半导体材料的发展历史

合集下载

半导体材料发展的历程

半导体材料发展的历程

半导体材料发展的历程一、早期阶段半导体材料的发展始于20世纪初。

早期的半导体材料主要是以硒和碲等元素为基础的化合物。

这些化合物在电导率方面介于导体和绝缘体之间,因此被称为半导体。

然而,由于制备方法的限制以及材料本身的不稳定性,早期的半导体材料在实际应用中并不常见。

二、晶体管的发明20世纪40年代,晶体管的发明引领了半导体材料的发展。

晶体管是一种利用半导体材料的特性进行信号放大和开关控制的设备。

最早的晶体管是用硅和锗等材料制成的。

这些材料具有稳定的晶格结构和较高的电导率,使得晶体管能够稳定地工作在高频率下,为电子技术的发展提供了基础。

三、集成电路的诞生20世纪60年代,集成电路的诞生推动了半导体材料的进一步发展。

集成电路是将多个晶体管和其他电子元件集成在一块半导体芯片上的技术。

为了实现集成电路的制造,半导体材料的质量和稳定性提出了更高的要求。

这促使科学家不断改进制备方法,探索新的半导体材料,如硅和化合物半导体。

四、化合物半导体的崛起化合物半导体在半导体材料发展中扮演着重要的角色。

与硅相比,化合物半导体具有更高的电子迁移率,更适合高频和高速应用。

此外,化合物半导体还具有较宽的能带隙,使其在光电器件领域具有广阔的应用前景。

例如,氮化镓材料被广泛应用于发光二极管和激光器等光电器件中,其高效的发光性能为光通信和显示技术的发展做出了重要贡献。

五、新型材料的涌现近年来,随着科技的不断进步,一些新型半导体材料开始涌现。

例如,石墨烯作为一种二维材料,具有优异的电子输运性能和独特的光学特性,被认为是下一代半导体材料的候选者之一。

另外,钙钛矿材料由于其优异的光电性能,也引起了广泛的关注和研究。

这些新型材料的涌现为半导体技术的进一步发展提供了新的机遇。

六、应用领域的拓展随着半导体材料的不断发展,其应用领域也得到了广泛的拓展。

除了传统的电子器件领域,如计算机、手机和电视等,半导体材料还在能源、医疗和环境等领域发挥着重要作用。

半导体材料的发展及应用

半导体材料的发展及应用

半导体材料的发展及应用随着科技的不断发展,半导体材料成为现代工业和电子领域中最重要的材料之一、半导体材料的发展经历了多个里程碑,从最初的硅晶体到现在的先进半导体材料,对于电子器件的性能和功能起到了至关重要的作用。

