离子交换树脂
离子交换树脂的功能

离子交换树脂的功能离子交换树脂是一种常见的固相萃取材料,具有广泛的应用领域。
其主要功能是通过静电吸附和离子交换的原理,从溶液中去除杂质离子,实现水处理、废水处理、制药、食品加工、化工、环保等行业的目的。
首先,离子交换树脂具有去除水中重金属离子的功能。
例如,水中的铁、锰、镉、铬、铅等重金属离子会对人体健康产生严重危害,因此需要从水中去除。
离子交换树脂能够通过静电吸附和离子交换的作用,将这些重金属离子吸附在树脂表面,从而达到净化水质的目的。
其次,离子交换树脂还可用于软化水处理。
水中的钙、镁等硬度离子会导致水质硬度增加,从而影响使用和加工过程。
离子交换树脂可以选择性吸附水中的钙、镁离子,释放等量的钠离子,从而有效降低水质硬度,软化水质。
此外,离子交换树脂还可用于pH调节。
水溶液的pH值对很多化学过程和生物过程具有重要影响,需要进行调节。
离子交换树脂具有选择性吸附和释放氢离子或氢氧根离子的能力,可以调节水溶液的酸碱度。
离子交换树脂还常用于分离和纯化有机物。
在制药、食品加工等行业中,需要对药物、食品添加剂等有机物进行纯化和分离。
离子交换树脂可以通过静电吸附和离子交换的作用,选择性地吸附有机物,从而实现纯化和分离的目的。
除了上述功能之外,离子交换树脂还可用于水中氟离子的去除、酒精提纯、废液处理等方面。
因此,离子交换树脂在环境保护、水处理、化工、制药等行业中具有广泛的应用。
总结起来,离子交换树脂的主要功能包括去除水中重金属离子、软化水处理、pH调节、有机物分离纯化等。
它通过静电吸附和离子交换的原理,能够有效地去除溶液中的杂质离子,达到净化水质、纯化有机物的目的,对保护环境、提高生产效率具有重要作用。
离子交换树脂的种类

离子交换树脂的种类
一、强酸型树脂:
1.高强度硫酸型树脂:这是最常见的一种离子交换树脂,其含有大量的硫酸基团(-SO3H),用于去除水中的碱性金属离子和硝酸盐。
2.高强度氯酸型树脂:这类树脂中含有氯酸基团(-COOH),广泛应用于氯离子和硝酸盐的去除。
二、弱酸型树脂:
1.丙烯酸型树脂:这类树脂含有丙烯酸基团(-COONa),适用于去除水中的钙、镁离子。
2.磷酸型树脂:这类树脂含有磷酸基团(-PO3H2),能够去除水中的钙、镁离子和铁离子。
三、强碱型树脂:
1.强碱型丙烯酸树脂:这类树脂含有胺基团(-NR3),适用于去除水中的酸性离子(如硫酸根离子)。
2.纤维素型强碱型树脂:这类树脂适用于去除水中的有机物、色素和重金属离子。
四、弱碱型树脂:
1.弱碱型丙烯酸树脂:这类树脂含有氨基团(-NH2),能够去除水中的酸性离子和重金属离子。
2.氨基型树脂:这类树脂含有氨基团(-NH2),用于水处理中的去除和回收硫酸铵。
此外,根据交换基团的不同,离子交换树脂还可分为单质离子交换树脂和复质离子交换树脂。
其中,单质离子交换树脂是指只含有一种交换基团,而复质离子交换树脂则含有两种或两种以上的交换基团。
综上所述,离子交换树脂的种类繁多,根据不同的应用领域和水质需要选择适用的树脂类型,以达到最佳的净化和分离效果。
离子交换树脂再生原理

离子交换树脂再生原理
离子交换树脂是一种常用于水处理和水质改善的方法。
当水中存在着一些不需要的离子,如钙离子、镁离子等,离子交换树脂可以通过吸附和释放离子的方式,将水中的有害离子去除或置换为无害的离子。
离子交换树脂的再生是指将树脂中吸附的目标离子从树脂表面释放出来,使树脂恢复到可再次进行吸附的状态。
离子交换树脂的再生过程主要有两个步骤:洗涤和再生。
洗涤是指通过向树脂中加入逆离子或酸性洗涤剂来去除树脂上残留的杂质和未被释放的目标离子。
逆离子可以与树脂表面上的阳离子形成离子交换,将其释放出去。
酸性洗涤剂则可以通过酸碱中和反应将树脂表面的阳离子中和并释放出去。
洗涤的目的是去除污染物并准备树脂进行再生。
再生是指将洗涤后的树脂恢复到吸附离子的状态。
再生通常通过向树脂中加入盐水或碱性溶液来实现。
盐水中的阴离子可以与树脂表面上的阳离子形成离子交换,重新吸附在树脂上。
