模糊控制实验报告

合集下载

洗衣机模糊控制仿真实验报告

洗衣机模糊控制仿真实验报告

洗衣机模糊控制仿真实验报告一、实验目的本实验旨在通过对洗衣机运行过程的模糊控制仿真实验,帮助学生更好地了解模糊控制的基本原理和实现方法。

二、实验原理洗衣机模糊控制系统主要包括模糊控制器、模糊推理机和输出规则等三个部分。

模糊控制器是模糊系统的核心部分,其主要作用是将输入信号转化为模糊集,并将控制输出信号转化为真实输出信号。

模糊控制器的输入为洗衣机工作状态的一些参数,例如水位、温度等,输出为洗衣机运行状态的一些控制命令,例如加热、搅拌等。

模糊推理机是由一系列规则组成的系统,它负责根据输入的模糊集和一组先验规则,进行模糊推理,得到控制输出信号的模糊集,即模糊控制器的中间变量。

输出规则主要为控制输出信号的模糊集赋值,即将模糊集中各个元素映射到真实输出信号的取值范围内。

三、实验步骤1、建立洗衣机的模糊控制系统模型,包括模糊控制器、模糊推理机和输出规则等。

2、设置洗衣机的运行参数,例如水位、温度等,作为模糊控制器的输入。

3、根据洗衣机的运行状态,制定一组先验规则,作为模糊推理机的输入,并进行模糊推理。

4、根据模糊推理得到的控制输出信号的模糊集,进行输出规则的映射,得到洗衣机的真实控制命令。

5、根据洗衣机的控制命令,模拟洗衣机的工作流程。

6、对洗衣机的工作流程进行仿真实验,并记录实验结果。

四、实验结果分析经过多次实验,得到了洗衣机的模糊控制系统的优化参数,能够实现洗衣机的良好控制。

通过对实验结果的分析,可以发现,模糊控制系统可以有效地调节洗衣机的运行状态,使其在不同的工作状态下保持稳定且高效的运行。

同时,模糊控制系统也具有很强的适应性和鲁棒性,可以自适应地调节参数,应对各种不同的运行环境。

五、实验总结本实验通过模拟洗衣机的工作流程,对模糊控制系统的基本原理和实现方法进行了深入探究,能够有效地帮助学生掌握模糊控制系统的设计和应用方法。

同时,在实验过程中,也需要注意对实验数据和结论的分析和总结,以便更好地优化模糊控制系统的参数和性能,实现最佳控制效果。

《智能控制》-模糊控制实验报告

《智能控制》-模糊控制实验报告

课程名称:智能控制实验名称:模糊控制一、实验目的:(1)了解在Simulink 仿真环境下建立控制系统方框图的方法,熟悉Matlab 和Simulink 仿真环境(2)掌握模糊控制器的设计方法。

(3)比较PID 控制和模糊控制的特点。

二、实验内容和步骤 已知s e s s s G 2.0214820)(-++=,分别设计PID 控制与模糊控制,使系统达到较好性能,并比较两种方法的结果。

结构如下图。

(1)模糊控制规则设计针对该定位系统,设计二维模糊控制规则,使性能达到最佳。

模糊控制规则如下:(2)设计未加PID或FUZZY控制器时,设计系统如下:输入阶跃信号,观测与分析仿真结果。

(3)加入PID控制器如下:对应的仿真结构图为:调整参数,观测与分析仿真结果。

PID控制的仿真曲线如下:(4)设计FUZZY控制器在simulink仿真环境下,设计模糊控制系统,包括模糊控制规则、隶属函数、比例因子、量化因子、论域等参数设计。

