化学工艺学

合集下载

化学工艺学完整版

化学工艺学完整版

化学工艺学完整版化学工艺学是研究化学反应过程和工业生产中的化学工艺的学科。

它涉及到化学反应的热力学、动力学、传质、传热、流体力学等基本原理,以及工艺流程设计、设备选择、操作控制、安全与环保等方面的内容。

化学工艺学的完整版可以包括以下几个方面的内容:1. 化学反应热力学:研究化学反应的热力学性质,如反应热、反应平衡等。

通过热力学计算,确定反应的热效应和平衡条件,为工艺设计提供基础数据。

2. 化学反应动力学:研究化学反应速率和反应机理。

通过实验和数学模型,确定反应速率方程和反应机理,为工艺操作和控制提供依据。

3. 传质与传热:研究物质在流体中的传质和传热过程。

通过传质与传热的计算和实验,确定物质在反应器中的分布和温度变化,为工艺设计和操作提供依据。

4. 流体力学:研究流体在管道、反应器等设备中的流动特性。

通过流体力学的计算和实验,确定流体的流速、压降和混合程度,为工艺流程设计和设备选择提供依据。

5. 工艺流程设计:根据反应过程的特点和要求,设计合理的工艺流程。

包括反应器的选择、分离和纯化步骤的设计等。

6. 设备选择与操作控制:根据工艺流程的要求,选择合适的设备,并进行操作控制。

包括反应器、分离设备、传热设备等的选择和操作参数的确定。

7. 安全与环保:考虑工艺过程中的安全性和环境保护。

包括事故预防和应急处理措施,以及废物处理和排放控制等。

综上所述,化学工艺学的完整版包括了热力学、动力学、传质、传热、流体力学等基本原理,以及工艺流程设计、设备选择、操作控制、安全与环保等方面的内容。

这些内容相互关联,共同构成了化学工艺学的完整体系。

化学工艺学知识点总结

化学工艺学知识点总结

报告格式与内容
了解实验报告的格式和内容要求,按照规范 撰写报告。
总结与反思
对整个实验过程进行总结,反思实验中的不 足和优点,为今后的实验提供借鉴。
实践项目与经验分享
实践项目实施
参与化学工艺实践项目,将理论 知识应用于实际生产中。
经验交流与分享
与其他同学分享实验经验,交流 心得体会,共同提高实验技能。
03
化学工艺流程与设计
工艺流程设计基础
01
工艺流程设计原则
根据生产需求和工艺要求,遵循 安全、环保、高效和经济等原则 进行设计。
02
工艺流程设计步骤
进行工艺分析、流程构思、流程 图绘制以及工艺流程说明等步骤 。
03
工艺流程设计基础 理论
掌握化学反应动力学、化学平衡 和热力学等基础理论,为流程设 计提供理论支持。
实验数据处理与分析
数据记录与整理
准确记录实验数据,采用合适的方法进行数据整理,便于后续分析 。
数据处理方法
掌握常用的数据处理方法,如平均值、标准差、回归分析等,对实 验数据进行处理。
结果分析与解释
根据处理后的数据,进行结果分析,解释实验现象和规律,得出结 论。
实验报告撰写与总结
结果展示与讨论
清晰展示实验结果,对结果进行讨论和解释 ,提出可能的改进措施。
化学反应工程基础
总结词
化学反应工程基础是化学工艺学的支撑学科,它研究反应过程中的传递现象和反应器设 计。
详细描述
化学反应工程基础主要研究反应过程中的物质传递、热力学和动力学等传递现象。它关 注反应过程中的物质传递和能量传递对反应结果的影响,以及如何通过优化传递过程来 提高化学反应的效率和产物收率。此外,化学反应工程基础还涉及反应器的设计、操作

