基于单片机的电子时钟设计

合集下载

基于单片机电子时钟设计

基于单片机电子时钟设计

基于单片机电子时钟设计电子时钟是一种利用单片机技术来实现精确时间显示的装置。

它可以准确地显示时间,并且可以根据需要进行闹铃功能等扩展。

接下来,我将详细介绍基于单片机的电子时钟设计。

首先,我们需要选择合适的单片机来实现电子时钟。

目前,常用的单片机有STC51系列、PIC系列、AVR系列等。

在选择单片机时,我们需要考虑其性能参数、价格以及开发环境等因素。

接下来,我们需要设计电子时钟的电路结构。

电子时钟的核心是单片机,通过连接显示屏、RTC(实时时钟)、按键以及扬声器等设备,来实现时间的显示、调整以及报警功能。

首先,我们需要选择合适的显示屏。

常用的显示屏有数码管、液晶显示屏、LED点阵等。

数码管和液晶显示屏可以直接连接到单片机的IO口,而LED点阵需要借助驱动芯片来完成控制。

其次,我们需要选择合适的RTC模块,以确保时钟的准确性。

RTC模块可以借助于DS1302等实时时钟芯片来实现。

同时,我们还需要连接按键,来实现对时钟进行调整的功能。

通过按键的组合操作,我们可以调整年、月、日、小时、分钟等时间参数。

此外,如果我们希望实现报警功能,我们还需要连接一个扬声器。

通过控制扬声器的开关,我们可以在设定的时间点播放报警铃声。

在硬件设计完成后,我们就可以进行软件开发工作了。

首先,我们需要编写主程序来初始化硬件设备,并进入主循环。

在主循环中,我们需要不断读取RTC模块的时间数据,并在显示屏上进行实时显示。

同时,我们也需要编写按键检测和处理的程序。

按键检测可以通过查询IO口的状态来实现,而按键处理则需要根据按键的值进行相应的功能调整。

如果需要实现报警功能,我们还需要编写报警处理的程序。

在设定的时间点,我们可以通过控制扬声器的开关来实现报警铃声的播放。

最后,我们需要进行整体的调试和测试工作。

通过不断地调整和优化程序,来确保整个电路和软件的正常运行。

总结起来,基于单片机的电子时钟设计包括硬件设计和软件开发两部分。

通过选择合适的单片机、显示屏、RTC模块、按键和扬声器等设备,并编写相应的程序,我们可以实现一个功能完善的电子时钟。

基于单片机电子时钟的设计与实现

基于单片机电子时钟的设计与实现

基于单片机电子时钟的设计与实现一、设计目标设计一个基于单片机的电子时钟,能够准确显示时间并能够进行设置和调整。

二、硬件设计1.时钟部分:采用晶振芯片提供准确的时钟信号2.数码管显示部分:使用共阴数码管进行数字显示3.按键部分:设计几个按键用于设置和调整时间4.电源部分:采用直流电源供电三、软件设计1.功能设计a.时间设置功能:通过按键可以设置当前的时间,包括小时、分钟和秒钟。