FUZZY控制仿真结构图如下:其中黄色部分具体为:利用simulink设计的模糊控制的仿真结构图为:其中对于模糊控制器的设计:E=[-6 6] EC=[-6 6] U=[-6 6],并且其隶属函数分别为:E的隶属函数EC的隶属函数U的隶属函数再将其中一个学生的比较好的实验结果作为参考实例:首先仿真图如下:模糊控制器的设计:E=[-6 6] EC=[-6 6] U=[-6 6],并且其隶属函数分别为:E和EC的隶属函数U的隶属函数控制规则:ECNB NM NS ZE PS PM PB ENB PB PB PB PB PM ZE ZENM PB PB PB PB PM ZE ZENS PM PM PM PM ZE NS NSZE PM PM PS ZE NS NM NMPS PS PS ZE NM NM NM NMPM ZE ZE NM NB NB NB NBPB ZE ZE NM NB NB NB NB设计好模糊控制器后,运行仿真图形,得到的仿真曲线如下(step time=1):模糊控制的仿真曲线由仿真可知,通过选择合适的PID参数可以达到较好的控制性能。

智能控制实验-模糊控制

智能控制实验-模糊控制

实验一 洗衣机的模糊控制仿真一、实验目的本实验要求在学生掌握模糊控制器基本工作原理和设计方法基础上,熟悉MALAB 中的模糊控制工具箱,能针对实际问题设计模糊控制器,建立模糊控制系统,训练学生综合运用计算机来解决一些实际问题的能力。

二、实验设备计算机一台、MATLAB 软件三、实验要求设计一个模糊控制器,根据衣物的泥污和油污程度,输出衣物的洗涤时间,通过改变控制参数的大小,观察模糊控制的性能。

四、实验步骤1.确定模糊控制器的结构选用两输入单输出模糊控制器,控制器的输入为衣物的泥污和油污,输出为洗涤时间。

2. 定义输入、输出模糊集 将泥污分为三个模糊集:泥污少SD 、泥污中MD 、泥污大LD ;油污分为三个模糊集:油污少SG 、油污中MG 、油污大LG ;将洗涤时间分为五个模糊集:很短VS 、短S 、中等M 、长L 、很长VL 。

3. 定义隶属度函数选用三角形隶属度函数实现泥污、油污和洗涤时间的模糊化:(50)/50050/50050(100)/505010050100(50)/50x x x x x x x x μμμμ=-⎧≤≤⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪<≤=-⎩SD MD 泥污LD (50)/50050/50050(100)/505010050100(50)/50x x x x x x x x μμμμ=-⎧≤≤⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪<≤=-⎩SG MG 油污LG(50)/50010/50010(100)/501025/501025(100)/5025402540/504060(100)/504060(50)/50x z x z x z x z x z z x z x z x μμμμμμ=-⎧≤≤⎪⎧≤≤⎪=⎨⎪-<≤⎩⎪≤≤⎧⎪==⎨⎨-<≤⎩⎪⎪≤≤⎧⎪=⎨<≤-⎪⎩⎪≤≤=-⎩SG MG MG 洗涤时间MG LG实验结果:实验分析:6.模糊推理因模糊控制规则表对称,所以上图为input1 和input2分别为50时input2和input1与洗涤时间的关系。

模糊控制实验

模糊控制实验

中南大学模糊控制课程实验报告学生姓名:彭雄威_____________ 指导教师: ________________ m _______ 学院:信息科学与工程学院学号:114611167 ______________实验一:本系统设计基于MATLAB图形模糊推理系统,设计步骤如下:打开MATLAB,输入指令fuzzy,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Mamdani模糊推理系统。

(1) 增加一个输入变量,将输入变量命名为E、Ec,将输出变量命名U。

这样就建立了一个两输入单输出的模糊推理系统。

如图1.1所示。

图1.1增加一个输入变量(2) 设计模糊化模块:设计隶属度函数论域范围图3.2设计水位误差E模块3.3设计水位误差EC模块图3.4设计水位输出U模块(4)模糊控制器的规则设计le Editor: fuzzf(5)通过观察器观察规则情况在菜单view中的rules和surface选项分别对应得是规则观测器和曲而观测器。

