概率经典例题及解析、近年高考题50道带答案解析

合集下载

高中数学第十章概率典型例题(带答案)

高中数学第十章概率典型例题(带答案)

高中数学第十章概率典型例题单选题1、“某彩票的中奖概率为1100”意味着( )A .购买彩票中奖的可能性为1100 B .买100张彩票能中一次奖 C .买100张彩票一次奖也不中 D .买100张彩票就一定能中奖 答案:A分析:根据概率的定义,逐项判定,即可求解.对于A 中,根据概率的定义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,由某彩票的中奖概率为1100,可得购买彩票中奖的可能性为1100,所以A 正确;对于B 、C 中,买任何1张彩票的中奖率都是1100,都具有偶然性,可能中奖,还可能中奖多次,也可能不中奖,故B 、C 错误;对于D 选项、根据彩票总数目远大于100张,所以买100张也不一定中一次奖,故D 错误. 故选:A.2、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( ) A .249B .649C .17D .27 答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.3、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.4、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.由题意,知{0<P(A)<1 0<P(B)<1P(A)+P(B)≤1,即{0<2−a<10<3a−4<12a−2≤1,解得43<a≤32,所以实数a的取值范围为(43,32].故选:A.5、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P=0.42×0.32+C21×0.6×0.4×C21×0.7×0.3+0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A.小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.6、下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”答案:C分析:利用对立事件和相互独立事件的概念求解.解:对于选项A,事件M={2,4,6},事件N={3,6},事件MN={6},基本事件空间Ω={1,2,3,4,5,6},所以P(M)=36=12,P(N)=26=13,P(MN)=16=12×13,即P(MN)=P(N)P(M),因此事件M与事件N是相互独立事件;对于选项B,袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”,则事件M发生与否与N无关,同时,事件N发生与否与M无关,则事件M与事件N是相互独立事件;对于选项C,袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N “第二次摸到黑球”, 则事件M 发生与否和事件N 有关,故事件M 和事件N 与不是相互独立事件;对于选项D ,甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”,则事件M 发生与否与N 无关,同时,事件N 发生与否与M 无关,则事件M 与事件N 是相互独立事件; 故选:C.7、2021年12月9日,中国空间站太空课堂以天地互动的方式,与设在北京、南宁、汶川、香港、澳门的地面课堂同步进行.假设香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13,若主持人向这两个分课堂中的一名学生提问,则该学生恰好为女生的概率是( ) A .18B .38C .12D .58答案:C分析:利用互斥事件概率加法公式计算古典概型的概率即可得答案.解:因为香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13, 所以香港女生数为总数的58×35=38,澳门女生数为总数的38×13=18,所以提问的学生恰好为女生的概率是38+18=12. 故选:C.8、某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表:60% B .该教职工具有研究生学历的概率超过50% C .该教职工的年龄在50岁以上的概率超过10%D .该教职工的年龄在35岁及以上且具有研究生学历的概率超过10% 答案:D分析:根据表中数据,用频率代替概率求解.A.该教职工具有本科学历的概率p=75120=58=62.5%>60%,故错误;B.该教职工具有研究生学历的概率p=45120=38=37.5%<50%,故错误;C.该教职工的年龄在50岁以上的概率p=10120=112≈8.3%<10%,故错误;D.该教职工的年龄在35岁及以上且具有研究生学历的概率p=15120=18=12.5%>10%,故正确.小提示:本题主要考查概率的求法,还考查了分析求解问题的能力,属于基础题.多选题9、下列有关古典概型的说法中,正确的是()A.试验的样本空间的样本点总数有限B.每个事件出现的可能性相等C.每个样本点出现的可能性相等D.已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率P(A)=kn答案:ACD分析:根据古典概型的定义逐项判断即可.由古典概型概念可知:试验的样本空间的样本点总数有限;每个样本点出现的可能性相等.故AC正确;每个事件不一定是样本点,可能包含若干个样本点,所以B不正确;根据古典概型的概率计算公式可知D正确.故选:ACD10、某学校为调查学生迷恋电子游戏情况,设计如下调查方案,每个被调查者先投掷一枚骰子,若出现向上的点数为3的倍数,则如实回答问题“投掷点数是不是奇数?”,反之,如实回答问题“你是不是迷恋电子游戏?”.已知被调查的150名学生中,共有30人回答“是”,则下列结论正确的是()A.这150名学生中,约有50人回答问题“投掷点数是不是奇数?”B.这150名学生中,必有5人迷恋电子游戏C.该校约有5%的学生迷恋电子游戏D.该校约有2%的学生迷恋电子游戏答案:AC分析:先由题意计算出回答问题一的人数50人,再计算出回答问题一“是”的人数25人,故可得到回答问题二“是”的人数5人,最后逐一分析四个选项即可.由题意可知掷出点数为3的倍数的情况为3,6,故掷出点数为3的倍数的概率为13,故理论上回答问题一的人数为150×13=50人.掷出点数为奇数的概率为12,理论上回答问题一的50人中有25人回答“是”,故回答问题二的学生中回答“是”的人数为30-25=5人.对于A, 抽样调查的这150名学生中,约有50人回答问题一,故A正确.对于B, 抽样调查的这150名学生中,约有5人迷恋电子游戏,“必有”过于绝对,故B错.对于C,抽样调查的150名学生中,50名学生回答问题一,故有100名学生回答问题二,有5名学生回答“是”,故该校迷恋电子游戏的学生约为5100=5%,故C正确.对于D,由C可知该校迷恋电子游戏的学生约为5100=5%,故D错.