化学工艺学完整版

化学工艺学完整版

化学工艺学完整版简介化学工艺学是研究化学反应、质量转化以及生产工艺的学科。

它涵盖了化学原理、工程设计、实验技术等方面的知识。

化学工艺学的核心是将原始物料转化为有用的产品,并且在这个过程中考虑到经济、环境和安全等因素。

本文将介绍化学工艺学的基本概念、应用领域以及它在工业生产中的重要性。

我们将深入探讨化学反应的基本原理、反应器设计和优化、物质传递操作以及化学工程过程的监测与控制等方面的内容。

1. 化学工艺学的基本概念化学工艺学是研究如何将给定的原材料转化为有用产品的科学和技术。

它涉及到以下几个主要方面:1.1 反应原理与动力学化学工艺学研究不同的化学反应,并通过控制反应条件以达到预期的反应产物。

了解反应原理和动力学对于优化工艺条件、提高产物收率和减少废物产生具有重要意义。

1.2 反应器设计与优化反应器是进行化学反应的设备,常见的反应器类型包括批式反应器、连续流式反应器等。

化学工艺学中研究如何设计和优化反应器,以提高反应效率和产物纯度。

1.3 物质传递操作化学工艺中还涉及到物质传递操作,例如质量传递、热传递和动量传递等。

了解不同物质传递机制,对于设计和优化化学工艺过程至关重要。

1.4 过程模拟与优化利用数学模型对化学工艺过程进行建模和模拟,可以更好地预测和优化工艺条件。

过程优化旨在提高生产效率、降低生产成本并减少对环境的影响。

2. 化学工艺学的应用领域化学工艺学在众多领域中发挥着重要作用,下面列举了几个主要的应用领域:2.1 石油化工石油化工是化学工艺学的一个重要应用领域。

石油化工通过对石油及其衍生物的加工,生产出石油产品和化学产品。

例如,通过炼油工艺,可以将原油提炼为汽油、柴油和润滑油等产品。

2.2 化学品生产化学工艺学在化学品生产过程中起着关键作用。

化学品生产涉及到各种化学反应和物质转化过程。

例如,生产肥料、塑料、颜料和药品等。

2.3 冶金工业冶金工业是化学工艺学的另一个重要应用领域。

冶金工业主要研究各种金属的提取和精炼技术。

化学工艺学

化学工艺学

化学工艺学第一章1化学工艺学定义、化学工艺学研究范畴、化学工艺学与工程的关系答:化学工艺学是将化学工程学的先进技术运用到具体的生产过程中,以化工产品为目标的过程技术。

化学工程学主要研究化学工业和其他过程工业生产中所进行的化学过程和物理过程的共同规律,他的一个重要任务就是研究有关工程因素对过程和装置的效应,特别释放大中的效应。

化学工艺学与化学工程学都是化学工业的基础科学。

化学工艺与化学工程相配合,可以解决化工过程开发、装置设计、流程组织、操作原理及方法方面的问题;此外,解决化工生产实际中的问题也需要这两门学科的理论指导。

2现代化学工业的特点答:特点是:(1)原料、生产方法和产品的多样性和复杂性;(2)向大型化、综合化,精细化发展;(3)多学科合作、技术密集型生产;(4)重视能量的合理利用,积极采用节能工艺和方法;(5)资金密集,投资回收速度快,利润高;(6)安全与环境保护问题日益突出。