123 4567891011121314151617181920212223242526272829”Input: 20】Plot points: ioi Move: [ left 11 rg ] |down] ( up ]Opened system tuzzf, 49 rules| 5 Close |图3.7规则观测器图3.6曲面观测器(6)保存编辑好的FIS文件实验二利用MATLAB软件的M文件编辑器和实验一所生成的fuzzf.FIS文件,在M 文件编辑器中输入:a=readfis('fuzzf');evalfis([・0.5广0.07;-0.5,0;・0.5,0.07; 0,・0.07;0,0;0,0.07;0.5广0.07;0.5,0;0.5,0.07],a)便可得fuzzf.FIS文件的模糊控制査询表,其中的数据在水位误差E的论域为[・ 1 1], 误差变化EC的论域为[.0.1 0.1]内可以任意取值。

模糊控制实验报告

模糊控制实验报告

模糊控制实验报告本实验通过使用模糊控制器来控制直流电机的转速。

模糊控制是一种基于模糊推理的控制方法,该方法可以处理一些无法准确数学建模的系统控制。

模糊控制的输入和输出都是模糊变量,这样可以考虑到系统存在的不确定性和模糊性。

实验装置包括模糊控制器、直流电机、转速测量装置、实验板等。

模糊控制器由模糊推理机、偏差和变化率输入模糊化模块、输出反模糊化模块、规则库组成。

实验板可通过控制开关选择转速和方向。

在实验中,通过设置转速值和方向,记录电机的真实转速和输出控制信号,来验证模糊控制器的控制效果。

通过不同的控制变量和规则库来对比不同的控制方案。

实验结果表明,模糊控制器对于直流电机转速的控制具有较好的效果。

当控制变量为偏差和变化率时,规则库中的设定合理,输出控制信号的变化平稳,电机转速较为稳定。

当增加控制变量或修改规则库时,控制效果也发生了变化。

同时,实验还验证了模糊控制的重要性和优越性,可以解决一些无法准确建模的系统控制问题。

在实验中,还需要注意一些实验细节,例如校准直流电机转速传感器的准确度,保证实验板电路的正常工作和实验数据的准确性,减少误差的影响。

总之,本实验通过实际操作验证了模糊控制器在直流电机转速控制中的应用,对于学习模糊控制的控制方法和实验操作具有很好的参考意义。

同时,本实验也展示了模糊控制对于处理模糊问题的效果。

在直流电机转速控制中,存在许多因素的影响导致控制过程不确定和模糊,例如负载的变化、外部干扰的存在等等。

而模糊控制可以将这些不确定因素转化为模糊变量进行处理,从而提高控制精度和鲁棒性。

此外,本实验也强调了规则库的重要性。

规则库是模糊控制中很关键的一部分,其中包含了专家经验和数学模型的映射关系。

规则库中的设定需要充分考虑被控对象的特性,才能够保证模糊控制器的控制效果。

而实验中不同的规则库设计对于控制效果的影响也展现了模糊控制的灵活性和可定制性。

最后,本实验的数据记录和实验结果分析也为后续工程实际应用提供了很好的参考。

三容水箱的模糊控制—南昌大学实验报告

三容水箱的模糊控制—南昌大学实验报告

实验报告实验课程:模糊控制学生姓名:学号:专业班级:2012年 3月 28 日三容水箱的模糊控制一.实验目的1.通过实验掌握模糊控制的基本原理,能利用模糊控制解决生活中的实际问题;2.通过实验熟悉掌握MATLAB编程语句;3掌握三容水箱的基本模型,能够实现三容水箱的基本控制。

二.实验要求如图1所示的三容水箱串级相连,要求通过模糊控制,随着q4的正弦变化,能够通过调节阀门开度k来使第三个水箱液位h3稳定在设定值,并且其他两水箱水不会流尽。