故选:AC.11、不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色答案:ABD分析:列举出所有情况,然后再利用互斥事件和对立事件的定义判断.解:6张卡片中一次取出2张卡片的所有情况有:“2张都为红色”、“2张都为绿色”、“2张都为蓝色”、“1张为红色1张为绿色”、“1张为红色1张为蓝色”、“1张为绿色1张为蓝色”,选项中给出的四个事件中与“2张都为红色”互斥而非对立的事件是:“2张都不是红色”,“2张恰有一张红色”,“2张都为绿色”,其中“2张至少一张为红色”包含事件“2张都为红色”,二者并非互斥.故选:ABD.12、设A,B分别为随机事件A,B的对立事件,已知0<P(A)<1,0<P(B)<1,则下列说法正确的是()A.P(B|A)+P(B|A)=1B.P(B|A)+P(B|A)=0C.若A,B是相互独立事件,则P(A|B)=P(A)D.若A,B是互斥事件,则P(B|A)=P(B)答案:AC分析:计算得AC正确;当A,B是相互独立事件时,P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B 是互斥事件,得P(B|A)=0,而P(B)∈(0,1),故D错误.解:P(B|A)+P(B|A)=P(AB)+P(AB)P(A)=P(A)P(A)=1,故A正确;当A,B是相互独立事件时,则P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B是相互独立事件,则P(AB)=P(A)P(B),所以P(A|B)=P(AB)P(B)=P(A),故C正确;因为A,B是互斥事件,P(AB)=0,则根据条件概率公式P(B|A)=0,而P(B)∈(0,1),故D错误.故选:AC.13、袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球答案:BD分析:根据互斥事件的定义和性质判断.袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.小提示:本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题. 填空题14、甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____. 答案:0.3解析:甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率. 甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜, 则甲队以2:1获胜的概率是:P =0.6×0.5×0.6+0.4×0.5×0.6=0.3. 所以答案是:0.3.小提示:本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.15、已知事件A ,B ,C 相互独立,若P (AB )=16,P(BC)=14,P(ABC)=112,则P (A )=______. 答案:13分析:根据相互独立事件的概率公式,列出P (A ),P (B ),P(C),P(B)的等式,根据对立逐一求解,可求出P (A )的值.根据相互独立事件的概率公式,可得{ P (A )P (B )=16P(B)P (C )=14P (A )P (B )P(C)=112,所以P (A )=13. 所以答案是:13.16、在一个口袋中有大小和质地相同的4个白球和3个红球,若不放回的依次从口袋中每次摸出一个球,直到摸出2个红球就停止,则连续摸4次停止的概率等于______.答案:935分析:根据题设写出基本事件,再应用互斥事件加法公式求概率.由题意知,连续依次摸出的4个球分别是:白白红红,白红白红,红白白红共3种情况,第一种摸出“白白红红”的概率为47×36×35×12=335,第二种摸出“白红白红”的概率为47×36×35×12=335,第三种摸出“红白白红”的概率为37×46×35×12=335,所以连续摸4次停止的概率等于935.所以答案是:935解答题17、数学兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)将条形统计图补充完整,在扇形统计图中表示“现金”支付的扇形圆心角的度数为多少?(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.答案:(1)条形统计图见解析,90∘;(2)不同,理由见解析;(3)13.分析:(1)由两幅图可知,用现金、支付宝、其他支付共有人数110人,所占比例为1-15%-30%=55%,可得共调查了多少人,再根据用银行卡、微信支付的百分比可得答案(2)根据原数据的众数所在的分类为微信,加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝可得答案;(3)将微信记为A 、支付宝记为B 、银行卡记为C ,画出树状图根据古典概型概率计算公式可得答案. (1)由条形统计图可知,用现金、支付宝、其他支付共有人数110人, 所占比例为1-15%-30%=55%,所以共调查了1100.55=200人,所以用银行卡支付的人有200×0.15=30人,用微信支付的人有200×0.3=60人, 用现金支付所占比例为50200=0.25,所以0.25×360∘=90∘,在扇形统计图中表示“现金”支付的扇形圆心角的度数为90°,补全统计图如图所示:(2)重新统计后的众数所在的分类与之前统计的情况不同,理由如下:原数据的众数所在的分类为微信,而加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝. (3)将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种, ∴两人恰好选择同一种支付方式的概率为39=13.18、某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s 内(称为合格)的概率分别为25,,13.若对这三名短跑运动员的100跑的成绩进行一次检测,则求:(Ⅰ)三人都合格的概率;34(Ⅱ)三人都不合格的概率;(Ⅲ)出现几人合格的概率最大.答案:(Ⅰ)110;(Ⅱ)110;(Ⅲ)1人. 分析:记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13,从而根据不同事件的概率求法求得各小题.记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13 设恰有k 人合格的概率为P k (k =0,1,2,3).(Ⅰ)三人都合格的概率:P 3=P(ABC)=P(A)⋅P(B)⋅P(C)=25×34×13=110(Ⅱ)三人都不合格的概率:P 0=P(ABC)=P(A)⋅P(B)⋅P(C)=35×14×23=110.(Ⅲ)恰有两人合格的概率:P 2=P(ABC)+P(ABC)+P(ABC)=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1−P 0−P 2−P 3=1−110−2360−110=2560=512.因为512>2360>110,所以出现1人合格的概率最大.。