1. 生产磷肥的方法是哪两类答:生产磷肥的两种方法是:(1)酸法它是用硫酸或硝酸等无机酸来处理磷矿石,最常用的是硫酸。

硫酸与磷矿反应生成磷酸和硫酸钙结晶,(2)热法利用高温分解磷矿石,并进一步制成可被农作物吸收的磷酸盐。

2、石油的主要组成是什么答:石油的化合物可以分为烃类、非烃类以及胶质和沥青三大类。

烃类即碳氢化合物,在石油中占绝大部分。

非烃类指含有碳、氢及其他杂原子的有机化合物。

第二章1.化工生产过程包括哪些答:化工生产过程一般可概括为原料预处理、化学反应和产品分离及精制。

2、化工生产过程的定义及工艺流程图是什么答:将原料转变成化工产品的工艺流程称为化工生产工艺流程。

工艺流程多采用图示方法来表达,称为工艺流程图。

5、进行工艺流程设计常用的三种方法是什么答:三种方法是:推论分析法、功能分析法、形态分析法。

第三章1、结焦、生碳反应的途径如何答; 1.烯烃经过炔烃中间阶段而生碳 2.经过芳烃中间阶段而结焦。

2、裂解反应机理如何答:烃类裂解反应机理研究表明裂解时发生的基元反应大部分为自由基反应。

化学工艺学

化学工艺学

1925 年、美国联合碳化物公司开始进行乙烷、丙烷 高温裂解制造乙烯、丙烯的工业生产,为石油化工独立 发展奠定了基础。标志着石油化工进入了独立发展阶 段。 石油裂解制乙烯以及一系列以乙烯为原料的有机合 成工艺的开发成功,极大地促进了石油化工的发展,因 为以乙烯、丙烯等为原料可以很方便地合成出从低分子 到高分子的大量化工产品,而乙烯、丙烯可以很方便地 以石油为原料通过裂解工艺得到。
N2-H2
合成
氨、尿素等
汽油、煤油、柴油等液体燃料 羰基合成 氧化 醋酸 甲醛 酚醛树脂、合成原料 甲基叔丁基醚(MTBE) 甲酸甲酯 草酸二甲酯 甲酸 乙二醇 草酸 同系化 转化 乙醇 脱水 C2-C4烯烃 汽油 柴油机燃料 乙烯
合成气 (CO+H2)
合成
甲醇
与异丁烯合成 与CO合成 加CO、O2
化学工艺学: 化学工艺(chemical technology)即化工生产技术, 是指将原料物质主要经过化学反应转变为产品的方法和过 程,包括实现这种转变的全部化学的和物理的措施。 化学工艺学是根据化学、物理和其他科学的成就,来 研究综合利用各种原料生产化工产品的方法原理、操作条 件、流程和设备,以创立技术上先进、经济上合理、生产 上安全的化工生产工艺的学科,内容包括生产方法、原 理、流程和设备。
注意:原料与产品的划分不是绝对的。有的化学品从上游看 是产品从下游看则是原料。划分的界限也有所不同。
产品生产过程的顺序:
化工产品
起始原料
基础有机原料
基本有机化学品
三大合成材料
起始原料:石油、天然气、煤、农林产品(副产品)。
无机化工主要产品: 酸类:硫酸、硝酸、盐酸等三大酸类 碱类:纯碱、烧碱、氯碱、金属的氢氧化物等 盐类:

化学工艺学讲义课件

化学工艺学讲义课件

03
农业废弃物资源化利用
通过化学工艺学的方法,实现农业废弃物的资源化利用,减少环境污染。
01
农药制备
农业化工中,化学工艺学用于农药的制备,包括杀虫剂、杀菌剂、除草剂等。
02
植物生长调节剂合成
化学工艺学还涉及植物生长调节剂的合成,如赤霉素、细胞分裂素等,以促进农作物的生长和发育。
环境化工中,化学工艺学用于废水的处理,通过各种化学和物理方法去除废水中的有害物质。
化学平衡原理是化学工艺学中的重要概念,它描述了在一定条件下,化学反应的正向和逆向进行达到动态平衡的状态。通过掌握化学平衡原理,可以预测反应结果,优化工艺条件,提高产物的产率。
理解化学反应速率的影响因素以及如何控制反应速率。
总结词
化学动力学原理主要研究反、压力、浓度等,可以控制反应条件,实现高效的化学反应过程。这对于化学工艺的优化和改进具有重要意义。
随着高分子合成技术的发展,新型高分子材料不断涌现,如功能性高分子、生物相容性高分子等,为化学工艺提供了更多的选择。
高分子材料
复合材料由两种或多种材料组成,通过复合效应可实现单一材料无法达到的性能,在化学工艺中可用于制造高效能设备、反应器等。
复合材料
微反应技术是一种新型的反应技术,通过微型化反应设备和精细化的工艺控制,可实现高效、安全和环保的化学反应。
化学工艺学讲义课件
汇报人:
202X-12-30
CATALOGUE
目录
化学工艺学概述化学工艺学的基本原理化学工艺学的应用领域化学工艺学的研究方法化学工艺学的实验技术化学工艺学的未来发展
01
化学工艺学概述
定义
化学工艺学是一门研究将原料通过化学反应转化为产品的过程的学科。它涉及到化学反应原理、化学工程原理、分离技术、过程控制等多个领域。

