高等数学同济第五版第6章答案

合集下载

同济大学《高等数学》第五版上册答案(详解)

同济大学《高等数学》第五版上册答案(详解)

解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y

y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3

同济第五版高数答案(高等数学课后习题解答)

同济第五版高数答案(高等数学课后习题解答)

习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈ f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒ ∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2) ⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1); 解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, 4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形. 解 216sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xxy -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), - f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3; (3)2211xx y +-=;(4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2xx a a y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数.(4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f xx x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2); (2)y =cos 4x ; (3)y =1+sin πx ; (4)y =x cos x ; (5)y =sin 2 x .解 (1)是周期函数, 周期为l =2π. (2)是周期函数, 周期为2π=l .(3)是周期函数, 周期为l =2. (4)不是周期函数. (5)是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ; (2)xx y +-=11;(3)d cx b ax y ++=(ad -bc ≠0);(4) y =2sin3x ; (5) y =1+ln(x +2);(6)122+=xxy . 解 (1)由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为x x y +-=11.(3)由d cx b ax y ++=得a cy bdy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4)由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin 3x 的反函数为2arcsin 31x y =.(5)由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M , 即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;(2) y =sin u , u =2x , ,81π=x ,42π=x ; (3)u y =, u =1+x 2, x 1=1, x 2= 2; (4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 (1)y =sin 2x , 4121(6sin 221===πy ,4323(3sin 222===πy .(2)y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)21x y +=, 21121=+=y , 52122=+=y . (4)2x e y =, 1201==e y , e e y ==212.(5)y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2); (2) f (sin x ); (3) f (x +a )(a >0);(4)f (x +a )+f (x -a )(a >0).解 (1)由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2)由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为 [2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3)由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4)由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ()⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| ][101)(x e x x e e x f g x f , 即()⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| ][1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AC +CD +DB)与水深h 之间的函数关系式, 并说明定义域. 图1-37 解40sin h DC Ab ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以 h h S L40sin 40cos 20-+=.自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS 确定, 定义域为 40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元. (1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0. 01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0. 01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.0911000 90x x x x p.(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0. 01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=;(2)n x n n 1)1(-=;(3)212n x n +=;(4)11+-=n n x n ; (5) x n =n (-1)n . 解 (1)当n →∞时, nn x 21=→0, 021lim=∞→nn .(2)当n →∞时, n x nn 1)1(-=→0, 01)1(lim =-∞→nn n .(3)当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→nn .(4)当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5)当n →∞时, x n =n (-1)n 没有极限. 2. 设数列{x n }的一般项n n x n 2cos π=. 问nn x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x .n n n x n 12cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, 1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ;(2)231213lim=++∞→n n n ;(3)1lim 22=+∞→na n n(4)19 999.0lim =⋅⋅⋅∞→个n n . (1)分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n .(2)分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃41[ε=N , 当n >N 时, 有ε<-++231213|n n , 所以231213lim =++∞→n n n .(3)分析 要使ε<<++=-+=-+n a n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >.证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n .(4)分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n .证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有My n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n }若x 2k →a (k →∞), x 2k +1→a (k →∞), 证明: x n →a (n →∞). 证明 因为x 2k →a (k →∞), x 2k +1→a (k →∞), 所以∀ε>0, ∃K 1, 当2k >2K 1时, 有| x 2k -a |<ε ;∃K 2, 当2k +1>2K 2+1时, 有| x 2k +1-a |<ε..取N =max{2K 1, 2K 2+1}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;(2)12)25(lim 2=+→x x ;(3)424lim22-=+--→x x x ; (4)21241lim 321=+--→x x x .证明 (1)分析 |(3x -1)-8|=|3x -9|=3|x -3|, 要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε >0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)分析 |(5x +2)-12|=|5x -10|=5|x -2|, 要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有|(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)分析 |)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 要使ε<--+-)4(242x x , 只须ε<--|)2(|x .证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x . (4)分析|21(|2|221|212413--=--=-+-x x x x , 要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x .2. 根据函数极限的定义证明: (1)2121lim33=+∞→x x x ; (2)0sin lim=+∞→xxx .证明 (1)分析 333333||21212121x x x x x x =-+=-+, 要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x .证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x .(2)分析 xxx xx 1|sin |0sin ≤=-, 要使ε<-0sin x x, 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin x x, 所以0sin lim=+∞→xxx .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0. 001?解 由于x →2, |x -2|→0, 不妨设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0. 001, 只要0002.05001.0|2|=<-x , 取δ=0. 0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001. 4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只397301.04||=->x , 397=X . 5. 证明函数f (x )=|x | 当x →0时极限为零.6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x xx f ,11lim lim )(lim 000===+++→→→x x x x xx f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 00-=-==---→→→x xx x x x x x ϕ, 1lim ||lim )(lim 00===+++→→→xx x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有|f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有| f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以|f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |.习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε >0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小.(2)当x ≠0时|0|1sin |||||-≤=x xx y . 因为∀ε >0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时x x y 1sin =为无穷小.3. 根据定义证明: 函数xxy 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x . 证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M xx >+21, 所以当x →0时, 函数x xy 21+=是无穷大. 取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由:(1)xx n 12lim+∞→;(2)xx x --→11lim20.解 (1)因为x x x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→xx n .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x . 5. 根据函数极限或无穷大定义, 填写下表:6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如022cos()22(22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数x x y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数x x y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限: (1)35lim 22-+→x x x ;解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ;解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim121221==+-=+--=-+-→→→x x x x x x x x x x x .(4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim-+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim02220220=+=-++=-+→→→.(6))112(lim 2xx x +-∞→; 解 21lim 1lim 2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim22---∞→x x x x ; 解 2111211lim 121lim 2222=---=---∞→∞→x x x x x x x x . (8)13lim242--+∞→x x x x x ; 解 013lim242=--+∞→x x x x x (分子次数低于分母次数, 极限为零)或 012111lim13lim 4232242=--+=--+∞→∞→xx x x x x xx x x . (9)4586lim 224+-+-→x x x x x ;解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2xx x -+∞→; 解 22112(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim)21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→; 解 112lim )1)(1()2)(1(lim)1)(1(31lim 1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x x x x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→x x x x x x x . (3)xx x 5sin 2sin lim 0→; 解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x .(6)n n n x2sin2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n ==∞→∞→22sinlim2sin 2lim . 2. 计算下列极限:(1)xx x 1)1(lim -→;解{}11)(10)1)(101)](1[lim )](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解[]22210221010)21(lim )21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 21(lim +∞→;解 []222)11(lim )1(lim e x x x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '. 解4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为nn 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I, 111lim =+∞→nn .(2)()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()πππππ+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim22=+∞→πn n n n , 1lim 22=+∞→πn n n ,所以 ()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2, 22+,222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅).先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有11lim 0=+→n x x .(5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-x x x .又因为11lim )1(lim 0==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2). 2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价? 解 (1)因为3)1(lim 1)1)(1(lim 11lim212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小. (2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ; (2)2~1sec 2x x -. 证明 (1)因为1tan lim arctan lim00==→→y y xxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为()122sin2lim 22sin 2limcos cos 1lim 2211sec lim20222020===-=-→→→→x xxx x x xx x x x x x ,所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xxx 23tan lim0→;(2)mn x x x )(sin )sin(lim0→(n , m 为正整数);(3)xx x x 3sin sin tan lim-→;(4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2) ⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x x x x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0), 23232223231~11)1(11x x x x x ++++=-+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→xx x x x xx x x .5. 证明无穷小的等价关系具有下列性质:(1)α ~α (自反性); (2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形: (1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 (1)已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数. (2)只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, )1(11lim )(lim 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x , 所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅); (3),1cos 2x y = x =0;(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1. 解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处,令y =-2, 则函数在x =1处成为连续的.(2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→xxk x ππ(k ∈Z), 所以x =0和2 ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. (3)因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 2→不存在, 所以x =0是函数的第二类间断点. (4)因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理,存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n 1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;(3)f (x )在R 上处处有定义, 但仅在一点连续. 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的, 且这些点是函数的无穷间断点.解(2)函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续. 解(3)函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )}在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→. 可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()(21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()(21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限:(1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→; (5)145lim1---→x xx x ;(6)ax ax a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点x =4π有定义, 所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点x =6π有定义, 所以0)62cos 2ln(6()2cos 2ln(lim 6=⋅==→πππf x x . (4)211101111lim )11(lim )11()11)(11(lim 11lim0000=++=++=++=++++-+=-+→→→→x x x x x x x x x x x x x x . (5))45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim1=+-⋅=+-=→xx x .(6)ax ax a x ax ax a x a x --+=--→→2sin 2cos2limsin sin lima a a a x ax ax ax ax cos 12cos 22sinlim 2coslim =+=--⋅+=→→. (7))())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim)(2lim22=-++=-++=+∞→+∞→xx x x x x xx x .4. 求下列极限: (1)x x e 1lim ∞→;(2)xxx sin lnlim 0→; (3)2)11(lim xx x+∞→;(4)x x x 2cot 20)tan 31(lim +→;(5)21)63(lim -∞→++x x xx ; (6)xx x x x x -++-+→20sin 1sin 1tan 1lim.解 (1) 1lim 01lim1===∞→∞→e ee xxx x .(2) 01ln )sin lim ln(sin lnlim 00===→→x xxx x x .(3) []e e xx xx xx ==+=+∞→∞→21212)11(lim 11(lim .(4) []33tan312cot 222)tan 31(lim )tan 31(lim ex x xx xx =+=+→→.(5)21633621)631()63(-+-⋅-+-+-+=++x x x x xx x . 因为。

