小学思维数学:定义新运算-带答案解析
小学六年级奥数系列讲座:定义新运算(含答案解析)

定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=263△(4△6)=3△【4×6-(4+6)÷2】 =3△19练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
(完整版)四年级奥数详解答案第7讲定义新运算

(完整版)四年级奥数详解答案第7讲定义新运算四年级奥数详解答案第7讲第七讲定义新运算一、知识概要1. 定义新运算定义新运算是指用某些特殊的符号(如△⊙※○—等)来表示一种特定的运算过程或运算顺序,从而解答某些特殊算式的一种运算。
因为它有别于我们日常学习的运算法则当然也有联系性,故称之为定义新运算。
2. 基本要求解答定义新运算问题,一定要严格按照新定义的运算法则进行计算,推理或证明,不得随便改变运算顺序。
二、典型题目精讲1. a、b是自然数,定义a?b = (a+b)÷2,(1)计算23?9 (2)计算17?(8?10)分析:本是所定义的a与b的运算规划是求a与b的和的一半。
在(1)题中,a是23,b 是9,把它们分别代入(a+b)÷2的式子中,就可求出27?9的值。
(2)题同这样的运算规划先求出8?10的值,然后用同样的运算规则再把17与算出来的值进行运算。
解:(1) 23?9= (23+9)÷2 =16(2) 17?(8?10) = 17?【(8+10)÷2】= 17?9= (17+9)÷2= 132. 定义运算?为:a?b = 5×a×b-(a+b), 求11?12.分析:定义新运算和我们日常的运算法制和顺序,即有区别又有联系。
比如说:先乘除后加、减;有括号的一定要先算括号中的运算等运算法制,在定义新运算中仍然适用。
按理说,这道题有四步计算过程:①(11+12)=23 ②5×11=55 ③55×12=660④660-23=637 这里②、③步是同时运算,所以②、③和①步可同时运算。
解:11?12 = 5×11×12-(11+12)= 660-23= 6373. 已知1○—3=1×2×3,6○—5=6×7×8×9×10,计算4○—5-5○—4。
定义新运算题目及答案解析-小学奥数

专题定义新运算知识点1直接运算型【基础训练】1、【★】设a, b都表示两个不同的数,规定:a4b=2x让3XR表示a的2倍加上b的3倍的和.(1)求4△ 7的值.(2)求24 3的值.【答案】(1) 29; (2) 13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7, 4A 7=2X4+ 3X7=29(2)方法同上,即a=2, b=3, 2A3=2X2+ 3X3=13.2、【设a、b都表示两个不同的数,规定:aVb=aXk (a+b) . (1)求5V6V7的值. (2)求7、( 5V4)的值.【答案】107; 59【解析】(1)按照从左往右的顺序计算,①先算5V6=5X6- (5+6) =30—11=19,②再算19▽ 7=19X7— ( 19+7) =133-26=107,所以5V6V7=107.(2)有括号的要先算括号里面的,①先算5V4=5X4— (5+4) =20 —9=11,②再算7V 11=7X 11 —( 7+11) =77- 18=59,所以7N (5V4) =59.3、x,y表示两个数,规定新运算我"及"C如下:x^ry=2 X x+3 X,yxO y=6 X xX1y)求10^r2 的值.(2)求4。
25的值.【答案】26; 600【解析】(1)原式=2X1计3X2=26 (2)原式=6X 4X25=600【拓展提升】1、【★★★】规定:aD b=a- (a+ 1) + (a+2) +…+ (a+ b—1),其中a、b表示自然数.求1口10的值.【答案】5050【解析】1口100=1+2+3+- + 100= ( 1 + 100) X 100+2=50502、【★★★]已知x、y是任意有理数.我们规定:x☆y=x + y—1, xOy=xX于2. (1)求10^9.(2)求7。
8.(3)求4O:(6^8) ☆ (305)]的值.【答案】18; 54; 98【解析】(1) 10+9=10 + 9—1=18; (2) 708=7X*2=54(3)先算小括号里面的6+8和305, 6^8=6 + 8-1=13, 3。
小学奥数 定义新运算 精选练习例题 含答案解析(附知识点拨及考点)

定义新运算教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型 【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
定义新运算附答案