化学工艺学基础知识点总结

化学工艺学基础知识点总结

化学工艺学基础知识点总结化学工艺学是指利用化学原理和技术,对原材料进行加工、转化和制造成所需的制品的学科。

它是化学工程学的基础,通过研究和应用化学反应、传质、传热等原理,探索和发展各种化学工艺过程,实现化学产品的制备和加工。

下面将对化学工艺学的基础知识点进行总结。

1. 化学反应在化学工艺学中,化学反应是一个非常重要的基础知识点。

化学反应是指原料物质在特定条件下相互作用,形成新的化合物的过程。

根据反应的进行方式,可以分为均相反应和异相反应。

均相反应是指反应物和产物处于相同的物理状态,而异相反应则是反应物和产物处于不同的物理状态。

在化学工艺学中,我们需要了解不同化学反应的条件、速率、热效应等基本知识,以便合理设计和控制化学工艺过程。

2. 传质传质是指物质在不同相之间的质量传递过程,是化学工艺中的重要环节之一。

常见的传质方式包括扩散、对流和传热等。

扩散是指物质在不同浓度间的自发性传递,对流是指通过流体介质的物质传递过程,传热则是指物质内部能量的传递。

在化学工艺过程中,我们需要合理设计传质装置和控制传质速率,以实现化学反应和产物分离等目的。

3. 传热传热是指热能在物质之间传递的过程,也是化学工艺学的基础知识点之一。

传热方式包括传导、对流和辐射等。

传导是指通过物质内部分子间的热能传递,对流是指通过流体介质的热能传递,而辐射则是指通过电磁波的热能传递。

在化学工艺中,我们需要根据不同的传热方式选择合适的传热设备,并进行传热效率的控制和优化。

4. 化学工艺流程化学工艺流程是指一系列化学反应和物质传递过程组成的整体,它是化学工艺学的核心内容。

化学工艺流程的设计和控制能否很好地实现原料转化和产品分离,直接影响到产品的质量和产量。

在化学工艺学中,我们需要了解不同化学工艺流程的基本原理和特点,以便选择合适的工艺路线、设备和操作条件。

5. 反应器设计反应器是化学工艺中用于进行化学反应的装置,反应器的设计质量直接影响到工艺的效率和产品的质量。

化学工艺学——精选推荐

化学工艺学——精选推荐

第一章绪论什么叫化学工艺,它是怎样的一门学科?学习这门课的必要性和具体要求。

化工技术与化工过程1.化工技术的发展2. 化工过程的层次3. 过程开发需要考虑的问题§1. 化学工艺学及其研究范畴化学工艺不仅包括将原料转化为产品的理论方法,而且还包括实现这一过程所需的全部化学的和物理的措施。

所以说,化学工艺与过程是密不可分的。

*化学工艺学是怎样的一门学科?随着化学原理、定律的不断完善和相关学科的发展,以及人类在化工生产过程中经验的日积月累,化工过程技术已越来越成熟,并逐步形成一门独立的学科*具体的定义:化学工艺学是根据化学、物理和其它学科的成就,来研究综合利用各种原料生产化工产品的原理、操作条件、流程和设备,以创立技术上先进、经济上合理、生产上安全的化工生产技术和理论的学科。

*化学工艺学的研究范畴化学工艺的个性:生产不同的化学产品,需要采用不同的化学工艺,即使生产相同的产品,原料和路线的不同,也要采用不同的化学工艺。

化学工艺的共性:无论什么样的化工过程,它所涉及的研究内容是基本相同的,这就是共性。

*化学工艺学具体的研究范畴有哪些呢?原料的选择和预处理;生产原理和具体方法的选择;生产设备的选择,以及设备的结构、功能与操作等;催化剂的选择和使用;其它物料的影响;操作条件的影响;流程与生产控制;产品规格,及其与副产品的分离与应用;能量和物料的回收和再利用;工艺路线和流程的技术经济性。

从研究范畴来看,化学工艺学并不涉及工程因素,因为工程因素是另一学科的研究范畴,即化学工程(Chemical Engineering),它的一个重要任务就是研究有关工程因素对过程和装置的效应,特别是放大中的效应。

“化学工艺学”和“化学工程学”是支撑化学工业最重要的两门基础学科,两者的配合,可以解决化工过程开发、装置设计、流程组织、操作原理和方法等方面的问题,化学工业的发展反过来又促进这两门学科的不断完善和发展。

§2. 必要性和具体要求学习化学工艺学的必要性:*化工类学生更多的是要直接面向工业生产,因此,对化工过程技术(即化学工艺)相关知识的掌握是非常必要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学工艺学第一章1化学工艺学定义、化学工艺学研究范畴、化学工艺学与工程的关系?答:化学工艺学就是将化学工程学的先进技术运用到具体的生产过程中,以化工产品为目标的过程技术。