高数课后答案详解

高数课后答案详解

高数课后答案详解【篇一:高数课后习题答案】txt>▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆《全新版大学英语综合教程》(第三册)练习答案及课文译文/viewthread.php?tid=77fromuid=164951《全新版大学英语综合教程》(第一册)练习答案及课文译文/viewthread.php?tid=75fromuid=164951《会计学原理》同步练习题答案/viewthread.php?tid=305fromuid=164951《微观经济学》课后答案(高鸿业版)/viewthread.php?tid=283fromuid=164951《统计学》课后答案(第二版,贾俊平版)/viewthread.php?tid=29fromuid=164951《西方经济学》习题答案(第三版,高鸿业)可直接打印/viewthread.php?tid=289fromuid=164951毛邓三全部课后思考题答案(高教版)/毛邓三课后答案/viewthread.php?tid=514fromuid=164951新视野大学英语听说教程1听力原文及答案下载/viewthread.php?tid=2531fromuid=164951西方宏观经济高鸿业第四版课后答案/viewthread.php?tid=2006fromuid=164951《管理学》经典笔记(周三多,第二版)/viewthread.php?tid=280fromuid=164951《中国近代史纲要》课后习题答案/viewthread.php?tid=186fromuid=164951《理论力学》课后习题答案/viewthread.php?tid=55fromuid=164951《线性代数》(同济第四版)课后习题答案(完整版)/viewthread.php?tid=17fromuid=164951高等数学(同济第五版)课后答案(pdf格式,共527页)/viewthread.php?tid=18fromuid=164951中国近现代史纲要课后题答案/viewthread.php?tid=5900fromuid=164951曼昆《经济学原理》课后习题解答/viewthread.php?tid=85fromuid=16495121世纪大学英语读写教程(第三册)参考答案/viewthread.php?tid=5fromuid=164951谢希仁《计算机网络教程》(第五版)习题参考答案(共48页)/viewthread.php?tid=28fromuid=164951《概率论与数理统计》习题答案/viewthread.php?tid=57fromuid=164951《模拟电子技术基础》详细习题答案(童诗白,华成英版,高教版) /viewthread.php?tid=42fromuid=164951《机械设计》课后习题答案(高教版,第八版,西北工业大学)《大学物理》完整习题答案/viewthread.php?tid=217fromuid=164951《管理学》课后答案(周三多)/viewthread.php?tid=304fromuid=164951机械设计基础(第五版)习题答案[杨可桢等主编]/viewthread.php?tid=23fromuid=164951程守洙、江之永主编《普通物理学》(第五版)详细解答及辅导/viewthread.php?tid=3fromuid=164951新视野大学英语课本详解(四册全)/viewthread.php?tid=1275fromuid=16495121世纪大学英语读写教程(第四册)课后答案/viewthread.php?tid=7fromuid=164951新视野大学英语读写教程3册的课后习题答案/viewthread.php?tid=805fromuid=164951新视野大学英语第四册答案(第二版)/viewthread.php?tid=5310fromuid=164951《中国近现代史》选择题全集(共含250道题目和答案)/viewthread.php?tid=181fromuid=164951《电工学》课后习题答案(第六版,上册,秦曾煌主编)/viewthread.php?tid=232fromuid=164951完整的英文原版曼昆宏观、微观经济学答案/viewthread.php?tid=47fromuid=164951《数字电子技术基础》习题答案(阎石,第五版)/viewthread.php?tid=90fromuid=164951《电路》习题答案上(邱关源,第五版)/viewthread.php?tid=137fromuid=164951《电工学》习题答案(第六版,秦曾煌)/viewthread.php?tid=112fromuid=16495121世纪大学英语读写教程(第三册)课文翻译/viewthread.php?tid=6fromuid=164951《生物化学》复习资料大全(3套试卷及答案+各章习题集)/viewthread.php?tid=258fromuid=164951《模拟电子技术基础》课后习题答案(共10章)/viewthread.php?tid=21fromuid=164951《概率论与数理统计及其应用》课后答案(浙江大学盛骤谢式千编著)/viewthread.php?tid=178fromuid=164951《理论力学》课后习题答案(赫桐生,高教版)《全新版大学英语综合教程》(第四册)练习答案及课文译文/viewthread.php?tid=78fromuid=164951《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)/viewthread.php?tid=195fromuid=164951《国际贸易》课后习题答案(海闻 p.林德特王新奎)大学英语综合教程 1-4册练习答案/viewthread.php?tid=1282fromuid=164951《流体力学》习题答案/viewthread.php?tid=83fromuid=164951《传热学》课后习题答案(第四版)/viewthread.php?tid=200fromuid=164951高等数学习题答案及提示/viewthread.php?tid=260fromuid=164951《高分子化学》课后习题答案(第四版,潘祖仁主编)/viewthread.php?tid=236fromuid=164951/viewthread.php?tid=6417fromuid=164951《计算机网络》课后习题解答(谢希仁,第五版)/viewthread.php?tid=3434fromuid=164951《概率论与数理统计》优秀学习资料/viewthread.php?tid=182fromuid=164951《离散数学》习题答案(高等教育出版社)/viewthread.php?tid=102fromuid=164951《模拟电子技术基础简明教程》课后习题答案(杨素行第三版) /viewthread.php?tid=41fromuid=164951《信号与线性系统分析》习题答案及辅导参考(吴大正版)/viewthread.php?tid=74fromuid=164951《教育心理学》课后习题答案(皮连生版)/viewthread.php?tid=277fromuid=164951《理论力学》习题答案(动力学和静力学)/viewthread.php?tid=221fromuid=164951选修课《中国现当代文学》资料包/viewthread.php?tid=273fromuid=164951机械设计课程设计——二级斜齿圆柱齿轮减速器(word+原图)/viewthread.php?tid=35fromuid=164951《成本会计》配套习题集参考答案/viewthread.php?tid=300fromuid=164951《概率论与数理统计》8套习题及习题答案(自学推荐)/viewthread.php?tid=249fromuid=164951《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先) /viewthread.php?tid=294fromuid=164951《计算机操作系统》习题答案(汤子瀛版,完整版)/viewthread.php?tid=262fromuid=164951《线性代数》9套习题+9套相应答案(自学,复习推荐)/viewthread.php?tid=244fromuid=164951《管理理论与实务》课后题答案(手写版,中央财经大学,赵丽芬)统计学原理作业及参考答案/viewthread.php?tid=13fromuid=164951机械设计课程设计——带式运输机的传动装置的设计/viewthread.php?tid=222fromuid=164951/viewthread.php?tid=50fromuid=164951《新编大学英语》课后答案(第三册)/viewthread.php?tid=168fromuid=164951《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版) /viewthread.php?tid=203fromuid=164951《c语言程序与设计》习题答案(谭浩强,第三版)/viewthread.php?tid=59fromuid=164951《微生物学》课后习题答案(周德庆版)/viewthread.php?tid=291fromuid=164951新视野第二版全四册听说教程答案/viewthread.php?tid=6959fromuid=164951《宏观经济学》课后答案(曼昆,中文版)/viewthread.php?tid=138fromuid=164951《电力电子技术》习题答案(第四版,王兆安,王俊主编)/viewthread.php?tid=164fromuid=164951《土力学》习题解答/课后答案/viewthread.php?tid=43fromuid=164951《公司法》课后练习及参考答案/viewthread.php?tid=307fromuid=164951《全新版大学英语综合教程》(第二册)练习答案及课文译文 /viewthread.php?tid=76fromuid=164951新视野大学英语视听说第三册答案/viewthread.php?tid=5161fromuid=164951《工程力学》课后习题答案(梅凤翔主编)/viewthread.php?tid=191fromuid=164951《理论力学》详细习题答案(第六版,哈工大出版社)/viewthread.php?tid=2445fromuid=164951《成本会计》习题及答案(自学推荐,23页)/viewthread.php?tid=301fromuid=164951《自动控制原理》课后题答案(胡寿松,第四版)/viewthread.php?tid=52fromuid=164951《复变函数》习题答案(第四版)/viewthread.php?tid=118fromuid=164951《信号与系统》习题答案(第四版,吴大正)/viewthread.php?tid=268fromuid=164951《有机化学》课后答案(第二版,高教版,徐寿昌主编)/viewthread.php?tid=3830fromuid=164951《电工学——电子技术》习题答案(下册)《财务管理学》章后练习参考答案(人大出版,第四版)/viewthread.php?tid=292fromuid=164951现代汉语题库(语法部分)及答案/viewthread.php?tid=211fromuid=164951《概率论与数理统计》习题详解(浙大二、三版通用)/viewthread.php?tid=80fromuid=164951《有机化学》习题答案(汪小兰主编)/viewthread.php?tid=69fromuid=164951《微机原理及应用》习题答案/viewthread.php?tid=261fromuid=164951《管理运筹学》第二版习题答案(韩伯棠教授)/viewthread.php?tid=34fromuid=164951《古代汉语》习题集(附习题答案)福建人民出版社/viewthread.php?tid=1277fromuid=164951《金融市场学》课后习题答案(张亦春,郑振龙,第二版) /viewthread.php?tid=279fromuid=164951《公共关系学》习题及参考答案(复习必备)/viewthread.php?tid=308fromuid=164951现代汉语通论(邵敬敏版)词汇语法课后练习答案/viewthread.php?tid=1429fromuid=164951《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版) /viewthread.php?tid=281fromuid=164951《教育技术》课后习题答案参考(北师大)/viewthread.php?tid=199fromuid=164951《金融市场学》课后答案(郑振龙版)/viewthread.php?tid=24fromuid=164951《组织行为学》习题集答案(参考下,还是蛮好的)/viewthread.php?tid=297fromuid=164951《分析化学》课后习题答案(第五版,高教版)/viewthread.php?tid=122fromuid=164951大学英语精读第3册答案(外教社)/viewthread.php?tid=9fromuid=164951《国际经济学》习题答案(萨尔瓦多,英文版)/viewthread.php?tid=155fromuid=164951《复变函数与积分变换》习题答案/viewthread.php?tid=70fromuid=164951《信息论与编码》辅导ppt及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社) /viewthread.php?tid=136fromuid=164951《宏观经济学》习题答案(第七版,多恩布什)/viewthread.php?tid=293fromuid=164951《物理化学》习题解答(天津大学, 第四版,106张)/viewthread.php?tid=2647fromuid=164951新视野大学英语视听说教程第一册【篇二:高数练习题及答案】xt>一、填空题(每空3分,共15分)z?的定义域为y2yy2(1)函数(2)已知函数z?arctan20?zx,则?x?=(x?y)ds?(3)交换积分次序,?dy?f(x,y)dx(4)已知l是连接(0,1),(1,0)两点的直线段,则?l(5)已知微分方程y???2y??3y?0,则其通解为二、选择题(每空3分,共15分)?x?3y?2z?1?0?(1)设直线l为?2x?y?10z?3?0,平面?为4x?2y?z?2?0,则() a. l平行于? b. l在?上 c. l垂直于?d. l与?斜交(2()xyz?确定,则在点(1,0,?1)处的dz??2a.dx?dyb.dx?22d.dx?2?2(3)已知?是由曲面4z?25(x?y)及平面z?5所围成的闭区域,将在柱面坐标系下化成三次积分为() a.?0c.2????(x?y)dv5d??rdr?dz235?2?0d??rdr?dz2?22543?2?0d??20rdr?5dz2r35d. ()1?d??rdr?dz(4)已知幂级数a. 2b. 1c. 2d. (5)微分方程y???3y??2y?3x?2e的特解y的形式为y?()a.xx??xxb.(ax?b)xec.(ax?b)?ced.(ax?b)?cxe三、计算题(每题8分,共48分)x?11、求过直线l1:12?y?20?z?3?1且平行于直线l2:x?22?y?11?z1的平面方程?z?z2、已知z?f(xy,xy),求?x, ?y3、设d?{(x,y)x?y?4}22,利用极坐标求??dxdxdy24、求函数f(x,y)?e(x?y?2y)的极值?x?t?sint?(2xy?3sinx)dx?(x?e)dy?5、计算曲线积分l,其中l为摆线?y?1?cost从点2y2x2o(0,0)到a(?,2)的一段弧x?xy?y?xe6、求微分方程满足 yx?1?1的特解四.解答题(共22分)1、利用高斯公式计算半球面z????2xzdydz?yzdzdx?z?dxdy,其中?由圆锥面z?与上(10? )?2、(1)判别级数?n?1(?1)n?1n3n?1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6?)n?(2)在x?(?1,1)求幂级数n?1?nx的和函数(6?)高等数学(下)模拟试卷二一.填空题(每空3分,共15分)z?(1)函数ln(1?x?y)的定义域为;elnx0xy(2)已知函数z?e,则在(2,1)处的全微分dz?(3)交换积分次序,?1dx?f(x,y)dy2=;(4)已知l是抛物线y?x上点o(0,0与点b(1,1之间的一段弧,则?l?;(5)已知微分方程y???2y??y?0,则其通解为 .二.选择题(每空3分,共15分)?x?y?3z?0?(1)设直线l为?x?y?z?0,平面?为x?y?z?1?0,则l与?的夹角为();???z?a. 0b. 2c. 3d. 4 (2)设z?f(x,y)是由方程z?3xyz?a确定,则?x yz2233?();xy2yz2x?xz2?a. xy?zb. z?xyc. xy?zd. z?xy (3)微分方程y???5y??6y?xe 的特解y的形式为y?();a.(ax?b)e2xb.(ax?b)xe222xc.(ax?b)?ce22xd.(ax?b)?cxe2x(4)已知?是由球面x?y?z?a所围成的闭区域, 将三次积分为(); a?02?2???dv?在球面坐标系下化成a?20d??sin?d??rdra2b.?02??20d??d??rdr2?a20c.?02?d??d??rdr?ad.?02nd??sin?d??rdr??(5)已知幂级数n?1?2n?1xn,则其收敛半径().1a. 2b. 1c. 2三.计算题(每题8分,共48分)5、求过a(0,2,4)且与两平面?1:x?2z?1和?2:y?3z?2平行的直线方程 .?z?z6、已知z?f(sinxcosy,e22x?y),求?x, ?y.7、设d?{(x,y)x?y?1,0?y?x},利用极坐标计算22??arctandyxdxdy.8、求函数f(x,y)?x?5y?6x?10y?6的极值. 9、利用格林公式计算? 222l(esiny?2y)dx?(ecosy?2)dyxx,其中l为沿上半圆周(x?a)?y?a,y?0、从a(2a,0)到o(0,0)的弧段.x?16、求微分方程四.解答题(共22分)y??y3?(x?1)2的通解.?1、(1)(6?)判别级数敛;n?1(?1)n?12sinn?3的敛散性,若收敛,判别是绝对收敛还是条件收?n(2)(4?)在区间(?1,1)内求幂级数2、(12?)利用高斯公式计算 z?x?y(0?z?1)的下侧22?n?1?xnn的和函数 .??2xdydz?ydzdx?zdxdy,?为抛物面高等数学(下)模拟试卷三一.填空题(每空3分,共15分)1、函数y?arcsin(x?3)的定义域为 .2、n??3n?3n?2=.3、已知y?ln(1?x),在x?1处的微分dy?.2lim(n?2)22?4、定积分1?1(x2006sinx?x)dx?2.dy5、求由方程y?2y?x?3x?0所确定的隐函数的导数dx57.二.选择题(每空3分,共15分)x?3x?2的间断点 1、x?2是函数(a)可去(b)跳跃(c)无穷(d)振荡y?x?1222、积分?10=.(a) ?(b)??(c) 0 (d) 13、函数y?e?x?1在(??,0]内的单调性是。