高考概率大题及答案

高考概率大题及答案

高考概率大题及答案1.某市高中毕业生中有80%选择进入大学,20%选择就业。

已知选择就业的学生中,70%在第一年获得满意的工作,而选择进入大学的学生中,80%在第一年获得满意的工作。

现从该市高中毕业生中任选一人,问他第一年获得满意工作的概率是多少?解答:由全概率公式可知,某毕业生获得满意工作的概率可以分为两种情况:1)选择就业的情况下获得满意工作的概率:0.2 × 0.7 = 0.14 2)选择进入大学的情况下获得满意工作的概率:0.8 × 0.8 = 0.64因此,获得满意工作的总概率为:0.14 + 0.64 = 0.78所以,任选一人的第一年获得满意工作的概率为0.78。

2.一批产品某种型号有20%的不合格品。

现从中任意抽取2个进行检查,问两个都是合格品的概率是多少?解答:抽取两个产品都是合格品的概率可以通过计算来得到。

首先,第一次抽取的产品是合格品的概率为80%(不合格品的概率为20%)。

而第二次抽取的产品也是合格品的概率会受到第一次抽取的影响。

因为第一次抽取合格品后,剩下的产品中合格品的比例会减少。

假设第一次抽取合格品后,剩下的产品中有a个合格品和b个不合格品,则第二次抽取的产品也是合格品的概率为a/(a+b)。

因此,两个都是合格品的概率为:0.8 × (a/(a+b))具体数值需要根据实际情况来计算。

3.某门考试的通过率为60%,现已知通过考试的学生中,有70%是靠自己的努力而没有借助辅导班;而未通过考试的学生中,有30%是通过辅导班的帮助提高的。

现从所有参加考试的学生中任意选取一人,问他通过考试并没有借助辅导班的概率是多少?解答:通过考试并没有借助辅导班的概率可以分为两种情况:1)通过考试的学生中靠自己的努力的概率:0.6 × 0.7 = 0.42 2)通过辅导班帮助提高通过考试的概率:0.4 × 0.3 = 0.12因此,通过考试并没有借助辅导班的总概率为:0.42 + 0.12 = 0.54所以,任选一人通过考试并没有借助辅导班的概率为0.54。