定义新运算附答案定义新运算附答案我们学过的常⽤运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算⽅式不同,实际是对应法则不同.可见⼀种运算实际就是两个数与⼀个数的⼀种对应⽅法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有⼀个唯⼀确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这⼀讲中,我们定义了⼀些新的运算形式,它们与我们常⽤的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表⽰数,规定a△b=3×a-2×b,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:⽤运算符号前⾯的数的3倍减去符号后⾯的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例⼦可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第⼆步39△2=3 × 39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例⼦可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为 a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:①5※7=5×7-(5+7)=35-12=23,7※5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第⼆步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例⼦可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3 解出x=2.例3、定义新的运算a ⊕ b=a×b+a+b.①求6 ⊕ 2,2 ⊕ 6;②求(1 ⊕ 2)⊕ 3,1 ⊕(2 ⊕ 3);③这个运算有交换律和结合律吗?解:① 6 ⊕ 2=6×2+6+2=20,2 ⊕ 6=2×6+2+6=20.②(1 ⊕ 2)⊕ 3=(1×2+1+2)⊕ 3=5 ⊕ 3=5×3+5+3=231 ⊕(2 ⊕ 3)=1 ⊕(2×3+2+3)=1 ⊕ 11=1×11+1+11=23.③先看“⊕”是否满⾜交换律:a ⊕ b=a×b+a+bb ⊕ a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕ b=b ⊕ a,因此“⊕”满⾜交换律.再看“⊕”是否满⾜结合律:(a ⊕ b)⊕ c=(a×b+a+b)⊕ c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕ c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕ b)⊕ c=a ⊕(b ⊕ c),因此“⊕”满⾜结合律.说明:“⊕”对于普通的加法不满⾜分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有⼀个数学运算符号“?”,使下列算式成⽴:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这⼏个算式的观察,找到规律: a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表⽰两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、 n 、k 均为⾃然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采⽤分析法,从要求的问题⼊⼿,题⽬要求1△2)*3的值,⾸先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以⾸先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a*3,按“*”的定义: a*3=ma+3n ,在只有求出m 、n 时,我们才能计算a*3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.⼜因为m 、n 均为⾃然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4 =8△4=k ×8×4=32k 有32k=64,解出k=2. ②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4 =9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是⾃然数⽭盾,因此m=3,n =1,k=971 这组值应舍去. 所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上⾯这⼀类定义新运算的问题中,关键的⼀条是:抓住定义这⼀点不放,在计算时,严格遵照规定的法则代⼊数值.还有⼀个值得注意的问题是:定义⼀个新运算,这个新运算常常不满⾜加法、乘法所满⾜的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运⽤这些运算律来解题.课后习题m=1n =2m=2n =23(舍去)m=3 n =11.a*b 表⽰a 的3倍减去b 的21,例如: 1*2=1×3-2×21=2,根据以上的规定,计算:①10*6;②7*(2*1). 2.定义新运算为 a ⼀b =b1a +,①求2⼀(3⼀4)的值;②若x ⼀4=1.35,则x =? 3.有⼀个数学运算符号○,使下列算式成⽴: 21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“?”,对于任意两个整数a 、b , a ⊕b =a +b +1, a ?b=a ×b -1,①计算4?[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”, x △y=y×2x ×m y×x ×6+(其中m 是⼀个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成⽴,求a 的值.7.“*”表⽰⼀种运算符号,它的含义是: x*y=xy 1+))((A y 1x 1++,已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b÷a ba +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为⾃然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表⽰选择两数中较⼤数的运算,例如:5◇3=3◇5=5,符号△表⽰选择两数中较⼩数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++&&=?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1) =10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.欢迎您的下载,资料仅供参考!致⼒为企业和个⼈提供合同协议,策划案计划书,学习资料等等打造全⽹⼀站式需求。
六年级小升初常考奥数题型 第1讲定义新运算(例题和答案、讲解)

第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3、设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【答案】1.648 2.112、65 3.193.25【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2、设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3、设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【答案】1.36 2.902 3.412【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,7*4=7+77+777+7777=8638210*2=210+210210=2104203*3=3+33+333,……那么4*4=________。
六年级奥数定义新运算及答案

定义新运算1.规定:玄※b=(b+a) Xb,那么(2探3)探5= _________ 。
2•如果a△)表示(a 2) b,例如3也(3 2) 4 4,那么,当a药=30时,a= _________ 。
3. 定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4Z6=(4,6)+[4,6]=2+12=14. 根据上面定义的运算,18 42= ___________ 。
4. 已知a,b是任意有理数,我们规定:a ®b= a+b-1, a b ab 2,那么4 (6 8) (3 5) _________ 。
5. x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4> X<1> X<8>> 的值是__________ 。
6. 如果a O b 表示3a 2b ,例如4 O 5=3 X4-2 X5=2,那么,当x O 5 比5 O x 大5 时,x= ________ 。
7. 如果1 探4=1234,2 ※^3=234,7 ※^2=78,那么4 探5= _____ 。
8. 规定一种新运算“※”:a探b= a (a 1) (a b 1).如果(x※可^4=421200,那么x= ___________ 。
9. 对于任意有理数x, y,定义一种运算"※”,规定:x※尸ax by cxy ,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1沁=3,2探3=4,x※口=x(m工0),则m的数值2 210. 设a,b为自然数,定义a△) a b ab。
(1)计算(4 43)+(8 △的值;⑵计算(2△ 44;⑶计算(2 45) A(3 △!)。
11. 设a, b为自然数,定义a※匕如下:如果a >b,定义a探b=a-b,如果a<b,则定义a探b= b-a 。
定义新运算题目及答案解析-小学奥数