图1 水箱串级相连图三.实验原理模糊控制系统设计的关键在于模糊控制器的设计。

模糊控制器如图2 所示:图2 模糊控制的基本原理框图模糊控制器的设计主要有三个部分:1) 输入量的模糊化所谓模糊化(Fuzzification) 就是先将某个输入测量量的测量值作标准化处理,把该输入测量量的变化范围映射到相应论域中,再将论域中的各输入数据以相应的模糊语言值的形式表示,并构成模糊集合。

这样就把输入的测量量转换为用隶属度函数表示的某一模糊语言变量。

2) 模糊逻辑推理根据事先已定制好的一组模糊条件语句构成模糊规则库,运用模糊数学理论对模糊控制规则进行推理计算,从而根据模糊控制规则对输入的一系列条件进行综合评估,以得到一个定性的用语言表示的量,即模糊输出量。

完成这部分功能的过程就是模糊逻辑推理过程。

3) 反模糊化过程反模糊化(Defuzzification) 有时又叫模糊判决。

就是将模糊输出量转化为能够直接控制执行部件的精确输出量的过程。

三.实验过程水箱系统的模糊控制器设计为两个输入和一个输出, 一个输入为水箱的液位给定值与实际液位h 的误差e, 另一个输入为误差e 的变化率ec 。

模糊控制器的输出是阀门开度k, 阀门开度间接控制容器的水位高度, 从而达到调节水箱的液位高度。

1.确定观测量和控制量定义给定液位为h ,实际测得的水位高度为h3,选择液位差为e=h-h3。

选择液位误差的增量ec=e-e_1。

模糊控制实验

模糊控制实验

中南大学模糊控制课程实验报告学生姓名:彭雄威指导教师:袁艳学院:信息科学与工程学院学号:114611167实验一:本系统设计基于MATLAB图形模糊推理系统,设计步骤如下:打开MATLAB,输入指令fuzzy,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Mamdani模糊推理系统。

(1)增加一个输入变量,将输入变量命名为E、Ec,将输出变量命名U。

这样就建立了一个两输入单输出的模糊推理系统。

如图1.1所示。

图1.1增加一个输入变量(2) 设计模糊化模块:设计隶属度函数论域范围图3.2设计水位误差E模块3.3设计水位误差Ec模块图3.4设计水位输出U模块(4)模糊控制器的规则设计(5)通过观察器观察规则情况在菜单view中的rules和surface选项分别对应得是规则观测器和曲面观测器。

图 3.7 规则观测器图 3.6 曲面观测器 (6) 保存编辑好的FIS文件实验二:利用MATLAB软件的M文件编辑器和实验一所生成的fuzzf.FIS文件,在M 文件编辑器中输入:a=readfis('fuzzf');evalfis([-0.5,-0.07;-0.5,0;-0.5,0.07; 0, -0.07;0,0;0,0.07;0.5,-0.07;0.5,0;0.5,0.07],a)便可得fuzzf.FIS文件的模糊控制查询表,其中的数据在水位误差E的论域为[-1 1],误差变化Ec的论域为[-0.1 0.1]内可以任意取值。

a=readfis(' fuzzf ')a =name: ' fuzzf 'type: 'mamdani'andMethod: 'min'orMethod: 'max'defuzzMethod: 'centroid'impMethod: 'min'aggMethod: 'max'input: [1x2 struct]output: [1x1 struct]rule: [1x5 struct]a=readfis(' fuzzf ');evalfis([-0.5,-0.07;-0.5,0;-0.5,0.07; 0, -0.07;0,0;0,0.07;0.5,-0.07;0.5,0;0.5,0.07],a)ans =-0.2000-0.4444-0.46670.1363-0.0014-0.22710.40000.44120.1333实验三利用MATLAB软件的M文件编辑器(也可选择C语言)完成模糊控制查询表的计算。

模糊控制实例及simulink仿真实验报告

模糊控制实例及simulink仿真实验报告

模糊控制实例及simulink仿真实验报告
一、背景介绍
模糊控制是一种基于模糊逻辑的控制方法,其优点在于可以很好地处理复杂的非线性和不确定性系统,而且不需要精确的数学模型和计算,能够快速实现控制的优化。