第五章第六章的问题与答案 数学分析

第五章第六章的问题与答案 数学分析
A、1,-15;B、2,-10;C、1,-7;D、-7-10.
答:B
第九讲凹凸性与拐点
1.曲线 在 上是()
A、单调上升凸函数B、单调上升凹函数
C、单调下降凸函数D、单调下降凹函数
答:B
2.关于函数 ,下列结果错误的是( )
A、函数 在 内为凹函数
B、函数 在 内为凸函数
C、函数 在 内为凸函数
D、函数 在 内为凹函数
D、若 在 处取极小值,则在 单调上升,在 单调下降
答:D
2.设 是 的极值点,则()。
A、必有 B、 必不存在;
C、 或 不存在;D、
答:C
第八讲极值与最值
1.已知函数 在 处连续,且有 则().
A、 不存在;B、 不存在;
C、 在 处取得极小值;D、 在 处取得极大值.
答:D
2.函数 的最大值和最小值分别为().
答:×
2.拉格朗日定理实际上是带有拉格朗日余项的泰勒公式的特殊情形()
答:√
第六讲
1.函数 在0点的带有拉格朗日型余项的泰勒展开式为。
答:
2.函数 在0点的带有拉格朗日型余项的泰勒展开式为。
答:
第七讲极值与最值
1.下列说法中正确的是()。
A、若 ,则 在 有最小值
B、若 在 处取最小值,则
C、若 ,则 在 处不取极小值
答:B
第十讲凹凸性与拐点
1.设函数 在I上可导,若函数 为I上的凸函数,则 为I上的增函数.()
答:√
2.设 为I上的二阶可导函数,则在I上 为凸函数 , .()
答:√
第十一讲凹凸性与拐点
1.设( )是曲线 的一个拐点,但 在点 的导数不一定存在。()