碱性溶液可以通过酸碱反应中和树脂表面的阴离子,将其释放出来并将树脂恢复为原始状态。
再生后的离子交换树脂可以继续使用,反复进行吸附和再生的循环。
需要注意的是,随着多次使用和再生,离子交换树脂的吸附效率和容量逐渐下降,需要定期更换或再生以保持其良好的处理效果。
离子交换树脂标准

离子交换树脂标准一、引言离子交换树脂是一种广泛应用于水处理、化工、医药、食品等领域的重要材料。
其标准规格和质量对于保证生产和使用过程的安全、稳定、高效具有重要意义。
本文将从离子交换树脂的分类、标准规格、检测方法等方面进行探讨。
二、离子交换树脂的分类离子交换树脂按照不同的分类方式有多种类型。
按照所处理溶液的性质和要求,可以分为阳离子交换树脂和阴离子交换树脂。
阳离子交换树脂主要用于去除溶液中的阳离子,如钙、镁、钠等;阴离子交换树脂则主要用于去除溶液中的阴离子,如氯、硫酸根等。
此外,按照使用环境和目的的不同,还可以分为工业级离子交换树脂和食品级离子交换树脂等。
三、离子交换树脂的标准规格1.外观:离子交换树脂应为颗粒状,颜色均匀,无杂质和碎屑。
2.粒度:离子交换树脂的粒度应符合相关标准,以保证其吸附和脱附性能。
3.含水量:离子交换树脂的含水量应控制在一定范围内,以保证其稳定性和使用寿命。
4.交联度:交联度是离子交换树脂的重要参数,它决定了树脂的机械强度和稳定性。
5.密度:密度是离子交换树脂的一个重要指标,它反映了树脂的纯度和质量。
6.酸碱性:离子交换树脂的酸碱性应符合相关标准,以保证其在使用过程中的稳定性和安全性。
7.抗污染性:离子交换树脂应具有良好的抗污染性,以保证其在长期使用过程中不会受到污染。
8.再生性能:离子交换树脂应具有良好的再生性能,以保证其在多次使用过程中的性能稳定。
9.机械强度:离子交换树脂应具有一定的机械强度,以保证其在运输和使用过程中的稳定性。
10.化学稳定性:离子交换树脂应具有良好的化学稳定性,以保证其在不同pH值和温度条件下的稳定性。
四、离子交换树脂的检测方法1.外观检测:通过观察离子交换树脂的颜色、颗粒大小和形状等外观特征,可以初步判断其质量。
2.粒度检测:通过测量离子交换树脂的粒度分布,可以评估其吸附和脱附性能。
3.含水量检测:通过测量离子交换树脂的含水量,可以评估其稳定性和使用寿命。
离子交换树脂层的工作过程

在装有钠型树脂的离子交换柱中,自上而下地通过含有Ca2+的水时,树脂层的变化可分为以下三个阶段。
1 . 交换带的形成阶段:溶液一接触树脂,就开始发生离子交换反应。
随着水的流动,溶液的组成和树脂的组成不断发生改变,即树脂愈往上层,层中的Ca2+浓度就越大;水越往下流,水中的Ca2+浓度就越小。
当水流至一定深度时,离子交换反应达到平衡,树脂及溶液中离子Na+的浓度就不再改变了。
这时,从树脂上层交换反应开始至下层交换平衡为止,形成了一定高度的离子交换反应区域,称为交换带或工作层。
在通水初期,由于离子交换反应刚刚开始,交换带尚未定型,经一段时间后才形成一定高度的离子交换带。
2 . 交换带的移动阶段:随着离子交换的进行,离子交换带逐渐向下部树脂层移动,这样树脂层中就形成了三个层:交换带以上的树脂层,为Ca2+饱和,但已失去交换能力,水通过时,水质不发生变化,此层称为失效层;再到工作层,此层内钙离子交换树脂和钠离子交换树脂是混存的,上部钙离子交换树脂多,下部钠离子交换树脂多,水流经这一层时,水中的Ca2+和Na+进行交换,使出水中Ca2+浓度由原水Ca2+浓度降至于0,此层是整个树脂层中正在进行离子交换的层区,其层区高度即为交换带的宽度;交换带以下的树脂层为尚未参与交换的树脂层,即其中全为钠离子交换树脂,称为未交换层。
因此,交换带移动阶段即是水处理中离子交换运行的中期阶段,也就是离子交换的正常运行阶段。
3 . 交换带的消失阶段:由于交换带沿水流方向以一定速度向前推移,致使失效层不断增大,未交换层不断缩小,当交换带的下端达到树脂层底部时,在装有钠型树脂的离子交换柱中,自上而下地通过含有Ca2+的水时采用含一定化学物质的水溶液,使树脂层内失去交换能力的树脂重新恢复交换能力,这种处理过程称为树脂再生。