本文将探讨半导体材料的发展历程以及其在各个领域的应用。

半导体材料最早可以追溯到二十世纪初期,最初被用于收音机和无线电设备中。

然而,随着对电子器件的需求不断增加,人们开始研究能够控制电流和电压的材料。

1926年,物理学家朱利叶斯·埃德加·利尔德尔发现了由砷化镓和硒化铟组成的化合物,这些化合物表现出半导体特性。

这项发现标志着半导体材料的诞生。

二十世纪四五十年代,半导体材料的研究迈入了一个新的阶段。

1947年,贝尔实验室的威廉·肖克利和沃尔特·布拉滕等科学家首先制造出晶体管。

晶体管的发明开创了继电器和真空管时代的新纪元。

晶体管具有小型化、耐用性和低功耗等优点,很快取代了传统的继电器和真空管技术,为电子器件的发展带来了革命。

这一发明被誉为“电子革命的基石”。

从1950年代到1980年代,半导体材料的发展经历了空前的进展。

主要的突破之一是杰克·基尔比和罗伯特·诺伊斯等科学家在1954年发明了第一个硅太阳能电池。

硅太阳能电池利用光的能量产生电流,并且是第一个实用化的可再生能源技术之一、此外,半导体材料的纯化和制备技术也得到了极大的改进,如单晶生长技术和分子束外延等。

这些突破使得半导体材料的性能不断提高,为电子器件的制造提供了更好的条件。

随着半导体材料的不断发展,它在各个领域的应用也日益广泛。

最显著的应用之一是集成电路(Integrated Circuit, IC)。

集成电路是将无数个电子元件,如晶体管和电容器,集成在一个半导体芯片上。

这种技术使得电子器件变得更小巧,更高效,并且可以容纳更多的功能。

随着集成电路的不断演进,智能手机、电脑和其他现代电子设备的性能得到了极大的提升。

半导体技术的发展

半导体技术的发展

半导体技术的发展半导体技术是一种广泛应用于电子工程和信息技术的关键技术。

它涉及到半导体材料的性质、制备、应用以及其发展趋势。

本文将详细介绍半导体技术的发展历程、现状以及未来趋势。

一、半导体技术的发展历程半导体技术的发展可以追溯到20世纪初,当时科学家们开始研究半导体材料的性质。

随着科学技术的不断发展,半导体技术也得到了迅速的发展。

从早期的二极管、三极管,到现代的集成电路、光电子器件等,半导体技术的应用越来越广泛。

二、半导体技术的现状目前,半导体技术已经成为现代电子工业的核心技术之一。

在现代电子设备中,半导体器件的应用已经无处不在,如手机、电脑、电视、汽车、医疗设备等。

这些半导体器件的性能和稳定性直接影响到电子设备的性能和可靠性。

此外,随着半导体技术的不断发展,其应用领域也在不断扩大。

除了传统的电子工业外,半导体技术还在能源、航空、航天等领域得到了广泛的应用。

例如,太阳能电池、LED照明、电动汽车等都离不开半导体技术的支持。

三、半导体技术的未来趋势1.更高性能的芯片随着人工智能、物联网等新兴技术的发展,对芯片的性能和算力提出了更高的要求。

因此,未来半导体技术将更加注重提高芯片的性能和算力。

通过研发更先进的制程工艺、材料和设计方法,有望实现更高性能的芯片,以满足日益增长的计算需求。

2.集成化与微型化随着电子设备的集成化和微型化趋势,半导体技术也将朝着这个方向发展。

通过将不同功能的器件集成到同一芯片上,可以降低电子设备的体积和功耗,提高其性能和可靠性。

同时,纳米级别的制程工艺也将成为未来半导体技术的重要发展方向。

3.绿色环保和可持续发展随着环保意识的不断提高,半导体产业也需要关注绿色环保和可持续发展的问题。

未来半导体技术将更加注重采用环保材料和生产工艺,减少对环境的影响。

同时,通过研发高效节能的半导体器件和设备,也有助于降低能源消耗,实现可持续发展。

4.人工智能和大数据的应用人工智能和大数据技术的发展为半导体技术提供了新的应用场景和发展机遇。

半导体材料

半导体材料

所以扩散和漂 + + + + + + 移这一对相反 + + + + + + 的运动最终达 到平衡,相当 + + + + + + 于两个区之间 没有电荷运动, + + + + + + 空间电荷区的 厚度固定不变。
扩散运动
PN结的单向导电性
PN结加上正向电压、正向偏置的意
思都是: P区加正、N区加负电压。 PN结加上反向电压、反向偏置的意
按其功能及应用: 微电子材料、光电半导体材料、热电半导体材料、微波 半导体材料、敏感半导体材料等; 按材料种类:无机半导体、有机半导体; 按化学组成:元素半导体、化合物半导体;
按结构:晶态和非晶态半导体
一、 元素半导体
在IIIA族-VIIA
族的金属和非金属
交界处大约有十几
种,如Ge, Si, Se, Te等,其中最重要 的有Si和Ge。
与金属和绝缘体相比, 半导体材料的发现是 最晚的,直到20世纪30年代,当材料的提纯 技术改进以后,半导体的存在才真正被学术界 认可。
半导体的发现实际上可以追溯到很久以前, 1833年,英国法拉第最先发现硫化银的电阻 随着温度的变化情况不同于一般金属,一般 情况下,金属的电阻随温度升高而增加,但 法拉第是随着温度的上升而降低。这是半导 体现象的首次发现。 1835年,蒙克发现了单向导电现象。
3.2.4 半导体二极管
(1)、基本结构
PN结加上管壳和引线,就成为半导体二极管。
符号
P 阳极
P
N
N 阴极
(2)、伏安特性 I