b.时间调整功能:通过按键可以调整当前的时间,包括小时、分钟和秒钟。

c.时间显示功能:通过数码管可以实时显示当前的时间。

2.代码实现以C语言为例,以下是一个基于单片机的电子时钟的代码实现示例:```c#include <reg51.h>sbit DS18B20=P1^3; // 定义18B20数据线接口sbit beep=P2^3; // 定义蜂鸣器接口unsigned char hour,min,sec; // 定义小时、分钟、秒钟变量//函数声明void Delay_1ms(unsigned int count);bit Ds18b20Init(;unsigned char Ds18b20ReadByte(;void ReadTime(;void WriteTime(;void DisplayTime(;//主函数void mainP2=0x00;WriteTime(; // 写入时间while(1)ReadTime(; // 读取时间DisplayTime(; // 显示时间Delay_1ms(1000); // 延时1秒}//毫秒延时函数void Delay_1ms(unsigned int count) unsigned int i, j;for(i=0; i<count; i++)for(j=0; j<1275; j++);//18B20初始化函数bit Ds18b20Initbit presence;DS18B20=0;Delay_1ms(100); // 延时450us~1000us DS18B20=1;Delay_1ms(10); // 延时15us~60us presence=DS18B20;Delay_1ms(30); // 延时60us~240us return presence;//18B20读取字节函数unsigned char Ds18b20ReadByte unsigned char i, dat;for(i=0; i<8; i++)DS18B20=0;//主机发起读时序_nop_(; // 延时1us_nop_(; // 延时1us_nop_(; // 延时1usDS18B20=1;//主机释放总线_nop_(; // 延时1us_nop_(; // 延时1us_nop_(; // 延时1usdat,=(DS18B20<<i); // 读取数据位,存放在dat变量中Delay_1ms(3); // 读时序完成后等待48us再接收下一位}return dat;//读取时间函数void ReadTimeunsigned char temp;temp=0x00;while(temp!=0xaa)Ds18b20Init(; // 初始化温度传感器Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0xbe;Delay_1ms(1);temp=Ds18b20ReadByte(; // 读取时间数组的标志位}for(temp=0; temp<7; temp++)//写入时间函数void WriteTimeunsigned char i,j;while(1)Ds18b20Init(;Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0x4e;Delay_1ms(1);for(i=0; i<7; i++)DS18B20=0x55;Delay_1ms(1);DS18B20=0xaa;Delay_1ms(1);Ds18b20Init(;Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0x48;Delay_1ms(1);j=Ds18b20ReadByte(; // 判断是否写入成功if(j==0x0a)break;}//显示时间函数void DisplayTimeP1=seg[hour/10]; // 显示十位小时P2=(P2&0xf0),0x08; // 点亮第一个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[hour%10]; // 显示个位小时P2=(P2&0xf0),0x04; // 点亮第二个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[min/10]; // 显示十位分钟P2=(P2&0xf0),0x02; // 点亮第三个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[min%10]; // 显示个位分钟P2=(P2&0xf0),0x01; // 点亮第四个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=0x00;//空显示P2=0x00;//熄灭数码管```四、总结通过以上的硬件设计和软件实现,可以实现一个基于单片机的电子时钟。