二、实例介绍
本次实例采用一个双轮小车为对象,实现小车在平面上向指定位置运动的控制。

通过小车的速度和转向角两个输入变量,输出一个模糊控制信号,控制小车前进和转向。

三、实验过程
1. 建立模糊控制系统模型
打开Simulink软件,建立一个新模型,模型中包括输入变量、输出变量和控制器。

2. 设计输入变量和输出变量
(1)设计输入变量
本实例选择小车速度和转向角两个输入变量,每个变量包含三个模糊集合,速度变量分别为“慢速”、“中速”、“快速”,转向角变量分别为“左转”、“直行”、“右转”。

(2)设计输出变量
模糊控制信号输出变量选择小车的前进和转向,每个变量包含三个模糊集合,分别为“慢行”、“中行”、“快行”、“左转”、“直行”、“右转”。

3. 建立控制器
建立模糊控制器,包含输入变量和输出变量的关系,建立控制规则库和模糊关系。

4. 仿真实验
在Simulink下进行仿真实验,调整控制器参数,观察小车运动状态,对比试验。

四、实验结果
经过多次试验和调整,得到最优的小车模糊控制参数,可以实现小车的平滑运动
和准确转向。

五、实验结论
本实验通过建立一个小车的模糊控制系统,可以有效实现小车的平滑运动和准确转向,控制效果优于传统的PID控制方法。

模糊控制可以很好地处理非线性、不确定性和模糊性的系统,适合许多需要快速优化控制的场合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊控制系统实验报告
学院:班级:
:学号:
一、实验目的
1. 通过本次实验,进一步了解模糊控制的基本原理、模糊模型的建立和模糊控制器的设计过程。

2. 提高有关控制系统的程序设计能力;
3. 熟悉Matlab语言以及在智能控制设计中的应用。

二、实验内容
设计一个采用模糊控制的加热炉温度控制系统。

被控对象为一热处理工艺制作中的加热炉,加热设备为三相交流调压供电装置,输入控制信号电压为0-5V,输出相电压为0-220V,输出最大功率180kW,炉内变化室温~625℃。

三、实验过程及步骤
1.用Matlab中的Simulink工具箱,组成一个模糊控制系统,如图所示
2.采用模糊控制算法,设计出能跟踪给定输入的模糊控制器,对被控系统进行仿真,绘制出系统的阶跃响应曲线。

(1)模糊集合及论域的定义
对误差E、误差变化EC机控制量U的模糊集合及其论域定义如下:E、EC和U的模糊集合均为:
{NB、NM、NS、0、PS、PM、PB}
E和EC的显示范围为:[-6 6]
结果如下图所示
打开Rule编辑器,并将49条控制规则输入到Rule编辑器中
利用编辑器的”View→Rules”和”View→Surface”得到模糊推理系统的模糊规则和输入输出特性曲面,分别如下图所示
从图中可以看出,输出变量U是关于两个输入变量E、EC的非线性函数,输入输出特性曲面越平缓、光滑,系统的性能越好。

将FIS嵌入Simulink
R(t)=400℃时系统阶跃响应
系数Ke变小时的系统阶跃响应
通过本设计可以知道,模糊控制具有能够得到良好的动态响应性能,并且不需要知道被控对象的数学模型,适应性强,上升时间快。

与PID控制相比有着很大的优势,采用PID控制虽然稳态性能较好,但是难以得到满意的动态响应性能。

当然,模糊控制也有着自身的缺点,容易受到模糊规则等级的限制而引起误差,需要进一步改进。

四、实验总结
通过这次《模糊控制系统》课程实验增加了对模糊调节器的理解,认识到了模糊控制器的优缺点。

并进一步熟练了用Matlab中Simulink 工具箱的应用,提高了自己的动手能力。

通过这次课程设计也使我认识到对Matlab中Simulink工具箱的应用还不够熟练,将来应该加强操作、学习。

相关文档
最新文档