高数课后答案详解

高数课后答案详解

高数课后答案详解【篇一:高数课后习题答案】txt>▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆《全新版大学英语综合教程》(第三册)练习答案及课文译文/viewthread.php?tid=77fromuid=164951《全新版大学英语综合教程》(第一册)练习答案及课文译文/viewthread.php?tid=75fromuid=164951《会计学原理》同步练习题答案/viewthread.php?tid=305fromuid=164951《微观经济学》课后答案(高鸿业版)/viewthread.php?tid=283fromuid=164951《统计学》课后答案(第二版,贾俊平版)/viewthread.php?tid=29fromuid=164951《西方经济学》习题答案(第三版,高鸿业)可直接打印/viewthread.php?tid=289fromuid=164951毛邓三全部课后思考题答案(高教版)/毛邓三课后答案/viewthread.php?tid=514fromuid=164951新视野大学英语听说教程1听力原文及答案下载/viewthread.php?tid=2531fromuid=164951西方宏观经济高鸿业第四版课后答案/viewthread.php?tid=2006fromuid=164951《管理学》经典笔记(周三多,第二版)/viewthread.php?tid=280fromuid=164951《中国近代史纲要》课后习题答案/viewthread.php?tid=186fromuid=164951《理论力学》课后习题答案/viewthread.php?tid=55fromuid=164951《线性代数》(同济第四版)课后习题答案(完整版)/viewthread.php?tid=17fromuid=164951高等数学(同济第五版)课后答案(pdf格式,共527页)/viewthread.php?tid=18fromuid=164951中国近现代史纲要课后题答案/viewthread.php?tid=5900fromuid=164951曼昆《经济学原理》课后习题解答/viewthread.php?tid=85fromuid=16495121世纪大学英语读写教程(第三册)参考答案/viewthread.php?tid=5fromuid=164951谢希仁《计算机网络教程》(第五版)习题参考答案(共48页)/viewthread.php?tid=28fromuid=164951《概率论与数理统计》习题答案/viewthread.php?tid=57fromuid=164951《模拟电子技术基础》详细习题答案(童诗白,华成英版,高教版) /viewthread.php?tid=42fromuid=164951《机械设计》课后习题答案(高教版,第八版,西北工业大学)《大学物理》完整习题答案/viewthread.php?tid=217fromuid=164951《管理学》课后答案(周三多)/viewthread.php?tid=304fromuid=164951机械设计基础(第五版)习题答案[杨可桢等主编]/viewthread.php?tid=23fromuid=164951程守洙、江之永主编《普通物理学》(第五版)详细解答及辅导/viewthread.php?tid=3fromuid=164951新视野大学英语课本详解(四册全)/viewthread.php?tid=1275fromuid=16495121世纪大学英语读写教程(第四册)课后答案/viewthread.php?tid=7fromuid=164951新视野大学英语读写教程3册的课后习题答案/viewthread.php?tid=805fromuid=164951新视野大学英语第四册答案(第二版)/viewthread.php?tid=5310fromuid=164951《中国近现代史》选择题全集(共含250道题目和答案)/viewthread.php?tid=181fromuid=164951《电工学》课后习题答案(第六版,上册,秦曾煌主编)/viewthread.php?tid=232fromuid=164951完整的英文原版曼昆宏观、微观经济学答案/viewthread.php?tid=47fromuid=164951《数字电子技术基础》习题答案(阎石,第五版)/viewthread.php?tid=90fromuid=164951《电路》习题答案上(邱关源,第五版)/viewthread.php?tid=137fromuid=164951《电工学》习题答案(第六版,秦曾煌)/viewthread.php?tid=112fromuid=16495121世纪大学英语读写教程(第三册)课文翻译/viewthread.php?tid=6fromuid=164951《生物化学》复习资料大全(3套试卷及答案+各章习题集)/viewthread.php?tid=258fromuid=164951《模拟电子技术基础》课后习题答案(共10章)/viewthread.php?tid=21fromuid=164951《概率论与数理统计及其应用》课后答案(浙江大学盛骤谢式千编著)/viewthread.php?tid=178fromuid=164951《理论力学》课后习题答案(赫桐生,高教版)《全新版大学英语综合教程》(第四册)练习答案及课文译文/viewthread.php?tid=78fromuid=164951《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)/viewthread.php?tid=195fromuid=164951《国际贸易》课后习题答案(海闻 p.林德特王新奎)大学英语综合教程 1-4册练习答案/viewthread.php?tid=1282fromuid=164951《流体力学》习题答案/viewthread.php?tid=83fromuid=164951《传热学》课后习题答案(第四版)/viewthread.php?tid=200fromuid=164951高等数学习题答案及提示/viewthread.php?tid=260fromuid=164951《高分子化学》课后习题答案(第四版,潘祖仁主编)/viewthread.php?tid=236fromuid=164951/viewthread.php?tid=6417fromuid=164951《计算机网络》课后习题解答(谢希仁,第五版)/viewthread.php?tid=3434fromuid=164951《概率论与数理统计》优秀学习资料/viewthread.php?tid=182fromuid=164951《离散数学》习题答案(高等教育出版社)/viewthread.php?tid=102fromuid=164951《模拟电子技术基础简明教程》课后习题答案(杨素行第三版) /viewthread.php?tid=41fromuid=164951《信号与线性系统分析》习题答案及辅导参考(吴大正版)/viewthread.php?tid=74fromuid=164951《教育心理学》课后习题答案(皮连生版)/viewthread.php?tid=277fromuid=164951《理论力学》习题答案(动力学和静力学)/viewthread.php?tid=221fromuid=164951选修课《中国现当代文学》资料包/viewthread.php?tid=273fromuid=164951机械设计课程设计——二级斜齿圆柱齿轮减速器(word+原图)/viewthread.php?tid=35fromuid=164951《成本会计》配套习题集参考答案/viewthread.php?tid=300fromuid=164951《概率论与数理统计》8套习题及习题答案(自学推荐)/viewthread.php?tid=249fromuid=164951《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先) /viewthread.php?tid=294fromuid=164951《计算机操作系统》习题答案(汤子瀛版,完整版)/viewthread.php?tid=262fromuid=164951《线性代数》9套习题+9套相应答案(自学,复习推荐)/viewthread.php?tid=244fromuid=164951《管理理论与实务》课后题答案(手写版,中央财经大学,赵丽芬)统计学原理作业及参考答案/viewthread.php?tid=13fromuid=164951机械设计课程设计——带式运输机的传动装置的设计/viewthread.php?tid=222fromuid=164951/viewthread.php?tid=50fromuid=164951《新编大学英语》课后答案(第三册)/viewthread.php?tid=168fromuid=164951《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版) /viewthread.php?tid=203fromuid=164951《c语言程序与设计》习题答案(谭浩强,第三版)/viewthread.php?tid=59fromuid=164951《微生物学》课后习题答案(周德庆版)/viewthread.php?tid=291fromuid=164951新视野第二版全四册听说教程答案/viewthread.php?tid=6959fromuid=164951《宏观经济学》课后答案(曼昆,中文版)/viewthread.php?tid=138fromuid=164951《电力电子技术》习题答案(第四版,王兆安,王俊主编)/viewthread.php?tid=164fromuid=164951《土力学》习题解答/课后答案/viewthread.php?tid=43fromuid=164951《公司法》课后练习及参考答案/viewthread.php?tid=307fromuid=164951《全新版大学英语综合教程》(第二册)练习答案及课文译文 /viewthread.php?tid=76fromuid=164951新视野大学英语视听说第三册答案/viewthread.php?tid=5161fromuid=164951《工程力学》课后习题答案(梅凤翔主编)/viewthread.php?tid=191fromuid=164951《理论力学》详细习题答案(第六版,哈工大出版社)/viewthread.php?tid=2445fromuid=164951《成本会计》习题及答案(自学推荐,23页)/viewthread.php?tid=301fromuid=164951《自动控制原理》课后题答案(胡寿松,第四版)/viewthread.php?tid=52fromuid=164951《复变函数》习题答案(第四版)/viewthread.php?tid=118fromuid=164951《信号与系统》习题答案(第四版,吴大正)/viewthread.php?tid=268fromuid=164951《有机化学》课后答案(第二版,高教版,徐寿昌主编)/viewthread.php?tid=3830fromuid=164951《电工学——电子技术》习题答案(下册)《财务管理学》章后练习参考答案(人大出版,第四版)/viewthread.php?tid=292fromuid=164951现代汉语题库(语法部分)及答案/viewthread.php?tid=211fromuid=164951《概率论与数理统计》习题详解(浙大二、三版通用)/viewthread.php?tid=80fromuid=164951《有机化学》习题答案(汪小兰主编)/viewthread.php?tid=69fromuid=164951《微机原理及应用》习题答案/viewthread.php?tid=261fromuid=164951《管理运筹学》第二版习题答案(韩伯棠教授)/viewthread.php?tid=34fromuid=164951《古代汉语》习题集(附习题答案)福建人民出版社/viewthread.php?tid=1277fromuid=164951《金融市场学》课后习题答案(张亦春,郑振龙,第二版) /viewthread.php?tid=279fromuid=164951《公共关系学》习题及参考答案(复习必备)/viewthread.php?tid=308fromuid=164951现代汉语通论(邵敬敏版)词汇语法课后练习答案/viewthread.php?tid=1429fromuid=164951《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版) /viewthread.php?tid=281fromuid=164951《教育技术》课后习题答案参考(北师大)/viewthread.php?tid=199fromuid=164951《金融市场学》课后答案(郑振龙版)/viewthread.php?tid=24fromuid=164951《组织行为学》习题集答案(参考下,还是蛮好的)/viewthread.php?tid=297fromuid=164951《分析化学》课后习题答案(第五版,高教版)/viewthread.php?tid=122fromuid=164951大学英语精读第3册答案(外教社)/viewthread.php?tid=9fromuid=164951《国际经济学》习题答案(萨尔瓦多,英文版)/viewthread.php?tid=155fromuid=164951《复变函数与积分变换》习题答案/viewthread.php?tid=70fromuid=164951《信息论与编码》辅导ppt及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社) /viewthread.php?tid=136fromuid=164951《宏观经济学》习题答案(第七版,多恩布什)/viewthread.php?tid=293fromuid=164951《物理化学》习题解答(天津大学, 第四版,106张)/viewthread.php?tid=2647fromuid=164951新视野大学英语视听说教程第一册【篇二:高数练习题及答案】xt>一、填空题(每空3分,共15分)z?的定义域为y2yy2(1)函数(2)已知函数z?arctan20?zx,则?x?=(x?y)ds?(3)交换积分次序,?dy?f(x,y)dx(4)已知l是连接(0,1),(1,0)两点的直线段,则?l(5)已知微分方程y???2y??3y?0,则其通解为二、选择题(每空3分,共15分)?x?3y?2z?1?0?(1)设直线l为?2x?y?10z?3?0,平面?为4x?2y?z?2?0,则() a. l平行于? b. l在?上 c. l垂直于?d. l与?斜交(2()xyz?确定,则在点(1,0,?1)处的dz??2a.dx?dyb.dx?22d.dx?2?2(3)已知?是由曲面4z?25(x?y)及平面z?5所围成的闭区域,将在柱面坐标系下化成三次积分为() a.?0c.2????(x?y)dv5d??rdr?dz235?2?0d??rdr?dz2?22543?2?0d??20rdr?5dz2r35d. ()1?d??rdr?dz(4)已知幂级数a. 2b. 1c. 2d. (5)微分方程y???3y??2y?3x?2e的特解y的形式为y?()a.xx??xxb.(ax?b)xec.(ax?b)?ced.(ax?b)?cxe三、计算题(每题8分,共48分)x?11、求过直线l1:12?y?20?z?3?1且平行于直线l2:x?22?y?11?z1的平面方程?z?z2、已知z?f(xy,xy),求?x, ?y3、设d?{(x,y)x?y?4}22,利用极坐标求??dxdxdy24、求函数f(x,y)?e(x?y?2y)的极值?x?t?sint?(2xy?3sinx)dx?(x?e)dy?5、计算曲线积分l,其中l为摆线?y?1?cost从点2y2x2o(0,0)到a(?,2)的一段弧x?xy?y?xe6、求微分方程满足 yx?1?1的特解四.解答题(共22分)1、利用高斯公式计算半球面z????2xzdydz?yzdzdx?z?dxdy,其中?由圆锥面z?与上(10? )?2、(1)判别级数?n?1(?1)n?1n3n?1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6?)n?(2)在x?(?1,1)求幂级数n?1?nx的和函数(6?)高等数学(下)模拟试卷二一.填空题(每空3分,共15分)z?(1)函数ln(1?x?y)的定义域为;elnx0xy(2)已知函数z?e,则在(2,1)处的全微分dz?(3)交换积分次序,?1dx?f(x,y)dy2=;(4)已知l是抛物线y?x上点o(0,0与点b(1,1之间的一段弧,则?l?;(5)已知微分方程y???2y??y?0,则其通解为 .二.选择题(每空3分,共15分)?x?y?3z?0?(1)设直线l为?x?y?z?0,平面?为x?y?z?1?0,则l与?的夹角为();???z?a. 0b. 2c. 3d. 4 (2)设z?f(x,y)是由方程z?3xyz?a确定,则?x yz2233?();xy2yz2x?xz2?a. xy?zb. z?xyc. xy?zd. z?xy (3)微分方程y???5y??6y?xe 的特解y的形式为y?();a.(ax?b)e2xb.(ax?b)xe222xc.(ax?b)?ce22xd.(ax?b)?cxe2x(4)已知?是由球面x?y?z?a所围成的闭区域, 将三次积分为(); a?02?2???dv?在球面坐标系下化成a?20d??sin?d??rdra2b.?02??20d??d??rdr2?a20c.?02?d??d??rdr?ad.?02nd??sin?d??rdr??(5)已知幂级数n?1?2n?1xn,则其收敛半径().1a. 2b. 1c. 2三.计算题(每题8分,共48分)5、求过a(0,2,4)且与两平面?1:x?2z?1和?2:y?3z?2平行的直线方程 .?z?z6、已知z?f(sinxcosy,e22x?y),求?x, ?y.7、设d?{(x,y)x?y?1,0?y?x},利用极坐标计算22??arctandyxdxdy.8、求函数f(x,y)?x?5y?6x?10y?6的极值. 9、利用格林公式计算? 222l(esiny?2y)dx?(ecosy?2)dyxx,其中l为沿上半圆周(x?a)?y?a,y?0、从a(2a,0)到o(0,0)的弧段.x?16、求微分方程四.解答题(共22分)y??y3?(x?1)2的通解.?1、(1)(6?)判别级数敛;n?1(?1)n?12sinn?3的敛散性,若收敛,判别是绝对收敛还是条件收?n(2)(4?)在区间(?1,1)内求幂级数2、(12?)利用高斯公式计算 z?x?y(0?z?1)的下侧22?n?1?xnn的和函数 .??2xdydz?ydzdx?zdxdy,?为抛物面高等数学(下)模拟试卷三一.填空题(每空3分,共15分)1、函数y?arcsin(x?3)的定义域为 .2、n??3n?3n?2=.3、已知y?ln(1?x),在x?1处的微分dy?.2lim(n?2)22?4、定积分1?1(x2006sinx?x)dx?2.dy5、求由方程y?2y?x?3x?0所确定的隐函数的导数dx57.二.选择题(每空3分,共15分)x?3x?2的间断点 1、x?2是函数(a)可去(b)跳跃(c)无穷(d)振荡y?x?1222、积分?10=.(a) ?(b)??(c) 0 (d) 13、函数y?e?x?1在(??,0]内的单调性是。