再生能力,通常用再生剂耗(分别称为盐耗、酸耗或碱耗)、再生剂比耗表示。
再生剂耗是指在失效的树脂中再生1摩尔交换基团所耗用的再生剂质量,单位为g/mol。
离子交换分离树脂

离子交换树脂概述离子交换树脂有多种类型,其分类方法也没有统一的规定,主要有:按树脂骨架的主要成分可分为聚苯乙烯型树脂、聚丙烯酸型树脂、环氧氯丙烷型多乙烯多胺型树脂、酚一醛型树脂等;按聚合的化学反应分为共聚型树脂和缩聚型树脂;按骨架的物理结构常分为凝胶型树脂即微孔树脂、大网格树脂即大孔树脂,有的还有均孔树脂;按活性基团分为阳郭交换树脂和阴离子交换树脂等等。
其中常见是是按活性基团及骨架的物理结构的方法分类,因活性基团的种类决定了树脂的主要性质和类别;而骨架的物理结构在树脂的交换使用中影响较大。
按不同活性基团的种类进行分烃,主要的是阳离子和阴离子交换树指,其次也还有一些其他种类的树脂。
1、阳离子交换树脂阳离子交换树脂的活性基团能解离出阳离子,而其作为交换的离子可与溶液中的其他阳离子发生交换。
阳离子交换剂,相当于高分子的多元酸。
因活性基团的电离程度强弱不同又有强酸性和弱酸性阳离子交换树脂的区别。
强酸性阳离子交换树脂磺酸基团和次甲基磺酸基团都是强酸性基团,它们容易在溶液中离解出氢离子,故呈强酸性,且离解后的负电基团,能吸附结合溶液中的其他阳离子而发生交换反应。
这类树脂对酸、碱和各种溶剂都比较稳定,离子交换不受溶液PH值变化的影响,适用面广泛。
常用强酸进行再生处理,但强酸性树脂与氢离子的结合力较弱故再生成氢型树脂时比较困难且耗酸量较大。
强绝不能性树脂主要用于水处理和制药工业中。
弱酸性阳离子交换树脂带有羧酸基、氧乙酸基团的交换树脂,是常见的弱酸性阳离子交换树脂。
这种树脂的离解性即酸性较弱,在低PH下难以离解和进行离子交换,只在碱性、中性或微酸性溶液中发生交换反应。
其交换容量大,容易再生成氢型,但其交换能力弱,速度慢;化学和热稳定性差。
这类树脂亦是用酸进行再生,在制药工业中使用较多。
2、阴离子交换树脂阴离子交换树脂的活性基团能解离出阴离子,而其作为交换离子可与溶液中的其他阴离子发生交换。
阴离子交换剂,相当于高分子的多元碱。
离子交换树脂脱氮

离子交换树脂脱氮
离子交换树脂是一种可用来去除水中的氮化物的方法。
在离子交换树脂脱氮过程中,树脂上的阴离子交换基团会与水中的阳离子结合,从而将水中的氮化物去除。
脱氮过程一般分为吸附和再生两个阶段。
在吸附阶段,水通过装有离子交换树脂的列管或压滤器,树脂上的阴离子交换基团吸附并结合水中的氮化物。
然后,通过再生阶段,使用盐水或酸性溶液将吸附的氮化物从树脂中洗出,使离子交换基团再次可用于吸附新的氮化物。
离子交换树脂脱氮是一种常见的水处理方法,可用于去除水中的氮化物,减少水体中的氮污染。
它广泛应用于饮用水处理、工业废水处理和农业灌溉水处理等领域。
但是,它需要定期进行再生和更换树脂,同时也会产生废液,需要进行处理。
731磺酸离子交换树脂原理

731磺酸离子交换树脂原理731磺酸离子交换树脂是一种常用的离子交换树脂,它能够将水中的磺酸离子与其他阳离子进行交换。
下面是关于731磺酸离子交换树脂原理的详细介绍。
一、离子交换树脂的概念离子交换是指在溶液中存在带电离子的一种反应。
当正负离子以适当比例存在时,它们之间会发生离子交换反应。
离子交换树脂是一种具有离子交换功能的固体材料,广泛应用于水处理、化学分离、制药等领域。
离子交换树脂可以通过吸附和脱附离子来实现对离子的分离和纯化。
二、731磺酸离子交换树脂的特点731磺酸离子交换树脂是一种阴离子交换树脂,其特点如下:1.优良的机械性能:731磺酸离子交换树脂具有较高的物理强度和耐力,不易断裂,耐磨损性好,使用寿命长。
2.良好的化学稳定性:731磺酸离子交换树脂在常规的酸、碱、盐溶液中稳定性良好。