基于单片机电子时钟的设计

基于单片机电子时钟的设计

基于单片机电子时钟的设计一、设计背景随着科技的不断进步,电子设备在我们的生活中扮演着越来越重要的角色。

时钟作为时间的测量工具,也从传统的机械时钟逐渐发展为电子时钟。

单片机作为一种集成度高、功能强大的微控制器,为电子时钟的设计提供了高效、可靠的解决方案。

基于单片机的电子时钟具有精度高、易于编程、成本低等优点,能够满足人们对时间测量和显示的各种需求。

二、系统设计方案1、硬件设计单片机选择:选择合适的单片机是整个系统设计的关键。

常见的单片机如STM32、AT89C51 等,具有不同的性能和特点。

根据系统需求,我们选择了 AT89C51 单片机,其具有成本低、性能稳定等优点。

时钟芯片:为了保证时间的准确性,需要选择高精度的时钟芯片。

DS1302 是一款常用的实时时钟芯片,具有低功耗、高精度等特点,能够为系统提供准确的时间信息。

显示模块:显示模块用于显示时间。

常见的显示模块有液晶显示屏(LCD)和数码管。

考虑到显示效果和成本,我们选择了 1602 液晶显示屏,能够清晰地显示时间、日期等信息。

按键模块:按键模块用于设置时间和调整功能。

通过按键可以实现时间的校准、闹钟的设置等功能。

电源模块:为整个系统提供稳定的电源。

可以选择电池供电或外部电源供电,根据实际使用场景进行选择。

2、软件设计编程语言:选择合适的编程语言进行软件编程。

C 语言是单片机编程中常用的语言,具有语法简单、可读性强等优点。

主程序流程:主程序首先进行系统初始化,包括单片机端口初始化、时钟芯片初始化、显示模块初始化等。

然后读取时钟芯片中的时间信息,并将其显示在液晶显示屏上。

通过按键检测模块,判断是否有按键操作,如果有,则进行相应的处理,如时间校准、闹钟设置等。

中断服务程序:为了保证时间的准确性,需要使用定时器中断来实现时钟的计时功能。

在中断服务程序中,对时钟芯片进行时间更新,确保时间的准确性。

三、硬件电路设计1、单片机最小系统单片机:AT89C51 单片机是整个系统的核心,负责控制和协调各个模块的工作。

基于单片机的电子时钟设计

基于单片机的电子时钟设计

基于单片机的电子时钟设计电子时钟是一种显示时间的设备,通常基于单片机设计。

它不仅可以准确显示时间,还可以具备闹钟、日历等功能。

本文将介绍基于单片机的电子时钟的设计。

首先,我们来看单片机的选择。

在设计电子时钟时,常用的单片机有PIC、AVR和STM32等。

这些单片机都有较强的计算能力和丰富的外设接口,非常适合用于电子时钟的设计。

具体的选择可以根据需求和个人熟悉程度做出决定。

接下来,我们需要设计时钟的显示部分。

一般来说,电子时钟的显示可以采用液晶显示屏或LED数码管。

液晶显示屏具有占用空间小、显示效果清晰等优点,适合用于大号时钟;而数码管则适合用于小型时钟。

根据具体需求选择合适的显示器件。

在电子时钟设计中,如何准确获取时间是关键。

可以利用主频计数的方法,通过单片机的定时器来获取时间。

比如用32.768kHz的振荡源作为单片机的时钟源,然后每秒进行一次中断计数,通过累加中断计数值,即可得到秒数、分钟数、小时数等。

在此基础上,可以进一步添加日历计算功能,如年、月、日的计算。

闹钟功能是电子时钟的重要组成部分之一、我们可以通过按键输入设置闹钟的时间和开关状态。

当闹钟时间到达时,可以通过蜂鸣器或液晶显示器等方式提醒用户。

闹钟的开关状态可以通过EEPROM等非易失性存储器来保存,以实现断电重启后不丢失设置的功能。

除了基本的显示和计时功能,电子时钟还可以增加其他实用的功能。

比如温湿度显示功能,可以通过外部传感器获取环境的温度和湿度,并显示在屏幕上。

还可以添加定时开关机功能,通过按键设置时间和开关状态,控制电源的开关。

这些功能的实现都需要通过合理的硬件设计和软件编程来完成。

总的来说,基于单片机的电子时钟设计需要首先选择合适的单片机,并根据具体需求设计显示部分、时间获取部分、闹钟部分以及其他扩展功能。

其中涉及到硬件设计和软件编程的内容,需要有一定的电子和计算机基础知识。

通过合理的设计和编程,我们可以实现一个功能齐全、准确可靠的电子时钟。

基于单片机的电子时钟设计与实现

基于单片机的电子时钟设计与实现

基于单片机的电子时钟设计与实现电子时钟是现代人生活中不可或缺的一部分。

随着现代科技的发展,基于单片机的电子时钟已经成为人们常见的选择。

本文将详细介绍基于单片机的电子时钟设计与实现。

一、基于单片机的电子时钟的原理基于单片机的电子时钟是通过控制晶体振荡器的频率来实现时钟的精度。

当晶体振荡器振荡周期稳定时,控制晶体振荡器的频率就可以实现时钟的精确。

二、基于单片机的电子时钟的设计1、硬件设计(1)时钟芯片:MCU常用的计时器是AT89S52,这是一个高性能的、低功耗的8位CMOS微控制器,使用半导体工艺方案,集成了66个I/O口和4个定时/计数器。

MCU的定时器的时钟源要保证准确,采用低失真、低相位噪声的晶振可以保证这一点。

(2)显示器件:本设计采用单片机驱动数码管来显示时间,以节省成本。

数码管是由点阵组成的,共有八段,其中七段是用来表示数字的,而第八段是用来显示小数点、时间标志等字符。

(3)按键及配套链路:按键和链路的作用是用来调整电子时钟的计时和校准。

采用常开或常闭接触式按钮即可实现这一功能。

2、软件设计(1)时钟芯片:AT89S52时钟芯片采用C语言编程,最终生成.HEX文件,充当芯片程序的载体,烧录进芯片后即可实现自动扫描、计时、纠偏、时间显示、闹铃、定时关闭等多项功能。