高等数学(同济第五版)课后答案 第六章

高等数学(同济第五版)课后答案 第六章

=(3p 2
y−
1 2
y2

1 6p
y3)
p −3
p
= 16 3
p2
.
5. 求由下列各曲线 所围成的图形的面积;
(1)ρ=2acosθ ; 解:
所求的面积为
A=
1 2
π
∫−2π 2
(2acosθ )2dθ
π
=
4a
2
∫2
0
cos2θdθ
=πa2.
(2)x=acos3t, y=asin3t; 解
a
a
z 20. 利用题 19 和结论, 计算曲线 y=sin x(0≤x≤π)和 x 轴所围
成的图形绕 y 轴旋转所得旋转体的体积.
∫ ∫ .3 解
V = 2π π xsin xdx = −2π π xd cosx = 2π (−xcosx +sin x)π = 2π 2 .
0
0
0
w 21. 计算曲线 y=ln x 上相应于 3 ≤ x≤ 8 的一段弧的长度.
o 解 设弦的倾角为 α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为
.c A= A0+ A1.
e 显然当α
=π 2
时,
A1=0;
当α <π 2
时,
A1>0.
因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为
h a ∫ z A0 =2 0
2axdx = 8 3
a
x3 a = 8 a2 . 03
曲线 ρ = 2 sinθ 与 ρ 2 =cos 2θ 的交点 M 的极坐标为 M ( 2 , π ) . 所求的面积为 26
A

高等数学电子教案同济版第六章6-2

高等数学电子教案同济版第六章6-2

练习题
一、填空题: 填空题: 1 、由曲线 y = e x , y = e 及 y 轴所围成平面区域的面积 是______________ . 2 、由曲线 y = 3 − x 2 及直线 y = 2 x 所围成平面区域的 面积是_____ 面积是_____ . 3 、由曲线 y = x 1 − x 2 , y = 1 , x = −1 , x = 1 所围成 平面区域的面积是_______ 平面区域的面积是_______ . 所围的区域面积时, 4、计算 y 2 = 2 x 与 y = x − 4 所围的区域面积时,选用 ____作变量较为简捷 ____作变量较为简捷 . 5、由曲线 y = e x , y = e − x 与直线 x = 1 所围成平面区 域的面积是_________ 域的面积是_________ .
1
3
1
2
另外,也可选 另外 也可选 y 为积分变量
y ∈ [0,1]
面积元素 dA = ( 面积
y − y dy
2
)
x= y2 =
y = x2
A=∫
1
0
(
1 y − y dy = 3
2
)
例 2
计算由曲线 y = x 3 − 6 x 和 y = x 2 所围成
y = x3 −6x
的图形的面积. 的图形的面积
θ =β
dA
r = ϕ (θ )

o 1 θ =α θ 面积元素 dA = [ϕ (θ )]2 dθ 2 β1 曲边扇形的面积 A = ∫ [ϕ (θ )]2 dθ .
α
x
2
例 5
求双纽线 r
2
= a cos 2θ 所围平面图

同济教材高等数学答案

同济教材高等数学答案

同济教材高等数学答案首先,为了更好地帮助同学们学习高等数学,我将按照教材内容的顺序,为大家提供一份同济教材高等数学的答案。

希望通过这份答案,能够帮助到同学们更好地理解和掌握高等数学的知识。

一、微积分1. 函数与极限1.1 函数的基本概念与性质1.2 极限的定义与性质1.3 极限的运算法则1.4 无穷小与无穷大1.5 极限存在准则2. 导数与微分2.1 导数的定义与几何意义2.2 基本导数公式2.3 高阶导数与隐函数导数2.4 微分与微分近似计算2.5 函数的增减与极值3. 微分中值定理与导数应用3.1 拉格朗日中值定理3.2 柯西中值定理3.3 海涅中值定理3.4 泰勒公式与函数的Taylor展开式二、积分学1. 不定积分1.1 不定积分的概念与性质1.2 基本积分表1.3 积分方法与换元积分法1.4 分部积分法与差商法1.5 罗尔中值定理与积分中值定理2. 定积分2.1 定积分的概念与性质2.2 反常积分的概念与判定2.3 定积分的几何应用2.4 定积分的物理应用2.5 平面曲线的弧长与曲率3. 微积分基本定理与积分应用3.1 微积分基本定理3.2 牛顿-莱布尼茨公式3.3 积分换元法与分式分解法 3.4 参数方程与极坐标下的积分3.5 广义积分与宗量函数三、微分方程1. 常微分方程基本理论1.1 微分方程的基本概念与分类 1.2 微分方程的解集与通解1.3 初等解与初值问题1.4 一阶线性齐次方程1.5 可降阶的高阶线性方程2. 高阶线性常微分方程2.1 高阶线性方程的解法2.2 非齐次方程与常数变易法 2.3 欧拉方程与常系数线性方程2.4 变参数法与常微分方程组2.5 指数函数型特解与待定系数法3. 线性方程组与二阶方程3.1 线性方程组的解法3.2 线性方程组与矩阵的关系3.3 二阶常系数齐次线性方程3.4 二阶常系数非齐次线性方程3.5 常系数线性方程组与驻点分析四、多元函数微分学1. 二元函数微分学1.1 偏导数与全微分1.2 隐函数的偏导数与微分1.3 多元复合函数的偏导数1.4 方向导数与梯度向量1.5 多元函数的极值与条件极值2. 多元函数的积分学2.1 二重积分的概念与计算2.2 三重积分的概念与计算2.3 二重积分的应用2.4 三重积分的应用2.5 曲线与曲面的面积3. 曲线积分与曲面积分3.1 第一类曲线积分3.2 第二类曲线积分3.3 第一类曲面积分3.4 第二类曲面积分3.5 牛顿-莱布尼茨公式的推广五、无穷级数与函数级数1. 数项级数1.1 数项级数的概念与性质1.2 正项级数的收敛判别法1.3 交错级数与条件收敛1.4 绝对收敛与Riemann定理 1.5 无穷级数的运算与逐项积分2. 幂级数与函数展开2.1 幂级数的概念与性质2.2 幂级数的收敛半径与收敛域2.3 幂级数的运算与展开2.4 幂级数的逐项微分与积分2.5 Fourier级数与函数展开通过以上的答案整理,同学们可以在学习高等数学过程中,根据实际的学习需要查阅对应章节的答案,在解题过程中更加高效地掌握和理解数学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) y 1 x2 与 x2y28(两部分都要计算) 2

A1 202(
8
x2
1 2
x2)dx
202
8 x2 dx 02x2dx 202
8 x2 dx 8 3
1604
cos2 tdt
8 3
2
4 3
A2 (2
2)2
S1
6
4 3
(2) y 1 与直线 yx 及 x2 x