化学工程学主要研究化学工业与其她过程工业生产中所进行的化学过程与物理过程的共同规律,她的一个重要任务就就是研究有关工程因素对过程与装置的效应,特别释放大中的效应。

化学工艺学与化学工程学都就是化学工业的基础科学。

化学工艺与化学工程相配合,可以解决化工过程开发、装置设计、流程组织、操作原理及方法方面的问题;此外,解决化工生产实际中的问题也需要这两门学科的理论指导。

2现代化学工业的特点?答:特点就是:(1)原料、生产方法与产品的多样性与复杂性;(2)向大型化、综合化,精细化发展;(3)多学科合作、技术密集型生产;(4)重视能量的合理利用,积极采用节能工艺与方法;(5)资金密集,投资回收速度快,利润高;(6)安全与环境保护问题日益突出。

1、生产磷肥的方法就是哪两类?答:生产磷肥的两种方法就是:(1)酸法它就是用硫酸或硝酸等无机酸来处理磷矿石,最常用的就是硫酸。

硫酸与磷矿反应生成磷酸与硫酸钙结晶,(2)热法利用高温分解磷矿石,并进一步制成可被农作物吸收的磷酸盐。

2、石油的主要组成就是什么?答:石油的化合物可以分为烃类、非烃类以及胶质与沥青三大类。

烃类即碳氢化合物,在石油中占绝大部分。

非烃类指含有碳、氢及其她杂原子的有机化合物。

第二章1、化工生产过程包括哪些?答:化工生产过程一般可概括为原料预处理、化学反应与产品分离及精制。

2、化工生产过程的定义及工艺流程图就是什么?答:将原料转变成化工产品的工艺流程称为化工生产工艺流程。

工艺流程多采用图示方法来表达,称为工艺流程图。

5、进行工艺流程设计常用的三种方法就是什么?答:三种方法就是:推论分析法、功能分析法、形态分析法。

第三章1、结焦、生碳反应的途径如何?答; 1、烯烃经过炔烃中间阶段而生碳2、经过芳烃中间阶段而结焦。

2、裂解反应机理如何?答:烃类裂解反应机理研究表明裂解时发生的基元反应大部分为自由基反应。

大部分烃类裂解过程包括链引发反应、链增长反应与链终止反应三个阶段。

链引发反应就是自由基的产生过程;链增长反应就是自由基的转变过程,在这个过程中一种自由基的消失伴随着另一种自由基的产生,反应前后均保持着自由基的存在;链终止就是自由基消亡生成分子的过程。

3、什么就是一次反应?什么就是二次反应?答:一次反应就是指原料烃在裂解过程中首先发生的原料烃的裂解反应,二次反应则就是指一次反应产物继续发生的后继反应。

4、评价裂解原料性质的指标主要有哪些?答:①族组成——PONA值②氢含量③特性因数④关联指数(BMCI值)5、温度-停留时间对裂解产品收率有何影响?答:从裂解反应的化学平衡也可以瞧出,提高裂解温度有利于生成乙烯的反应,并相对减少乙烯消失的反应,因而有利于提高裂解的选择性;根据裂解反应的动力学,提高温度有利于提高一次反应对二次反应的相对速度,提高乙烯收率。