第一代半导体到第四代半导体发展

第一代半导体到第四代半导体发展

第一代半导体到第四代半导体发展半导体技术是现代电子行业中不可或缺的重要组成部分,经历了几代技术演进,从第一代半导体到第四代半导体,取得了令人瞩目的进步。

本文将从历史角度出发,简要探讨各代半导体技术的发展。

第一代半导体第一代半导体主要指的是硅半导体,广泛应用于上世纪中叶的集成电路和微电子元件中。

硅半导体具有稳定性好、成本低等特点,为电子产品的发展提供了坚实的基础。

然而,随着科技的不断进步,硅半导体在某些方面已经达到了局限,例如功耗、速度等方面表现不尽人意。

第二代半导体第二代半导体主要是指化合物半导体,如氮化镓、碲化镉等。

化合物半导体在高频、高功率等方面具有优势,被广泛应用于射频、光电领域。

这种半导体的使用使得电子设备在性能上有了质的飞跃,为通信、雷达等领域的发展提供了有力支持。

第三代半导体第三代半导体是指在二维材料、碳纳米管等新材料领域的开拓和应用。

这些新材料具有特殊的电学、光学等性质,具有巨大的潜力和应用前景。

例如,石墨烯作为一种二维材料,在导电性、透明性等方面表现优异,被认为是未来电子设备中的材料之一。

第四代半导体第四代半导体是指在纳米技术领域的进一步突破。

通过纳米技术的应用,可以实现更小、更快、更节能的半导体器件。

例如,纳米尺度的器件可以大大提高集成度,减小功耗,提高计算速度等。

同时,纳米技术也为新型器件的推出提供了可能,如量子计算、自旋电子器件等。

综上所述,从第一代半导体到第四代半导体的发展历程中,半导体技术不断创新、演变,为电子设备的发展提供了关键支持。

未来,随着技术的不断进步,半导体技术必将迎来更加辉煌的时代。

半导体的发展历程

半导体的发展历程

半导体的发展历程
半导体的发展历程可以概括为以下几个阶段:
1. 1947年:第一个晶体管问世。

这是使用固态材料制造的第一种电子器件,并被认为是现代电子技术的里程碑之一。

2. 1950年代:半导体材料的研究和发展进入快速发展期。

砷化镓(GaAs)和硅(Si)成为主要的半导体材料,同时晶体管逐渐取代真空管成为主流电子器件。

3. 1960年代:单片集成电路的问世。

这种技术可以将成千上万的晶体管等元件集成到一块芯片上,大大提高了集成度,实现了电子器件的微型化。

4. 1970年代:大规模集成电路的问世。

这种技术可以将数十万甚至数百万的晶体管等元件集成到一块芯片上,进一步提高了集成度和性能,让电子器件的功能更加丰富。

5. 1980年代至今:半导体材料、制造工艺和设计技术不断进步,使集成电路的性能愈发出色。

同时,出现了很多新的应用领域,如数字化、通信、计算机、消费电子、医疗设备等,这些领域对集成电路的需求也不断增加。

半导体技术的发展历程

半导体技术的发展历程

半导体技术的发展历程随着科技的不断进步,半导体技术在当今的信息时代扮演着重要的角色。

从最早的晶体管到如今的集成电路,半导体技术经历了一个漫长而辉煌的发展历程。

本文将从半导体的起源开始,梳理出半导体技术的发展脉络。

20世纪初,半导体技术的雏形开始显露出来。

当时,人们对电子运动的研究已经取得了一定的成果,而半导体材料的特殊性质引起了科学家们的兴趣。

1904年,德国物理学家赫尔曼·冯·辛诺发现了半导体材料的电导率与温度之间的关系,为后来的半导体研究奠定了基础。

1926年,美国物理学家朱利安·赫尔茨发现了硅晶体的半导体性质,并提出了半导体理论。

这一发现引发了人们对半导体材料的深入研究。

然而,在当时,由于材料制备和加工工艺的限制,半导体技术的应用范围非常有限。

直到1947年,贝尔实验室的威廉·肖克利和沃尔特·布拉顿偶然发现了晶体管效应,半导体技术才真正进入了实用化阶段。

晶体管的发明使得电子设备的体积大大减小,性能得到了极大的提升。

这一发现被誉为电子技术史上的重大突破,也为半导体技术的快速发展奠定了基础。

20世纪50年代,半导体技术开始进入了集成电路时代。

1958年,杰克·基尔比发明了第一块集成电路,将多个晶体管集成在一块芯片上。

这一突破彻底改变了电子设备的制造方式,使得电子产品的性能提升和体积缩小成为可能。

随后的几十年间,半导体技术不断取得突破。

1960年代,人们开始尝试使用光刻技术制造集成电路,从而提高了电路的复杂度和可靠性。

1971年,英特尔公司推出了第一款微处理器,开创了个人电脑时代。

微处理器的问世将计算能力集成到了一个芯片上,为电子产品的普及奠定了基础。

20世纪80年代和90年代,半导体技术迎来了飞速发展。