(2)扫描及计时:8个数码管需要进行扫描的操作,程序运行时根据八个位选信号,依次驱动八个共阳数码管的位选脚。

在每次扫描完成后即进行时钟计时的工作,判断闹钟时间是否到达,若到达则执行闹铃程序。

(3)时间设置:根据按键的输入状态,进行时间值的修改,来实现时钟时间的设置。

(4)闹铃:当当前时间与闹钟设置时间相等时,启动闹铃程序,进行可选的led闪烁、蜂鸣器响声等提醒操作。

三、基于单片机的电子时钟的实现将设计好的电路板焊接好,控制程序烧录进入AT89S52芯片,并将电子时钟放置在合适的位置或固定于墙壁上即可使用。

四、基于单片机的电子时钟的优缺点优点:精度高、误差小、易于校对和设置、功能多样化、体积小、寿命长。

基于单片机的数字电子时钟设计

基于单片机的数字电子时钟设计

基于单片机的数字电子时钟设计数字电子时钟是一种非常常见的电子产品,它可以帮助我们实现精确的时间显示,让我们的生活更加方便。

随着科技的不断发展,数字电子时钟也在不断更新和发展,基于单片机的数字电子时钟已经成为当前最先进的技术之一。

本文将介绍基于单片机的数字电子时钟的设计原理和实现方法。

一、数字电子时钟的设计原理数字电子时钟的实现原理就是把时间信号转换成数字信号,再通过计算机芯片来显示时间。

其中,时间信号可以是电缆信号或者无线信号,并且也可以通过外部的控制电路进行调节。

而计算机芯片可以采用单片机、PLC控制器等方案进行设计。

基于单片机的数字电子时钟,可以使用数字时钟芯片和定时器芯片来完成。

数字时钟芯片是一种能够实现数据的统计、时钟显示等功能的IC芯片,通过将其与定时器芯片相连,就能够实现精确的时间统计和显示。

此外,在设计时还需要进行软硬件电路的优化和调试。

二、基于单片机的数字电子时钟的实现方法1、硬件设计基于单片机的数字电子时钟的硬件设计,主要包含单片机控制电路、显示电路、外设接口电路、供电电路、时钟芯片和定时器芯片等部分。

其中,时钟芯片用于提供精准的时间信号,定时器芯片则用于进行计时,而单片机和外设接口电路则用于控制整个数字电子时钟的功能。

另外,数字电子时钟还需要进行外观设计,通常采用的是数码管或液晶屏幕显示时间。

通过优化电路布局和参数匹配,可以有效地提高整个数字电子时钟的稳定性和精度。

2、软件设计在数字电子时钟的软件设计中,主要包含固件设计和操作系统设计两部分。

固件设计是指对单片机系统进行程序编写、调试和优化,以实现时钟的各种功能;而操作系统设计,则是对固件进行封装,建立起一套完整的操作环境,方便用户进行操作。

在固件设计中,需要考虑到时钟的显示、调节、闹钟、定时等多种功能的实现。

通常,这些功能都会涉及到多个模块和数据结构的设计,需要通过循序渐进的方式逐步实现。

在操作系统设计中,需要对时钟的各种操作进行封装,形成一套完整的操作界面。

基于单片机电子时钟设计与制作

基于单片机电子时钟设计与制作

基于单片机电子时钟设计与制作一、设计需求与原理我们的目标是设计一款能够准确显示时间(包括小时、分钟和秒),具备设置时间功能,并且可以在不同的显示模式(如 12 小时制和 24小时制)之间切换的电子时钟。