3.高交换容量:731磺酸离子交换树脂具有较高的交换容量,可以高效地吸附和脱附离子。
4.低反洗需求:731磺酸离子交换树脂在反洗操作时,不需要使用过多的洗涤剂,降低了运行成本。
三、731磺酸离子交换树脂的结构731磺酸离子交换树脂的结构由胶体粒子和离子交换基团组成。
胶体粒子是树脂颗粒的主体,它们通过交联剂相互连接形成三维网状结构。
离子交换基团是树脂中的功能基团,负责吸附和脱附离子。
731磺酸离子交换树脂通常由聚苯乙烯或聚苯乙烯二磺酸酯作为胶体粒子,磺酸基团是离子交换基团。
四、731磺酸离子交换树脂的原理731磺酸离子交换树脂的原理是通过离子交换作用从溶液中吸附和脱附离子。
当溶液中存在磺酸离子时,磺酸离子与离子交换基团形成相互吸附的复合物,从而实现磺酸离子的去除。
离子交换基团上的阴离子与磺酸离子之间发生离子交换反应,使水中的磺酸离子被固定在树脂上。
731磺酸离子交换树脂的吸附和脱附过程可以通过以下步骤来描述:1.吸附:当水中的磺酸离子接触到731磺酸离子交换树脂时,磺酸离子与树脂表面的离子交换基团发生反应,形成吸附复合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。
然后浸泡在洁净的水中。
停用设备若须将水排去,则应密封,以防树脂中水份散失。
2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。
树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。
袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。
若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。
应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。
3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。
若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。
食盐溶液浓度与冰点的关系如下表:4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。
或彻底反洗后采用以下措施:阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。
如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。
阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。
也可用食盐水浸泡。
在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。
2树脂的预处理在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。
在使用初期会逐渐溶解释放,影响出水水质或产品质量。
因此,新树脂在使用前必须进行预处理,具体方法如下:1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。
2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。
全部通入后,浸泡4-8小时,排去酸液,用洁净水冲洗至出水呈中性,冲洗流速为10-20m/h。
3、用约2倍树脂体积的2-5%NaOH溶液,按上面进HCl溶液的方法通入和浸泡。
排去碱液,用洁净水冲洗至出水呈中性,冲洗流速同上。
酸、碱溶液若能重复进行2-3次,则效果更佳。
经预处理后的树脂,在第一次投入运行时应适当增加再生剂用量,以保证树脂获得充分的再生。
3有机物的污染及处理一、强碱阴树脂遭受有机物污染的特征:1、树脂被污染后,颜色变深,从淡黄色变为深棕色,直至黑色。