从化学平衡来瞧,为获得尽可能多的烯烃,必须采用尽可能短的停留时间进行裂解反应;从动力学来瞧,由于有二次反应,对每种原料都有一个最大乙烯收率的适宜停留时间。

因此可以得出,短停留时间对生成烯烃有利。

①对于给定原料,相同裂解深度时,提高温度,缩短停留时间,可以获得较高的烯烃收率,并减少结焦。

②高温-短停留时间可抑制芳烃生成,所得裂解汽油的收率相对较低。

③高温-短停留时间可使炔烃收率明显增加,并使乙烯/丙烯比及C4中的双烯烃/单烯烃的比增大。

答:①高温裂解条件有利于裂解反应中一次反应的进行,而短停留时间又可抑制二次反应的进行。

因此,对给定裂解原料而言,在相同裂解深度条件下、高温一短停留时间的操作条件可以获得较高的烯烃收率,并减少结焦。

②高温一短停留时间的操作条件可以抑制芳烃生成的反应,对给定裂解原料而言,在相同裂解深度下以高温一短停留时间操作条件所得裂解汽油的收率相对较低。

③对给定裂解原料,在相同裂解深度下,高温一短停留时间的操作条件将使裂解产品中炔烃收率明显增加,并使乙烯/丙烯比及C中的双烯烃/单烯烃4的比增大。

6、裂解气预分馏的目的与任务分别就是什么?答:裂解气预分馏的目的就是:①尽可能降低裂解气的温度;②尽可能分馏出裂解气的重组分;③将裂解气中的稀释蒸汽以冷凝水的形式分离回收,用以再发生稀释蒸汽;④继续回收裂解气低能位热量。

裂解气预分馏的任务就是:①保证裂解气压缩机的正常运转,并降低裂解气压缩机的功耗,减少压缩分离系统的进料负荷;②大大减少污水排放量;③合理的热量回收,由急冷油回收的热量用于发生稀释蒸汽,由急冷水回收的热量用于分离系统的工艺加热。

7、裂解气的净化主要除掉哪几种组分?为什么要除去?答:裂解气的净化主要除掉酸性气体(CO2,H2S与其她气态硫化物)、水、炔烃等杂质。

除去这些杂质的原因为:这些杂质的含量虽不大,但对深冷分离过程就是有害的。

对裂解气分离装置而言,CO2会在低温下结成干冰,造成深冷分离系统设备与管道堵塞,H2S将造成加氢脱炔催化剂与甲烷化催化剂中毒;对于下游加工装置而言,当氢气,乙烯,丙烯产品中的酸性气体含量不合格时,可使下游加工装置的聚合过程或催化反应过程的催化剂中毒,也可能严重影响产品质量,使产品达不到规定的标准。

原理分别如下:⑴脱除酸性气体①碱洗法用NaOH作为吸收剂,通过化学吸收使NaOH与裂解气中的酸性气体发生化学反应,脱除酸性气体。

②乙醇胺法用乙醇胺作为吸收剂,除去CO2与H2S,就是一种物理吸收与化学吸收相结合的方法。

⑵脱水吸附法进行干燥,采用分子筛(离子型极性吸附剂)对极性分子特别就是水有极大的亲与性,易于吸附。

⑶脱炔溶剂吸收与催化加氢将炔烃加氢成烷烃除去。

8、脱除酸性气体有哪2种方法?各有什么优缺点?答:脱除酸性气体的方法有碱洗法与乙醇胺法两种。

碱洗法优点:除酸彻底缺点:①碱不可再生,消耗量大;②适于酸含量低;③产生黄油问题;④废水处理量大乙醇胺法优点:①吸收剂可再生;②适用酸含量高缺点:①设备要求高;②吸收双烯烃,再生易聚合9、裂解气分离流程中能耗最大的两个设备就是什么?答:裂解气分离流程中能耗最大的两个分别就是“脱甲烷”与“乙烯精馏”。

脱甲烷塔就是脱除裂解气中的氢与甲烷,就是裂解气分离装置中投资最大、能耗最多的环节,其冷冻功耗约占全装置冷冻功耗的50%以上。

由于乙烯塔温度仅次于脱甲烷塔,所以冷量消耗占总制冷量的比例也较大,约为38%~44%。

第四章1、简述芳烃的的主要工业来源。

答:芳烃最初主要来源于煤焦化工业,由于有机合成工业的迅速发展,煤焦化工业生产的芳烃在数量上、质量上都不能满足需要,逐渐发展成为以石油为原料生产石油芳烃。

石油芳烃成为芳烃的主要来源。

2、简述目前工业上实际应用的芳烃馏分的主要分离方法。

答:芳烃馏分的分离方法主要有溶剂萃取法与萃取蒸馏法2种。

其原理分别如下: 溶剂萃取分离芳烃就是利用一种或两种以上的溶剂(萃取剂)对芳烃与非芳烃选择溶解分离出芳烃。

对溶剂性能的基本要求:对芳烃的溶解选择性好、溶解度高;与萃取原料密度差大;蒸发潜热与热容小、蒸汽压小;有良好的化学稳定性与热稳定性、腐蚀性小。

萃取蒸馏就是利用极性溶剂与烃类混合时,能降低烃类蒸汽压使混合物初沸点提高的原理而设计的工艺过程,由于此种效应对芳烃的影响最大,对环烷烃的影响次之,对烷烃的影响最小,这样就有助于芳烃与非芳烃的分离。