制程工艺的不断进步使得集成电路的集成度越来越高,功耗和体积也得到了大幅度的降低。

此外,半导体材料的研究也取得了重要进展,如硅基光电子技术和新型半导体材料的应用,进一步拓宽了半导体技术的应用领域。

半导体材料发展史

半导体材料发展史

半导体材料发展史到了19世纪,科学家开始对半导体材料进行系统的研究。

英国科学家迈克尔·法拉第在1820年观察到了半导体材料硒的特殊电学性质,他发现在一定温度下,硒的电导率会随温度的升高而增加。

这一发现后来被称为"法拉第效应",为后来的半导体研究奠定了基础。

20世纪初,德国物理学家亨利·列兹在石墨中发现了电子晶体管效应,为半导体材料的发展做出了重要贡献。

1930年代,日本物理学家志村正直发现了硅的半导体特性,他成功地制造了第一个硅晶体管。

20世纪50年代是半导体材料的黄金时期,通过合金改性和杂质掺杂等手段,科学家们成功地改变了半导体材料的电学性质。

这一时期,德国科学家卡尔·霍恩巴赫在研究中发现了掺杂磷素的硅具有N型半导体特性,而掺杂硼的硅具有P型半导体的特性。

这一发现奠定了现代半导体器件的基础。

20世纪60年代,发现了克尔效应,这是一种在金属-半导体结构中会出现的现象,进一步拓宽了半导体材料的应用范围。

同时,随着集成电路技术的发展,半导体材料得到了广泛应用。

美国企业Fairchild Semiconductor在1960年代成功地生产出第一个集成电路,这标志着半导体材料进入了集成电路时代。

20世纪70年代以后,半导体材料的发展进一步加速。

随着计算机技术、通信技术等的迅猛发展,对半导体器件的要求也越来越高。

为了满足这些需求,科学家们不断地研发新的半导体材料。

例如,发现了III-IV族半导体材料,如砷化镓、磷化镓等,它们具有更高的电子迁移率和更好的热传导性能,可以用于高速电子器件的制造。

近年来,新型半导体材料的研究也取得了一系列重要的突破。

例如,石墨烯作为一种单层碳原子构成的材料,具有出色的电导率和热传导性能,被誉为“新材料之王”。

此外,III-V族和II-VI族半导体材料、有机半导体材料等也被广泛应用于光电子器件、太阳能电池等领域。

总结起来,半导体材料的发展经历了漫长的历史过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体材料的发展历史 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】半导体材料的发展历史1833年,英国法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。

这是半导体现象的首次发现。

不久, 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。

在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。

同年,舒斯特又发现了铜与氧化铜的整流效应。

1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。

半导体的这四个效应,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。

而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。

前言自从有人类以来,已经过了上百万年的岁月。

社会的进步可以用当时人类使用的器物来代表,从远古的石器时代、到铜器,再进步到铁器时代。

现今,以硅为原料的电子元件产值,则超过了以钢为原料的产值,人类的历史因而正式进入了一个新的时代,也就是硅的时代。

硅所代表的正是半导体元件,包括记忆元件、微处理机、逻辑元件、光电元件与侦测器等等在内,举凡电视、电话、电脑、电冰箱、汽车,这些半导体元件无时无刻都在为我们服务。

硅是地壳中最常见的元素,许多石头的主要成分都是二氧化硅,然而,经过数百道制程做出的积体电路,其价值可达上万美金;把石头变成硅晶片的过程是一项点石成金的成就,也是近代科学的奇迹!在日本,有人把半导体比喻为工业社会的稻米,是近代社会一日不可或缺的。

在国防上,惟有扎实的电子工业基础,才有强大的国防能力,1991年的波斯湾战争中,美国已经把新一代电子武器发挥得淋漓尽致。

从1970年代以来,美国与日本间发生多次贸易摩擦,但最后在许多项目美国都妥协了,但是为了半导体,双方均不肯轻易让步,最后两国政府慎重其事地签订了协议,足证对此事的重视程度,这是因为半导体工业发展的成败,关系着国家的命脉,不可不慎。

