q插入新的链表头部,p为新表表头.2.23void merge1(LinkList &A,LinkList &B,LinkList &C)//把链表A和B合并为C,A和B的元素间隔排列,且使用原存储空间{p=A->next;q=B->next;C=A;while(p&&q){s=p->next;p->next=q; //将B的元素插入if(s){t=q->next;q->next=s; //如A非空,将A的元素插入}p=s;q=t;}//while}//merge12.24void reverse_merge(LinkList &A,LinkList &B,LinkList &C)//把元素递增排列的链表A和B合并为C,且C中元素递减排列,使用原空间{pa=A->next;pb=B->next;pre=NULL; //pa和pb分别指向A,B的当前元素while(pa||pb){if(pa->data<pb->data||!pb){pc=pa;q=pa->next;pa->next=pre;pa=q; //将A的元素插入新表}else{pc=pb;q=pb->next;pb->next=pre;pb=q; //将B的元素插入新表}pre=pc;}C=A;A->next=pc; //构造新表头}//reverse_merge分析:本算法的思想是,按从小到大的顺序依次把A和B 的元素插入新表的头部pc处,最后处理A或B的剩余元素.2.25void SqList_Intersect(SqList A,SqList B,SqList &C)//求元素递增排列的线性表A和B的元素的交集并存入C 中{i=1;j=1;k=0;while(A.elem[i]&&B.elem[j]){if(A.elem[i]<B.elem[j]) i++;if(A.elem[i]>B.elem[j]) j++;if(A.elem[i]==B.elem[j]){C.elem[++k]=A.elem[i]; //当发现了一个在A,B中都存在的元素,i++;j++; //就添加到C中}}//while}//SqList_Intersect2.26void LinkList_Intersect(LinkList A,LinkList B,LinkList &C)//在链表结构上重做上题{p=A->next;q=B->next;pc=(LNode*)malloc(sizeof(LNode));C=pc;while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else{s=(LNode*)malloc(sizeof(LNode));s->data=p->data;pc->next=s;pc=s;p=p->next;q=q->next;}}//while}//LinkList_Intersect2.27void SqList_Intersect_True(SqList &A,SqList B)//求元素递增排列的线性表A和B的元素的交集并存回A中{i=1;j=1;k=0;while(A.elem[i]&&B.elem[j]){if(A.elem[i]<B.elem[j]) i++;else if(A.elem[i]>B.elem[j]) j++;else if(A.elem[i]!=A.elem[k]){A.elem[++k]=A.elem[i]; //当发现了一个在A,B中都存在的元素i++;j++; //且C中没有,就添加到C中}else {i++;j++;}}//whilewhile(A.elem[k]) A.elem[k++]=0;}//SqList_Intersect_True2.28void LinkList_Intersect_True(LinkList &A,LinkList B)//在链表结构上重做上题{p=A->next;q=B->next;pc=A;while(p&&q){if(p->data<q->data) p=p->next;else if(p->data>q->data) q=q->next;else if(p->data!=pc->data){pc=pc->next;pc->data=p->data;p=p->next;q=q->next;}}//while}//LinkList_Intersect_True2.29void SqList_Intersect_Delete(SqList &A,SqList B,SqList C){i=0;j=0;k=0;m=0; //i指示A中元素原来的位置,m为移动后的位置while(i<A.length&&j<B.length&& k<C.length){if(B.elem[j]<C.elem[k]) j++;else if(B.elem[j]>C.elem[k]) k++;else{same=B.elem[j]; //找到了相同元素samewhile(B.elem[j]==same) j++;while(C.elem[k]==same) k++; //j,k后移到新的元素while(i<A.length&&A.elem[i]<same)A.elem[m++]=A.elem[i++];//需保留的元素移动到新位置while(i<A.length&&A.elem[i]==same) i++; //跳过相同的元素}}//whilewhile(i<A.length)A.elem[m++]=A.elem[i++]; //A的剩余元素重新存储。

相关文档
最新文档