专题定义新运算知识点1 直接运算型【基础训练】1、【★】设a,b都表示两个不同的数,规定:a△b=2×a+3×b,表示a的2倍加上b的3倍的和.(1)求4△7的值.(2)求2△3的值.【答案】(1)29;(2)13【解析】(1)找到a与b对应的数,根据定义的新运算,将算式中的a与b换成对应的数,再进行计算,即a=4,b=7,4△7=2×4+3×7=29;(2)方法同上,即a=2,b=3,2△3=2×2+3×3=13.2、【★★】设a、b都表示两个不同的数,规定:a▽b=a×b-(a+b).(1)求5▽6▽7的值.(2)求7▽(5▽4)的值.【答案】107;59【解析】(1)按照从左往右的顺序计算,①先算5▽6=5×6-(5+6)=30-11=19,②再算19▽7=19×7-(19+7)=133-26=107,所以5▽6▽7=107.(2)有括号的要先算括号里面的,①先算5▽4=5×4-(5+4)=20-9=11,②再算7▽11=7×11-(7+11)=77-18=59,所以7▽(5▽4)=59.3、【★★】x,y表示两个数,规定新运算“☆”及“○”如下:x☆y=2×x+3×y,x○y=6×x×y.(1)求10☆2的值.(2)求4○25的值.【答案】26;600【解析】(1)原式=2×10+3×2=26;(2)原式=6×4×25=600【拓展提升】1、【★★★】规定:a□b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数.求1□100的值.【答案】5050【解析】1□100=1+2+3+…+100=(1+100)×100÷2=50502、【★★★】已知x、y是任意有理数.我们规定:x☆y=x+y-1,x○y=x×y-2.(1)求10☆9.(2)求7○8.(3)求4○[(6☆8)☆(3○5)]的值.【答案】18;54;98【解析】(1)10☆9=10+9-1=18;(2)7○8=7×8-2=54(3)先算小括号里面的6☆8和3○5,6☆8=6+8-1=13,3○5=3×5-2=13.再计算中括号里面的13☆13=13+13-1=25.最后计算4○25=4×25-2=98.知识点2 反解未知型【拓展提升】1、【★★★】设x、y都表示两个不同的数,规定:x□y=x×y+2A,已知3□4=16.(1)求常数A是多少?(2)求3□(4□5)【答案】2;76【解析】(1)建立方程,3×4+2A=16,解得A=2.(2)先算括号里面的,①4□5=4×5+2×2=20+4=24,②再算3□24=3×24+2×2=72+4=762、【★★★★】规定:()()()121a b a a a a b ∆=+++++++-,其中a 、b 表示自然数. 已知1465x ∆∆=(),求x .【答案】x=2【解析】先求1△4=1+2+3+4=10,再算x △10=65,那么x+(x+1)+(x+2)+(x+3)+…+(x+9)=65,即10x+45=65,解得x=2知识点3 总结规律型【拓展提升】1、【★★★】已知:13123*=⨯⨯,242345*=⨯⨯⨯,4545678*=⨯⨯⨯⨯,…(1)求33*的值.(2)求25*的值.【答案】60;7202、【★★★】已知:12111∇=+,23222222∇=++,444444444444∇=+++,……(1)求73∇的值 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。
由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。
6△(3△4)【考点】定义新运算之直接运算 【难度】2星 【题型】计算例题精讲 知识点拨教学目标【解析】 所求算式是两重运算,先计算括号,所得结果再计算。
由a △b =(a +1)÷b 得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7【答案】7【巩固】 设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2) △3=_____.【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 56552613=⨯-⨯=△52552221=⨯-⨯=△,1321216435=⨯-=△【答案】435【巩固】 P 、Q 表示数,*P Q 表示2P Q +,求3*(6*8) 【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 68373*(6*8)3*()3*7522++==== 【答案】5【巩固】 已知a ,b 是任意自然数,我们规定: a ⊕b = a +b -1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗= .【考点】定义新运算之直接运算 【难度】3星 【题型】计算【解析】 原式4[(681)(352)]4[1313]=⊗+-⊕⨯-=⊗⊕4[13131]425=⊗+-=⊗425298=⨯-=【答案】98【巩固】 M N *表示()2,(20082010)2009M N +÷**____=【考点】定义新运算之直接运算 【难度】2星 【题型】计算【关键词】走美杯,3年级,初赛【解析】 原式()()200820102*20092009*20092009200922009=+÷==+÷=⎡⎤⎣⎦【答案】2009【巩固】 规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a <b ,则a ☆b =a ×b 。
那么,(2☆3)+(4☆4)+(7☆5)= 。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【关键词】希望杯,四年级,二试【解析】 19【答案】19【例 2】 “△”是一种新运算,规定:a △b =a ×c +b ×d (其中c ,d 为常数),如5△7=5×c +7×d 。