所求的面积为
A
02(x
3
dt
2
3 1 dt 1 1 ln
2 t2 1
2
3 2
22 计算曲线 y x (3 x) 上相应于 1x3 的一段 3
弧的长度
解 y x 1 x x y 1 1 x
3
2x 2
y2 1 1 1 x 1 y2 1 ( x 1 )
4x 2 4
2
x
所求弧长为
s 1
3
(
x
1 )dx 1 (2 x
h
截面的面积为 (A A a y)(B B b y)
h
h
于是截锥体的体积为
V
h
(A
A
a
y)(B
B
b
y)dy
1h[2(ab
AB)
aB
bA]
0
h
h
6
18 计算底面是半径为 R 的圆 而垂直于底面上一条固定直径的所有截面都是等边三角 形的立体体积
解 设过点 x 且垂直于 x 轴的截面面积为 A(x) 由已知条件知
0
0
2ax02
12 由 yx3 x2 y0 所围成的图形 分别绕 x 轴及 y 轴旋转 计算所 得两个旋转体的体积
解 绕 x 轴旋转所得旋转体的体积为
Vx
2
y2dx
0
2
x6dx
1
x7
2
128
0
7 07
绕 y 轴旋转所得旋转体的体积为
8
82
Vy 22 8
x2dy 32
0
0
y 3 dy
A
e
1
ln
ydy
y
ln
y
|1e
1e
dy
e
(e
1)
1
(3)
解 画斜线部分在 x 轴上的投影区间为[3 1] 所求的面积为
A 13[(3 x2)2x]dx
32 3
(4)
解 画斜线部分在 x 轴上的投影区间为[1 3] 所求的面积为
A 31(2x 3 x2)dx (x2
3x
1 3
x3)|31
32 3
2. 求由下列各曲线所围成的图形的面积
12 2 sin t costdt 6a 0
26 将绕在圆(半径为 a)上的细线放开拉直 使细线与圆周始终相切 细线端点画出的轨 迹叫做圆的渐伸线 它的方程为
x a(cost tsin t) y a(sin t tcost)
计算这曲线上相应于 t 从 0 变到的一段弧的长度 解 由参数方程弧长公式
y2 x4 过点(0, 3)处的切线的斜率为 4 切线方程为 y4(x3) 过点(3, 0)处的切线的斜率为2 切线方程为 y2x6
两切线的交点为 (3 , 2
3)
所求的面积为
A
3
2
0
[4x
3(x2
4x 3)]
33[2x 6 (x2 2
4x 3]dx
9 4
4 求抛物线 y2=2px 及其在点 ( p , p) 处的法线所围成的图形的面积 2
t0
2 3
因而分点的坐标为
横坐标 x a(2 sin 2 ) (2 3)a
A
2[
1 2
6
0
(
2
sin )2d
1 2
4cos 6
2d
]
6
1 2
3
9 求位于曲线 y=ex 下方该曲线过原点的切线的左方以及 x 轴上方之间的图形的面积 解 设直线 ykx 与曲线 yex 相切于 A(x0 y0)点 则有
y0 y0
k x0 ex0
y(x0) ex0 k
求得 x01 y0e ke 所求面积为
2
12a2[02
sin4
tdt
2
0
sin6
tdt]
3a2 8
(3)=2a(2+cos ) 解
所求的面积为
A
2
0
1 2
[2a(2
cos
)]2d
2a2
2
0
(4
4cos
cos2
)d
18a2
6 求由摆线 xa(tsin t) ya(1cos t)的一拱(0t2)与横轴所围成的图形的面积

所求的面积为
t0 0
[x(t)]2 [y(t)]2dt t0 0
[a(1cost)]2 [asin t]2dt
2a t0sin t dt 4a(1cost0 )
02
2
当 t02时 得第一拱弧长 s(2)8a 为求分摆线第一拱为 1 3 的点为 A(x y) 令
4a(1cost0 ) 2a 2
解得
0
0
p
p0
1 [ y p2 y2 p2 ln( y p2 y2 )] y
p2
2
0
y
p2 y2 p ln y
p2 y2
2p
2
p
25 计算星形线 x acos3t y asin 3t 的全长
解 用参数方程的弧长公式
s 4 2 x2(t) y2(t)dt 0
4 2 [3acos2t (sin t)]2 [3asin 2t cost]2dt 0
y2
(x
1)4 y2
(x 1)4 2 (x 1)3
3 2
(x
1)
3
所以
2
s2
1 3(x 1)dx
2
2 3x 1d(3x 1) 8[(5)23 1]
1
2
3 21
92
24 计算抛物线 y22px 从顶点到这曲线上的一点 M(x y)的弧长
解 s y 1 x2(y)dy y 1( y )2dy 1 y p2 y2dy
积近似为 2xf(x)dx 这就是体积元素 即
dV2xf(x)dx 于是平面图形绕 y 轴旋转所成的旋转体的体积为
b
b
V a 2xf (x)dx 2 a xf (x)dx
20 利用题 19 和结论 计算曲线 ysin x(0x)和 x 轴所围
成的图形绕 y 轴旋转所得旋转体的体积

V 2
xsin xdx2
当 2
时 A10
因此 抛物线与过焦点的弦所围成的图形的面积的最小值为
a
A0 2 0
2axdx 8 3
a
x3 a 8 a2 03
11 把抛物线 y24ax 及直线 xx0(x00)所围成的图形绕 x 轴旋转 计 算所得旋转体的体积
解 所得旋转体的体积为
V
x0y2dx
0
x0 4axdx 2a x2 x0
32
a3
0
105
14 用 积 分 方 法 证 明 图 中 球 缺 的 体 积 为
V H 2(R H ) 3
R
R
证明 V x2(y)dy (R2 y2)dy
RH
RH
(R2 y 1 y3) R H 2(R H )
3 RH
3
15 求下列已知曲线所围成的图形 按指定的轴旋转所产生 的旋转体的体积
a
a
a
8b a2 y2dy2a2b 2 0
17 设有一截锥体 其高为 h 上、下底均为椭圆 椭圆的轴
长分别为 2a、2b 和 2A、2B 求这截锥体的体积
解 建立坐标系如图 过 y 轴上 y 点作垂直于 y 轴的平面 则
平面与截锥体的截面为椭圆 易得其长短半轴分别为
A Aa y B Bb y
h

2yy2p
在点
(
p 2
,
p)

y
p y
( p , p) 2
1
法线的斜率 k1
法线的方程为
y
p
(x
p 2
)

x
3p 2
y
求得法线与抛物线的两个交点为 ( p , p) 和 (9 p,3p)
2
2
法线与抛物线所围成的图形的面积为
A
p
3p
(3p 2
y
y2 )dy 2p
(3p 2
y
1 2
y2
1 6p
a3
(1
e2u
2u
1
e2u
)1
40
42
20
a3 (2sh2) 4
(3) x2 (y 5)2 16 绕 x 轴
4
4
解 V (5 16 x2)2dx (5 16 x2)2dx
4
4
4
40 16 x2dx160 2 0
(4)摆线 xa(tsin t) ya(1cos t)的一拱 y0 绕直线 y2a
它是边长为 R2 x 的等边三角形的面积 其值为
A(x) 3(R2 x2)
所以
R
V
3(R2 x2)dx 4 3 R3
R
3
19 证明 由平面图形 0axb 0yf(x)绕 y 轴旋转所成的旋转体的体积为
b
V 2 xf (x)dx a
证明 如图 在 x 处取一宽为 dx 的小曲边梯形 小曲边梯形绕 y 轴旋转所得的旋转体的体
相关文档
最新文档