其工作原理主要基于单片机的控制。

单片机作为核心控制器,接收来自时钟芯片的时间数据,并将其处理后输出到显示模块进行显示。

同时,通过按键模块,用户可以向单片机输入指令,实现时间的设置和显示模式的切换等操作。

二、硬件设计1、单片机选择我们选用常见的 STC89C52 单片机,它具有性能稳定、价格低廉、易于编程等优点。

2、时钟芯片DS1302 时钟芯片被用于提供准确的时间信息。

它能够在掉电情况下保持时间数据不丢失,保证了时钟的可靠性。

3、显示模块为了清晰直观地显示时间,采用了液晶显示屏(LCD1602)。

它能够显示多行字符,满足我们显示小时、分钟、秒以及其他相关信息的需求。

4、按键模块设置四个独立按键,分别用于时间的调整(增加、减少)、显示模式的切换以及时间设置的确认。

5、电源模块为整个系统提供稳定的 5V 直流电源,可以通过 USB 接口或者电池进行供电。

三、软件设计1、编程语言使用 C 语言进行编程,它具有语法简单、可读性强、可移植性好等特点。

2、程序流程初始化系统后,单片机不断从时钟芯片读取时间数据,并将其显示在液晶显示屏上。

当检测到按键操作时,进入相应的处理函数,实现时间设置和显示模式切换等功能。

四、制作过程1、硬件焊接首先,将各个元器件按照原理图焊接在电路板上。

注意焊接的质量,避免虚焊和短路。

2、软件烧录使用编程器将编写好的程序烧录到单片机中。

3、系统调试接通电源,检查液晶显示屏是否正常显示,按键是否能够准确响应操作。

如果出现问题,通过调试工具(如示波器、逻辑分析仪等)进行故障排查和修复。

五、系统测试1、时间准确性测试将制作好的电子时钟与标准时间进行对比,观察其在长时间运行中的时间准确性。

2、功能测试测试时间设置功能、显示模式切换功能是否正常,按键操作是否灵敏可靠。

基于51单片机的简易电子钟设计

基于51单片机的简易电子钟设计

基于51单片机的简易电子钟设计一、设计目的现代社会对于时间的要求越来越精确,电子钟成为家庭和办公场所不可缺少的设备之一、本设计基于51单片机,旨在实现一个简易的电子钟,可以显示当前的时间,并且能够通过按键进行时间的调整和设置闹钟。

二、设计原理本设计主要涉及到51单片机的IO口、定时器、中断、LCD显示技术等方面知识。

1.时钟模块时钟模块采用定时器0的中断进行时间的累加和更新。

以1秒为一个时间单位,每当定时器0中断发生,就将时间加1,并判断是否需要更新小时、分钟和秒的显示。

同时,根据用户按键的操作,可以调整时间的设定。

2.显示模块显示模块采用16x2字符LCD显示屏,通过51单片机的IO口与LCD连接。

可以显示当前时间和设置的闹钟时间。

初次上电或者重置后,LCD显示时间为00:00:00,通过定时器中断和键盘操作,实现时间的更新和设定闹钟功能。

3.键盘模块键盘模块采用矩阵键盘连接到51单片机的IO口上,用于用户进行时间的调整和设置闹钟。

通过查询键盘的按键状态,根据按键的不同操作,实现时间的调整和闹钟设定功能。

4.中断模块中断模块采用定时器0的中断,用于1秒的定时更新时间。

同时可以添加外部中断用于响应用户按键操作。

三、主要功能和实现步骤1.系统初始化。

2.设置定时器,每1秒产生一次中断。

3.初始化LCD显示屏,显示初始时间00:00:00。

4.查询键盘状态,判断是否有按键按下。

5.如果按键被按下,根据不同按键的功能进行相应的操作:-功能键:设置、调整、确认。

-数字键:根据键入的数字进行时间的调整和闹钟设定。

6.根据定时器的中断,更新时间的显示。

7.判断当前时间是否与闹钟设定时间相同,如果相同,则触发闹钟,进行提示。

8.循环执行步骤4-7,实现连续的时间显示和按键操作。

四、系统总结和改进使用51单片机设计的简易电子钟可以显示当前时间,并且实现时间的调整和闹钟设定功能。

但是由于硬件资源有限,只能实现基本的功能,不能进行其他高级功能的扩展,例如闹铃的音乐播放、温度、湿度的显示等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

※论文范文※毕业设计
※学术论文※大学论文
基于单片机的电子时钟设计
毕业设计(论文)题目:基于单片机的电子时钟设计
院部:
专业:
学号:
学生姓名:
指导教师:
职称:
二O一六年五月二十日
摘要
单片机即单片微型计算机。

(Single-Chip Microcomputer ),是集 CPU ,RAM ,ROM ,定时,计数和多种接口于一体的微控制器。

他体积小,成本低,功能强,广泛应用于工业自动化上和智能产品。

时钟,自从它被发明的那天起,就成为了人类的好朋友,但随着时间的推移,科学技术的不断发展,时钟的应用越来越广范,人们对时间计量的精度要求也越来越高。

怎样让时钟更好的为人民服务,怎样让我们的老朋友再次焕发青春呢?这就要求我们不断设计出新型的时钟,来不断满足人们的日常生活需要。

然而市场上的时钟便宜的比较笨重,简单实用的又比较昂贵。

那么,有没有一款既简单实用价格又便宜的时钟呢?
我们课程设计小组设想:可不可以利用单片机功能集成化高,价格又便宜的特点设计一款结构既简单,价格又便宜的单片机电子时钟呢?
基于这种情况,我们课程设计小组成员多方查阅资料,反复论证设计出了这款既简单实用,又价格便宜的——单片机电子时钟。