高考数学专题2024概率与统计历年题目解析

高考数学专题2024概率与统计历年题目解析

高考数学专题2024概率与统计历年题目解析概率与统计作为高考数学的重要部分,占据了相当大的比重。

掌握概率与统计的相关知识对于考生来说是至关重要的。

本文将通过对2024年高考概率与统计专题历年题目的解析,帮助考生更好地理解和掌握这一部分知识点。

一、选择题解析选择题是高考中常见的题型,对于考生来说,熟练掌握解题技巧是很重要的。

题目1:某班有30名学生,其中男生占总人数的40%。

已知从该班随机抽取一名学生,他是男生的概率是多少?解析:根据题目可知男生的人数为30 × 40% = 12人,所以男生的概率是12/30 = 2/5。

题目2:某工厂生产零件,每天生产150个。

已知每个零件的质量标准为99%,A同学随机抽样抽取2个零件,请问这两个零件都合格的概率是多少?解析:每个零件合格的概率为99% × 1/100 = 0.99。

因为是随机抽取,所以这两个零件都合格的概率为0.99 × 0.99 = 0.9801。

二、解答题解析解答题在概率与统计中也占据重要地位,考察学生的综合应用能力和解题能力。

题目3:某校学生的身高服从正态分布,其中男生的平均身高为170cm,标准差为5cm;女生的平均身高为165cm,标准差为4cm。

已知该校男女生比例为2:3,请问在该校随机抽取一个学生,他身高超过175cm的概率是多少?解析:根据题目可知男生的概率为2/5,女生的概率为3/5。

设男生身高超过175cm的概率为p1,女生身高超过175cm的概率为p2。

根据正态分布的性质,可以计算出男生身高超过175cm的概率为0.5 × (1 - p1) = 2/5,女生身高超过175cm的概率为0.5 × (1 - p2) = 3/5。

解方程得到p1 = 1/5,p2 = 2/5,所以在该校随机抽取一个学生,他身高超过175cm的概率为(2/5) × (1/5) + (3/5) × (2/5) = 11/25。

高考真题数学概率题及答案

高考真题数学概率题及答案

高考真题数学概率题及答案高考真题中的数学概率题常常是考生们的心头之患,因为涉及到概率的计算和推断,考生们往往感到头疼。

在这里,我为大家整理了一些高考真题中常见的数学概率题及答案,希望能帮助大家更好地应对考试。

题目一:某班有30名学生,其中10名喜欢篮球,8名喜欢足球,6名喜欢羽毛球,3名以上三项兼喜的学生只有两名,问至少有多少名学生喜欢至少一项球类运动?
解答:设喜欢至少一项球类运动的学生有x名,根据题意可列出方程:10+8+6-x=30-2,解得x=22,因此至少有22名学生喜欢至少一项球类运动。

题目二:甲、乙、丙三人开车到达目的地的概率分别是0.6、0.7和0.8,求至少有一个人到达目的地的概率。

解答:根据概率的互补性,至少有一个人到达目的地的概率为1-三人都没有到达的概率,即1-(1-0.6)(1-0.7)(1-0.8)=1-0.4*0.3*0.2=0.976,所以至少有一个人到达目的地的概率是0.976。

题目三:已知随机事件A的概率为0.4,事件B的概率为0.3,且事件A与事件B相互独立,求事件A与事件B至少有一个发生的概率。

解答:由事件A与事件B相互独立可知,事件A与事件B至少有一个发生的概率为1-(1-0.4)(1-0.3)=1-0.6*0.7=0.58,所以事件A与事件B至少有一个发生的概率为0.58。