如果1△2=5,2△3=8,那么6△1OOO 的计算结果是________。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【关键词】希望杯,六年级,二试【解析】 1△2=1×c +2×d =5,2△3=2×c +3×d =8,可得c =1,d =26△1000=6×c +1000×d =2006【答案】2006【巩固】 对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =2m a b a b⨯+⨯⨯(m 是一个确定的整数)。
如果1⊗4=2⊗3,那么3⊗4等于________。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【关键词】希望杯,六年级,二试【解析】 根据1⊗4=2⊗3,得到1423214223m m ⨯+⨯+=⨯⨯⨯⨯,解出m =6。
所以,634113423412⨯+⊗==⨯⨯。
【答案】1112【例 3】 对于任意的整数x 与y 定义新运算“△”:6=2x y x y x y⨯⨯∆+,求2△9。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【关键词】北京市 ,迎春杯【解析】 根据定义6=2x y x y x y ⨯⨯∆+ 于是有62922952295⨯⨯∆==+⨯ 【答案】255【巩固】 “*”表示一种运算符号,它的含义是:()()111x y xy x y A *=+++ ,已知 ()()11221212113A *=+=⨯++,求19981999*。
【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 根据题意得()()()()()()12111,,2116,1211322116A A A A =-=++==++++ ,所以 ()()111120001998199819991998199919981199911998199919992000199819992000399811998199920001998000+*=+=+=⨯++⨯⨯⨯⨯==⨯⨯ 【答案】11998000【例 4】 [A ]表示自然数A 的约数的个数.例如4有1,2,4三个约数,可以表示成[4]=3.计算:([18][22])[7]+÷= .【考点】定义新运算之直接运算 【难度】3星 【题型】计算【解析】 因为21823=⨯有(11)(21)6+⨯+=个约数,所以[18]=6,同样可知[22]=4,[7]=2.原式(64)25=+÷=.【答案】5【巩固】 x 为正数,<x >表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 .【考点】定义新运算之直接运算 【难度】3星 【题型】计算【解析】 <19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个.<93>为不超过的质数,共24个,易知<1>=0,所以,原式=<<19>+<93>>=<8+24>=<32>=11.【答案】11【巩固】 定义运算“△”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的和记为a △b .例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= .【考点】定义新运算之直接运算 【难度】3星 【题型】计算【解析】 18△12=(18,12)+[18,12]=6+36=42.【答案】42【例 5】 我们规定:符号Θ表示选择两数中较大数的运算,例如:5Θ3=3Θ5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3,计算:1523(0.6)(0.625)23353411(0.3)( 2.25)996∙∙Θ+∆∆+Θ的结果是多少?【考点】定义新运算之直接运算【难度】3星【题型】计算【解析】15232531 (0.6)(0.625)1 23353824341119312 (0.3)( 2.25)9963412∙∙Θ+∆+===∆+Θ+【答案】1 2【巩固】规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
计算下式:[(7◎3)& 5]×[ 5◎(3 & 7)]【考点】定义新运算之直接运算【难度】3星【题型】计算【解析】新定义运算进行计算时如果遇到有括号的,要先计算小括号里的,再计算中括号里的。
[(7◎6)& 5]×[ 5◎(3 & 9)]=[ 6 & 5] ×[ 5◎9 ]=6×5=30【答案】30【巩固】我们规定:A○B表示A、B中较大的数,A△B表示A、B中较小的数。
则()()108651120=-⨯△△○13+15△【考点】定义新运算之直接运算【难度】3星【题型】计算【关键词】走美杯,3年级,决赛【解析】根据题目要求计算如下:()()()() 108651120=861315=228=56 -⨯-⨯+⨯△○○13+15△【答案】56【例6】如果规定a※b =13×a-b ÷8,那么17※24的最后结果是______。
【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】希望杯,4年级,1试【解析】17※24=13×17-24÷8=221-3=218【答案】218【巩固】若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G (6)=4,则G(36)+G(42)= 。
【考点】定义新运算之直接运算【难度】2星【题型】计算【关键词】希望杯,4年级,1试【解析】36的约数有:1、2、3、4、6、9、12、18、36。
42的约数有:1、2、3、6、7、14、21、42。
所以有G36G+=+=429817()()。
【答案】17【巩固】如果&10a b a b=+÷,那么2&5=。