关键词:单片机;时钟;计时
前言
机电一体化是高等院校开设的一门工科专业。

培养德、智、体全面发展,具有良好的科学素养和创新精神,培养能够从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发以及电子与计算机应用等领域工作的宽口径复合型高级工程技术人才。

本专业主要学习电子技术、电工技术、信息控制、电气测量、计算机技术等方面较宽广的工程技术基础和专业知识。

本专业主要特点是强电弱电结合、电工技术与电子技术相结合、软件与硬件结合、元件与系统结合,学生受到电工电子、信息控制及计算机技术方面的基本训练,具有解决电气工程与自动化领域技术问题的基本能力。

该专业是强电和弱电、计算机技术与电气控制技术交叉渗透的综合型专业学科。

电气工程及其自动化专业培养出的毕业生,以理论基础扎实、专业知识面宽广、实践动手能力强、适应性强在国内有较好的声誉主干课程电路原理、电子技术基础、计算机技术(语言、软件基础、硬件基础、单片机)、信号与系统、电磁场理论与应用、自动控制原理、电机学、电力电子技术、电气测量、电力拖动与控制等。

就业方向适合到国民经济各部门从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发等方面的工作,也能在科研院所、高等学校从事电气信息与自动化技术相关的研究开发、技术引进与改造及教学工作。

目录
目录 (3)
绪论 (4)
一MCS-51单片机的结构
1.1控制器 (3)
1.2 存储器的结构 (4)
1.2.1程序存储器 (4)
1.2.2内部数据存器 (4)
1.2.3特殊功能寄存器 (5)
1.3 并行I/O口 (5)
1.4时钟电路与时序 (5)
1.5 单片机的应用领域 (5)
二系统设计要求
2.1基本功能 (6)
2.2扩展功能 (6)
三硬件总体设计方案
3.1 系统功能实现总体设计思路 (6)
3.2各部分功能实现 (8)
3.3 系统工作原理 (8)
3.4 时钟各功能分析及图解 (8)
3.5 电路功能使用说明 (12)
3.6 控制电路的C语言源程序 (13)
四课程设计结果分析
五结论与展望
5.1 结论 (17)
5.2 单片机的发展趋势 (17)
总结 (20)
参考文献 (21)
绪论
1.1课题背景
单片机自1976年由Intel公司推出MCS-48开始,迄今已有二十多年了。

由于单片机集成度高、功能强、可靠性高、体积小、功耗地、使用方便、价格低廉等一系列优点,目前已经渗入到人们工作和生活的方方面面,几乎“无处不在,无所不为”。

单片机的应用领域已从面向工业控制、通讯、交通、智能仪表等迅速发展到家用消费产品、办公自动化、汽车电子、PC机外围以及网络通讯等广大领域。

单片机有两种基本结构形式:一种是在通用微型计算机中广泛采用的,将程序存储器和数据存储器合用一个存储器空间的结构,称为普林斯顿结构。

另一种是将程序存储器和数据存储器截然分开,分别寻址的结构,一般需要较大的程序存储器,目前的单片机以采用程序存储器和数据存储器截然分开的结构为多。

20世纪80年代中期以后,Intel公司以专利转让的形式把8051内核技术转让给许多半导体芯片生产厂家,如ATMEL、PHILIPS、ANALOG、DEVICES、DALLAS等。

这些厂家生产的芯片是MCS-51系列的兼容产品,准确地说是与MCS-51指令系统兼容的单片机。

这些兼容机与8051的系统结构(主要是指令系统)相同,采用CMOS工艺,因而,常用80C51系列来称呼所有具有8051指令系统的单片机,它们对8051单片机一般都作了一些扩充,更有特点。