通过以上题目的解答,我们可以看到,数学概率题并不是难到无法解决的问题,只要掌握了基本的概率知识和解题技巧,就能在考试中得心应手。

希望以上内容能对大家有所帮助,祝愿大家在高考中取得优异的成绩。

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。

概率经典例题及解析、近年高考题50道带答案之欧阳化创编

概率经典例题及解析、近年高考题50道带答案之欧阳化创编

【经典例题】【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是A.1-2πB.12-1πC.2πD.1π【答案】A【解析】令OA=1,扇形OAB为对称图形,ACBD围成面积为S1,围成OC为S2,作对称轴OD,则过C点.S2即为以OA为直径的半圆面积减去三角形OAC的面积,S2=π2(12)2-12×12×12=π-28.在扇形OAD中S12为扇形面积减去三角形OAC面积和S22,S12=18π×12-18-S22=π-216,S1+S2=π-24,扇形OAB面积S=π4,选A.【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=() A.126125 B.65 C.168125 D.75 【答案】B【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65,选B. 【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是()A. 14B. 12C. 34D. 78【答案】C【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意⎩⎪⎨⎪⎧0≤x≤4,0≤y≤4,满足条件的关系式为-2≤x-y≤2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=34.【例4】(2009江苏)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为. 【答案】0.2【解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2【例5】(2013江苏)现有某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为________.【答案】20 63【解析】基本事件共有7×9=63种,m可以取1,3,5,7,n可以取1,3,5,7,9.所以m,n都取到奇数共有20种,故所求概率为20 63 .【例6】(2013山东)在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥1成立的概率为________.【答案】13【解析】当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x≤2时,不等式化为x +1+x -2≥1,解之得x≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x+1|-|x -2|≥1的解集为⎣⎡⎭⎫1,+∞.在⎣⎡⎦⎤-3,3上使不等式有解的区间为⎣⎡⎦⎤1,3,由几何概型的概率公式得P=3-13-(-3)=13. 【例7】(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】213;1213;3月5日 【解析】设Ai 表示事件“此人于3月i 日到达该市”(i=1,2,…,13).根据题意,P(Ai)=113,且Ai∩Aj=(i≠j).(1)设B为事件“此人到达当日空气重度污染”,则B =A5∪A8.所以P(B)=P(A5∪A8)=P(A5)+P(A8)=2 13 .(2)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=4 13,P(X=2)=P(A1∪A2∪A12∪A13)=P(A1)+P(A2)+P(A12)+P(A13)=413,P(X=0)=1-P(X=1)-P(X=2)=5 13 .所以X的分布列为X 0 1 2P 513413413故X的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.【例8】(2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.【解析】方法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A,则事件A的对立事件为“X=5”,因为P(X=5)=23×25=415,所以P(A)=1-P(X=5)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B ⎝ ⎛⎭⎪⎫2,23,X2~B ⎝ ⎛⎭⎪⎫2,25, 所以E(X1)=2×23=43,E(X2)=2×25=45, 从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125. 因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响. 记“这两人的累计得分X≤3”的事件为A ,则事件A 包含有“X=0”“X=2”“X=3”三个两两互斥的事件,因为P(X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P(X =2)=23×⎝ ⎛⎭⎪⎫1-25=25,P(X =3)=⎝ ⎛⎭⎪⎫1-23×25=215, 所以P(A)=P(X =0)+P(X =2)+P(X =3)=1115, 即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83, E(X2)=0×925+3×1225+6×425=125. 因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例9】(2013浙江)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.【答案】3∶2∶1【解析】(1)由题意得,ξ=2,3,4,5,6.P(ξ=2)=3×36×6=14,P(ξ=3)=2×3×26×6=13,P(ξ=4)=2×3×1+2×26×6=518.P(ξ=5)=2×2×16×6=19,P(ξ=6)=1×16×6=136,所以ξ的分布列为(2)由题意知η的分布列为所以Eη=a a +b +c +2b a +b +c +3ca +b +c =53, D η=1-532·a a +b +c +2-532·b a +b +c +3-532·c a +b +c =59, 化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c , 故a ∶b ∶c =3∶2∶1.【例10】(2009北京理)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.【答案】427;38【解析】本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础知识,考查运用概率与统计知识解决实际问题的能力.(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为()11141133327P A ⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭. (2)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),∴()()441220,1,2,3,433k k k P k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=. 【课堂练习】1.(2013广东)已知离散型随机变量X 的分布列为则X 的数学期望E(X)=()A. 32 B .2 C. 52D .3 2.(2013陕西)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A.1-π4B.π2-1 B.2-π2D.π43.在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离大于3的概率为()A.47 B.37C.27D.3144.(2009安徽理)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于A.175B.275C.375D.4755.(2009江西理)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为()A.3181B.3381C.4881D.5081.•A•••••BC DEF6.(2009辽宁文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为A .4πB .14π-C .8πD .18π-7.(2009上海理)若事件E 与F 相互独立,且()()14P E P F ==,则()P E F 的值等于A .0B .116C .14D .128.(2013广州)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x2a2+y2b2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为()A .12B .1532C .1732D .31329.已知数列{a n }满足a n =a n -1+n -1(n≥2,n∈N ),一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,得到的点数分别记为a ,b ,c ,则满足集合{a ,b ,c}={a 1,a 2,a 3}(1≤a i ≤6,i =1,2,3)的概率是()A .172B .136C .124 D .11210.(2009湖北文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是,三人中至少有一人达标的概率是。