在台湾,半导体工业是新竹科学园区的主要支柱,半导体公司也是最赚钱的企业,台湾如果要成为明日的科技硅岛,半导体工业是我们必经的途径。

半导体的起源在二十世纪的近代科学,特别是量子力学发展知道金属材料拥有良好的导电与导热特性,而陶瓷材料则否,性质出来之前,人们对于四周物体的认识仍然属于较为巨观的了解,那时已经介于这两者之间的,就是半导体材料。

英国科学家法拉第(Michael Faraday,1791~1867),在电磁学方面拥有许多贡献,但较不为人所知的,则是他在1833年发现的其中一种半导体材料:硫化银,因为它的电阻随着温度上升而降低,当时只觉得这件事有些奇特,并没有激起太大的火花;然而,今天我们已经知道,对于导体来说,随着温度的提升,晶格震动越厉害,使得电阻增加;但对半导体而言,温度上升使自由载子的浓度增加,反而有助于导电,这也是半导体一个非常重要的物理性质。

1874年,德国的布劳恩(Ferdinand Braun,1850~1918),注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。

但直到1906年,美国电机发明家匹卡,1877~1956),才发明了第一个固态电子元件:无线电波侦测器(cat’s whisker),它使用金属与硅或硫化铅相接触所产生的整流功能,来侦测无线电波。

在整流理论方面,德国的萧特基(Walter Schottky,1886~1976)在1939年,于「德国物理学报」发表了一篇有关整流理论的重要论文,做了许多推论,他认为金属与半导体间有能障(potential barrier)的存在,其主要贡献就在于精确计算出这个能障的形状与宽度。

至于现在为大家所接受的整流理论,则是1942年由索末菲(Arnold Sommerfeld,1868~1951)的学生贝特(Hans Bethe,1906~ )所发展出来,他提出的就是热电子发射理论(thermionic emission),这些具有较高能量的电子,可越过能障到达另一边,其理论也与实验结果较为符合。

在半导体领域中,与整流理论同等重要的,就是能带理论。

布洛赫(Felix Bloch,1905~1983)在这方面做出了重要的贡献,其定理是将电子波函数加上了周期性的项,首开能带理论的先河。

另一方面,德国人佩尔斯(Rudolf Peierls, 1907~) 于1929年,则指出一个几乎完全填满的能带,其电特性可以用一些带正电的电荷来解释,这就是电洞概念的滥觞;他后来提出的微扰理论,解释了能隙(Energy gap)存在。

电晶体的发明早在1930与1940年代,使用半导体制作固态放大器的想法就持续不绝;第一个有实验结果的放大器是1938年,由波欧(Robert Pohl, 1884~1976)与赫希(Rudolf Hilsch)所做的,使用的是溴化钾晶体与钨丝做成的闸极,尽管其操作频率只有一赫兹,并无实际用途,却证明了类似真空管的固态三端子元件的实用性。

二次大战后,美国的贝尔实验室(Bell Lab),决定要进行一个半导体方面的计画,目标自然是想做出固态放大器,它们在1945年7月,成立了固态物理的研究部门,经理正是萧克莱(William Shockley,1910~1989)与摩根(Stanley Morgan)。

由于使用场效应(field effect)来改变电导的许多实验都失败了,巴丁(John Bardeen,1908~1991)推定是因为半导体具有表面态(surface state)的关系,为了避开表面态的问题,1947年11月17日,巴丁与布莱登(Walter Brattain 1902~1987)在硅表面滴上水滴,用涂了蜡的钨丝与硅接触,再加上一伏特的电压,发现流经接点的电流增加了!但若想得到足够的功率放大,相邻两接触点的距离要接近到千分之二英寸以下。

12月16日,布莱登用一块三角形塑胶,在塑胶角上贴上金箔,然后用刀片切开一条细缝,形成了两个距离很近的电极,其中,加正电压的称为射极(emitter),负电压的称为集极 (collector),塑胶下方接触的锗晶体就是基极 (base),构成第一个点接触电晶体(point contact transistor),1947年12月23日,他们更进一步使用点接触电晶体制作出一个语音放大器,该日因而成为电晶体正式发明的重大日子。