答:芳烃馏分都就是由芳烃与非芳烃组成的混合物,目前工业上实际应用的主要就是溶剂萃取法与萃取蒸馏法。

溶剂萃取法:从宽馏分中分离苯、甲苯、二甲苯萃取蒸馏法:从窄馏分中分离纯度高的单一芳烃3、简述芳烃转化的化学反应。

答:1、芳烃的脱烷基化2、芳烃的歧化与烷基转移3、C8芳烃的异构化4、芳烃的烷基化4、简述C8芳烃的分离方法。

答:4种C8芳烃的分离方法如下:①邻二甲苯的分离沸点最高,与关键组分对二甲苯的沸点相差5、3℃精馏法分离。

②乙苯的分离沸点最低,与关键组成对二甲苯的沸点仅差2、2℃精馏分离耗能大,在异构化装置中转化回收。

③对、间二甲苯的分离由于对二甲苯与间二甲苯的沸点差只有0、75℃,难于采用精馏方法进行分离。

目前工业上采用的方法主要有深冷结晶分离法、络合萃取分离法、模拟移动床吸附分离法。

第五章1、由煤制合成气有哪些生产方法?这些方法相比较各有什么优点?较先进的方法就是什么?答:固定床间歇式气化制水煤气法:优点就是只用空气不用纯氧,成本与投资费用低。

固定床连续式气化制水煤气法:优点就是可连续制气,生产强度较高,而且煤气质量也稳定。

流化床连续式气化制水煤气法:优点就是提高了单炉的生产能力,同时适应了采煤技术的发展,直接使用小颗粒碎煤为原料,并可利用褐煤等高灰分煤。

气流床连续式气化制水煤气法:优点就是扩散速率与反应速率均相当高,生产强度非常大,碳的转化率很高。

通过以上可以瞧出较先进的方法就是固定床连续式气化制水煤气法、流化床连续式气化制水煤气法与气流床连续式气化制水煤气法。

2、为什么一氧化碳变换过程要分段进行,要用多段反应器?段数的选定依据就是什么?有哪些形式的反应器?答:变换反应的温度最好沿最佳反应温度曲线变化,反应初期,转化率低,最佳温度高;反应后期,转化率高,最佳温度低,但就是CO变换反应就是放热的,需要不断地将此热量排出体系才可能使温度下降。

在工程实际中,降温措施不可能完全符合最佳温度曲线,变换过程就是采用分段冷却来降温,即反应一段时间后进行冷却,然后再反应,如此分段越多,操作温度越接近最佳温度曲线。

应特别注意的就是,操作温度必须控制在催化剂活性温度范围内,低于此范围,催化剂活性太低,反应速率太慢;高于此范围,催化剂易过热而受损,失去活性。

反应器分段太多,流程与设备太复杂,过程上并不合理,也不经济。

具体段数由水煤气CO含量、所要达到的转化率、催化剂活性温度范围等因素决定,一般2-3段即可满足高转化率的要求。

变换反应器的类型有:中间间接冷却式多段绝热反应器、原料气冷激式多段绝热反应器与水蒸气或冷凝水冷激式多段绝热反应器。

3、一氧化碳变换催化剂有哪些类型?各适用于什么场合?使用中注意哪些事项?答:铁铬系变换催化剂:其化学组成以Fe2O3为主,促进剂有Cr2O3与K2CO3,反应前还原成Fe3O4才有活性。

适用温度范围300~530℃。

该类催化剂称为中温或高温变换催化剂,因为温度较高,反应后气体中残余CO含量最低为3%~4%。

铜基变换催化剂:其化学组成以CuO为主,ZnO与Al2O3为促进剂与稳定剂,反应前也要还原成具有活性的细小铜晶粒。

该类催化剂另一弱点就是易中毒,所以原料气中硫化物的体积分数不得超过0、1×10-6。

铜基催化剂适用温度范围180~260℃,称为低温变换催化剂,反应后残余CO可降至0、2%~0、3%。

相关文档
最新文档