2023高考数学浙江卷概率的计算历年真题及答案

2023高考数学浙江卷概率的计算历年真题及答案

2023高考数学浙江卷概率的计算历年真题及答案一、引言概率是数学中一个非常重要的概念,也是高考数学考试内容中的重点之一。

在2023年高考数学浙江卷中,涉及了概率的计算题目,下面将为大家整理历年真题及其详细的解答过程。

二、2018年高考数学浙江卷题目1:某班级30名男同学和25名女同学参加一次足球比赛,其中某一学生的概率是0.6,那么从中随机抽出一名学生,其为男生的概率是多少?解答:根据题意,男同学的人数为30,女同学的人数为25,总人数为55。

设事件A为随机抽出的学生为男生。

所以,事件A发生的概率P(A)=男生人数/总人数=30/55≈0.545。

题目2:某班级的学生参加选修课考试,学生考试合格的概率为0.75,如果从该班级中任意选取2名学生参加考试,则恰好有1名学生合格的概率是多少?解答:设事件A为选择的2名学生中恰好有1名合格。

所以, A事件可划分为两种情况:第一名合格,第二名不合格;第一名不合格,第二名合格。

设B为第一名学生合格,C为第二名学生合格。

由题意可知,P(B)=0.75,P(C)=0.25。

根据概率的加法定理,P(A)=P(BC)+P(CB)=P(B)×P(C)+P(C)×P(B)=(0.75×0.25)+(0.25×0.75)=0.3 75。

三、2019年高考数学浙江卷题目1:在一个有33张扑克牌的标准纸牌中,随机取出两张牌,计算两张牌不同花色的概率。

解答:在一副标准纸牌中,有4种花色:梅花、方块、红桃和黑桃。

设事件A为两张牌不同花色,事件A的发生需要取到一张梅花牌和一张非梅花牌,或者一张方块牌和一张非方块牌,或者一张红桃牌和一张非红桃牌,或者一张黑桃牌和一张非黑桃牌。

根据概率的乘法定理,P(A)=P(梅花牌和非梅花牌)+P(方块牌和非方块牌)+P(红桃牌和非红桃牌)+P(黑桃牌和非黑桃牌)。

由概率的加法定理可知,P(梅花牌和非梅花牌)=P(方块牌和非方块牌)=P(红桃牌和非红桃牌)=P(黑桃牌和非黑桃牌)。

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解

高中概率练习题及讲解讲解一、基础题1. 题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求是红球的概率。