另一方面,就在点接触电晶体发明整整一个月后,萧克莱想到使用p-n接面来制作接面电晶体(junction transistor) 的方法,在萧克莱的构想中,使用半导体两边的n型层来取代点接触电晶体的金属针,藉由调节中间p型层的电压,就能调控电子或电洞的流动,这是一种进步很多的电晶体,也称为双极型电晶体(bipolar transistor),但以当时的技术,还无法实际制作出来。

电晶体的确是由于科学发明而创造出来的一个新元件,但是工业界在1950年代为了生产电晶体,却碰到许多困难。

1951年,西方电器公司(Western Electric)开始生产商用的锗接点电晶体,1952年4月,西方电器、雷神(Raytheon)、美国无线电(RCA与奇异(GE)等公司,则生产出商用的双极型电晶体。

但直到1954年5月,第一颗以硅做成的电晶体才由美国德州仪器公司(Texas Instruments)开发成功;约在同时,利用气体扩散来把杂质掺入半导体的技术也由贝尔实验室与奇异公司研发出来;在1957年底,各界已制造出六百种以上不同形式的电晶体,使用于包括无线电、收音机、电子计算机甚至助听器等等电子产品。

早期制造出来的电晶体均属于高台式的结构。

1958年,快捷半导体公司 (Fairchild Semiconductor)发展出平面工艺技术(planar technology),藉着氧化、黄光微影、蚀刻、金属蒸镀等技巧,可以很容易地在硅晶片的同一面制作半导体元件。

1960年,磊晶(epitaxy)技术也由贝尔实验室发展出来了。

至此,半导体工业获得了可以批次(batch)生产的能力,终于站稳脚步,开始快速成长。

积体电路积体电路就是把许多分立元件制作在同一个半导体晶片上所形成的电路,早在1952年,英国的杜默(Geoffrey 就提出积体电路的构想。

1958年9月12日,德州仪器公司(Texas Instruments)的基尔比(Jack Kilby,1923~ ?),细心地切了一块锗作为电阻,再用一块pn接面做为电容,制造出一个震荡器的电路,并在1964年获得专利,首度证明了可以在同一块半导体晶片上能包含不同的元件。

1964年,快捷半导体(Fairchild Semi-Conductor)的诺宜斯(Robert Noyce,1927~1990),则使用平面工艺方法,即藉着蒸镀金属、微影、蚀刻等方式,解决了积体电路中,不同元件间导线连结的问题。

积体电路的第一个商品是助听器,发表于1963年12月,当时用的仍是双极型电晶体;1970年,通用微电子(General Microelectronics)与通用仪器公司 (General Instruments),解决了硅与二氧化硅界面间大量表面态的问题,开发出金属氧化物半导体 (metal-oxide-semiconductor,MOS);因为金属氧化物半导体比起双极型电晶体,功率较低、集积度高,制程也比较简单,因而成为后来大型积体电路的基本元件。

60年代发展出来的平面工艺,可以把越来越多的金氧半元件放在一块硅晶片上,从1960年的不到十个元件,倍数成长到1980年的十万个,以及1990年约一千万个,这个每年加倍的现象称为莫尔定律(Moore’s law),是莫尔(Gordon Moore)在1964年的一次演讲中提出的,后来竟成了事实。

超大型积体电路在1970年代,决定半导体工业发展方向的,有两个最重要的因素,那就是半导体记忆体 (semiconductor memory) 与微处理机 (microprocessor)。

在微处理机方面,1968年,诺宜斯和莫尔成立了英代尔 (Intel) 公司,不久,葛洛夫 (Andrew Grove) 也加入了,1969年,一个日本计算机公司比吉康 (Busicom) 和英代尔接触,希望英代尔生产一系列计算机晶片,但当时任职于英代尔的霍夫(Macian E. Hoff) 却设计出一个单一可程式化晶片,1971年11月15日,世界上第一个微处理器4004诞生了,它包括一个四位元的平行加法器、十六个四位元的暂存器、一个储存器 (accumulator) 与一个下推堆叠 (push-down stack),共计约二千三百个电晶体;4004与其他唯读记忆体、移位暂存器与随机存取记忆体,结合成MCS-4微电脑系统;从此之后,各种集积度更高、功能更强的微处理器开始快速发展,对电子业产生巨大影响。

相关文档
最新文档