其功能和市场竞争力更强,不该把它们直接称呼为MCS-51系列单片机,因为MCS只是Intel公司专用的单片机系列型号。

MCS-51系列及80C51单片机有多种品种。

它们的引脚及指令系统相互兼容,主要在内部结构上有些区别。

目前使用的MCS-51系列单片机及其兼容产品通常分成以下几类:基本型、增强型、低功耗型、专用型、超8位型、片内闪烁存储器型。

1.2课题来源
在日常生活和工作中,我们常常用到定时控制,如扩印过程中的曝光定时等。

早期常用的一些时间控制单元都使用模拟电路设计制作的,其定时准确性和重复精度都不是很理想,现在基本上都是基于数字技术的新一代产品,随着单片机性能价格比的不断提高,新一代产品的应用也越来越广泛,大可构成复杂的工业过程控制系统,完成复杂的控制功能。

小则可以用于家电控制,甚至可以用于儿童电子玩具。

它功能强大,体积小,质量轻,灵活好用,配以适当的接口芯片,可以构造各种各样、功能各异的微电子产品。

随着电子技术的飞速发展,家用电器和办公电子设备逐渐增多,不同的设备都有自己的控制器,使用起来很不方便。

根据这种实际情况,设计了一个单片机多功能定时系统,它可以避免多种控制器的混淆,利用一个控制器对多路电器进行控制,同时又可以进行时钟校准和定点打铃。

它可以执行不同的时间表(考试时间和日常作息时间)的打铃,可以任意设置时间。

这种具有人们所需要的智能化特性的产品减轻了人的劳动,扩大了数字化
的范围,为家庭数字化提供了可能。

一 MCS-51单片机的结构
MCS-51单片机是把那些作为控制应用所必需的基本内容都集成在一个尺寸有限的集成电路芯片上。

如果按功能划分,它由如下功能部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EPROM)、并行I/O口、串行口、定时器/计数器、中断系统及特殊功能寄存器(SFR)。

它们都是通过片内单一总线连接而成,其基本结构依旧是CPU加上外围芯片的传统结构模式。

但对各种功能部件的控制是采用特殊功能寄存器(SFR)的集中控制方式。

1.1控制器
控制器是单片机的指挥控制部件,控制器的主要任务是识别指令,并根据指令的性质控制单片机各功能部件,从而保证单片机各部分能自动而协调地工作。

单片机执行指令是在控制器的控制下进行的。

首先从程序存储器中读出指令,送指令寄存器保存,然后送至指令译码器进行译码,译码结果送定时控制逻辑电路,由定时控制逻辑产生各种定时信号和控制信号,再送到单片机的各个部件去进行相应的操作。

这就是执行一条指令的全过程,执行程序就是不断重复这一过程。

控制器主要包括程序计数器、程序地址寄存器、指令寄存器IR、指令译码器、条件转移逻辑电路及时序控制逻辑电路。

1.2存储器的结构
MCS-51单片机存储器采用的是哈佛结构,即程序存储器空间和数据存储器空间截然分开,程序存储器和数据存储器各有自己的寻址方式,寻址空间和控制系统。

这种结构对于单片机面向控制的实际应用极为方便,有利.在8051/8751弹片击中,不仅在片内集成了一定容量的程序存储器和数据存储器及众多的特殊功能寄存器,而且还具有极强的外存储器的扩展能力,寻址能力分别可达64KB,寻址和操作简单方便.MCS-51的存储器空间可划分为如下几类:
1.2.1程序存储器
单片机系统之所以能够按照一定的次序进行工作,主要是程序存储器中存放了经调试正确的应用程序和表格之类的固定常数。

程序实际上是一串二进制码,程序存储器可以分为片内和片外两部分。

8031由于无内部存储器,所以只能外扩程序存储器来存放程序。

MCS-51单片机复位后,程序存储器PC的内容为0000H,故系统必须从0000H单元开始取指令,执行程序.程序存储器中的0000H地址是系统程序的启动地址.一般在该单元存放一条绝对跳转指令,跳向用户设计的主程序的起始地址。

1.2.2内部数据存储器
MCS-51单片机内部有128个字节的随机存取存储器RAM,作为用户的数据寄存器,它能满足大多数控制型应用场合的需要,用作处理问题的数据缓冲器。

MCS-51单片机的片内存储器的字节地址为00H-7FH.MCS-51单片机对其内部RAM的存储器有很丰富的操作指令,从而使得用户在设计程序时非常方便。

地址为00H-1FH的32个。

相关文档
最新文档