答案:首先计算总球数为8个,红球数为5个。

根据概率公式 P(A) = 事件发生的次数 / 总的可能次数,红球的概率 P(红球) = 5/8。

2. 题目:掷一枚均匀的硬币两次,求至少出现一次正面的概率。

答案:首先列出所有可能的结果:正正、正反、反正、反反。

其中正正和正反、反正是至少出现一次正面的情况。

根据概率公式,P(至少一次正面) = 3/4。

3. 题目:一个班级有30名学生,随机选取5名学生作为代表,求其中至少有一名男生的概率(假设班级男女比例为1:1)。

答案:首先计算总的选取方式,即从30名学生中选取5名的组合数。

然后计算没有男生的选取方式,即从15名女生中选取5名的组合数。

根据对立事件的概率计算,P(至少一名男生) = 1 - P(没有男生)。

二、进阶题1. 题目:一个工厂每天生产100个零件,其中有5%的次品。

今天工厂生产了200个零件,求至少有10个次品的概率。

答案:首先确定次品数为10、11、...、20。

使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中 n=200, p=0.05。

计算总概率P(X ≥ 10) = Σ P(X=k) (k=10 to 20)。

2. 题目:一个盒子里有10个球,编号为1到10。

随机抽取3个球,求抽取的球的编号之和大于15的概率。

答案:列出所有可能的抽取组合,计算和大于15的组合数。

然后根据概率公式计算概率。

3. 题目:一个班级有50名学生,其中男生30名,女生20名。

随机选取5名学生,求选取的学生中恰好有3名男生的概率。

答案:使用组合数计算选取3名男生和2名女生的组合数,然后除以总的选取方式数,即从50名学生中选取5名的组合数。

三、高难题1. 题目:一个连续掷骰子直到出现6点停止,求掷骰子次数的期望值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率经典例题及解析、近年高考题50道带答案解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【经典例题】【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .1- 2πB . 12 - 1πC . 2πD . 1π 【答案】A【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选A .【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( )A. 126125B. 65C. 168125D. 75【答案】B【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65,选B.【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A. 14B. 12C. 34D. 78【答案】C【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,满足条件的关系式为-2≤x -y ≤2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=34.【例4】(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 . 【答案】0.2【解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m 的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2【例5】(2013江苏)现有某类病毒记作X m Y n ,其中正整数m ,n(m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.【答案】2063【解析】基本事件共有7×9=63种,m 可以取1,3,5,7,n 可以取1,3,5,7,9.所以m ,n 都取到奇数共有20种,故所求概率为2063.【例6】(2013山东)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为________.【答案】13【解析】当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x ≤2时,不等式化为x +1+x -2≥1,解之得x ≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x +1|-|x -2|≥1的解集为[)1,+∞.在[]-3,3上使不等式有解的区间为[]1,3,由几何概型的概率公式得P =3-13-(-3)=13.【例7】(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】213;1213;3月5日【解析】设Ai表示事件“此人于3月i日到达该市”(i=1,2,…,13).根据题意,P(Ai)=113,且Ai∩Aj=(i≠j).(1)设B为事件“此人到达当日空气重度污染”,则B=A5∪A8.所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=413,P(X=2)=P(A1∪A2∪A12∪A13)=P(A1)+P(A2)+P(A12)+P(A13)=413,P(X =0)=1-P(X =1)-P(X =2)=513.所以X 的分布列为X 0 1 2 P513 413 413 故X 的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.【例8】(2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.【解析】方法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为A ,则事件A 的对立事件为“X =5”,因为P(X =5)=23×25=415,所以P(A)=1-P(X =5)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B ⎝ ⎛⎭⎪⎫2,23,X2~B ⎝ ⎛⎭⎪⎫2,25,所以E(X1)=2×23=43,E(X2)=2×25=45,从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”“X =2”“X =3”三个两两互斥的事件,因为P(X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P(X =2)=23×⎝ ⎛⎭⎪⎫1-25=25,P(X =3)=⎝ ⎛⎭⎪⎫1-23×25=215,所以P(A)=P(X =0)+P(X =2)+P(X =3)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83,E(X2)=0×925+3×1225+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例9】(2013浙江)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E η=53,D η=59,求a ∶b ∶c.【答案】3∶2∶1【解析】(1)由题意得,ξ=2,3,4,5,6.P(ξ=2)=3×36×6=14,P(ξ=3)=2×3×26×6=13,P(ξ=4)=2×3×1+2×26×6=518.P(ξ=5)=2×2×16×6=19,P(ξ=6)=1×16×6=136,所以ξ的分布列为(2)由题意知η的分布列为所以E η=aa +b +c +2ba +b +c +3ca +b +c =53,D η=1-532·a a +b +c +2-532·b a +b +c +3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.【例10】(2009北京理)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望. 【答案】427;38【解析】本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础知识,考查运用概率与统计知识解决实际问题的能力.(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()11141133327P A ⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭.(2)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),∴()()441220,1,2,3,433k kkP k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=.【课堂练习】1.(2013广东)已知离散型随机变量X 的分布列为则X 的数学期望E(X)=( ) A. 32 B .2 C. 52D .3 2.(2013陕西)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( )A .1-π4B .π2-1 B .2-π2 D .π43.在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离大于3的概率为( )A .47 B .37 C .27 D .3144.(2009安徽理)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 A .175 B . 275 C .375 D .4755.(2009江西理)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为( ) A .3181 B .3381 C .4881 D .5081. 6.(2009辽宁文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为A .4πB .14π-C .8π D .18π-7.(2009上海理)若事件E 与F 相互独立,且()()14P E P F ==,则()P E F 的值等于A .0B .116 C .14 D .128.(2013广州)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y 2b2=1表示焦点在x 轴上且离心•A•••••BCDE F率小于32的椭圆的概率为( )A .12B .1532C .1732D .31329.已知数列{a n }满足a n =a n -1+n -1(n ≥2,n ∈N ),一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,得到的点数分别记为a ,b ,c ,则满足集合{a ,b ,c}={a 1,a 2,a 3}(1≤a i ≤6,i =1,2,3)的概率是( )A .172 B .136 C .124 D .11210.(2009湖北文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。

相关文档
最新文档