2、树脂的工作交换容量降低,阴床的周期制水量明显下降。
3、有机酸漏入出水中,使出水的电导率增大。
4、出水的pH值降低。
正常运行情况下,阴床出水的pH值一般在7-8范围内(因有NaOH 漏过),树脂遭受污染后,因有机酸的漏过,可使出水的pH值降至5.4-5.7。
5、SiO2含量增大。
水中所含有机酸(富维酸和腐殖酸)的解离常数大于H2SiO3,因此,附着在树脂上的有机物可以抑制树脂对H2SiO3的交换或排代出已吸着的H2SiO3,造成阴床SiO2过早漏过。
6、清洗水用量增加。
因为吸着在树脂上的有机物含有大量的-COOH基团,树脂再生时变为-COONa,在清洗过程中,这些Na+不断被阴床进水中的矿物酸排代出来,增加了清洗阴床的时间和用水量。
二、有机物污染对强碱阴树脂的影响1、强碱阴树脂对有机物的吸着力。
天然水中的有机物(以富维酸和腐殖酸为代表)经过H+交换及除碳后,因pH值的降低,有机物几乎全部以分子状态存在于阴床进水中。
因为腐殖酸分子量大,疏水性强,与强碱阴树脂的苯乙烯-二乙烯苯聚合的骨架具有较强的吸附能力-范德华力,同时,这些大分子的有机酸都含有多个羧酸基团,与OH型强碱阴树脂的季胺基官能团也具有较强的化学亲和力,因此使有机酸被强碱树脂牢固地吸着于颗粒表面。
强碱阴树脂的骨架改为亲水性的丙烯酸与二乙烯苯的聚合物,减少了骨架对有机酸吸附的范德华力,会使有机酸的吸着率略有降低。
如将OH型强碱阴树脂改为Cl型,则因改变了有机酸与强碱阴树脂的OH之间的酸碱中和反应,使化学亲和力下降,树脂对有机物的吸着率也会降低。
这种基团型态对有机物吸着的影响大于骨架材质的影响。
2、有机物的再生洗脱。
新的凝胶型强碱阴树脂的对有机物的吸着率很高(95%),洗脱率却很低(15%)。
随着运行周期的增加,吸着率基本不变,洗脱率虽从15%上升到60%以上。
但是,到树脂工作交换容量开始降低时,洗脱率也只有60%,这说明有机物仍不断地在树脂上积聚,它会进一步降低树脂的工作交换容量,并使出水质量恶化。
3、有机物特性的影响。
分子量比较大的腐殖酸,一方面由于分子量大,亲水性较差,另一方面因为所含的-COOH较少,所以它们主要是以范德华力吸附于树脂的骨架上,难于洗脱。
富维酸则因分子量小,含有的-COOH多,所以多以化学亲和力与树脂的多个交换基团相结合,再生过程中较容易被洗脱。
对天然水中的有机物根据其在水中的溶解度,可以分为悬浮的、胶体的和溶解的三种。
对于以物理吸附作用附着于树脂表面的悬浮有机物,可以使用加强过滤或对污染的树脂进行空气擦洗、超声波清洗等方法去除。
胶体的有机物一般是带有负电荷的,它们的粒径在0.2-1.0nm之间,对树脂的污染既是物理性的,又是化学性的,可通过混凝澄清或超过滤的方法去除。
溶解性的有机物是污染强碱阴树脂的主要成分,它们以范德华力和化学亲和力吸着于强碱阴树脂,洗脱率低,最终影响树脂的工作交换容量和出水质量。
4、对树脂工作交换容量的影响。
由于强碱阴树脂上有机物的不断积聚,一方面部分交换基团被占据,再生时不能洗脱,减少了树脂的交换容量;另一方面这些有机物会在运行中不断溶解,并因有机酸的酸性比H2SiO3强,而抵制强碱阴树脂对H2SiO3的吸收,造成H2SiO3过早地在出水中漏过。
因为阴床的失效终点是用SiO2的漏过量确定的,所以H2SiO3过早的漏过必然会使树脂的工作交换容量降低。
后者只降低树脂的工作交换容量,而全交换容量不变。
5、对出水质量的影响。
被有机物污染的强碱阴树脂,因为附着有许多大分子的有机酸,它们所含的部分被水中的矿质酸所排代,这就造成出水电导率的升高。
这一作用,一方面增加了清洗水的用量和清洗时间,另一方面有机酸溶入出水中也会造成出水质量的降低。
树脂上附着的有机酸,也会逐渐溶于出水中,使出水的pH值降低,SiO2含量增大。
三、防止强碱树脂遭受有机物污染的方法1、添加氧化剂。
添加氧化剂是除去天然水中有机物的常用方法,它能起到较好的杀菌和灭藻的作用。
常用的氧化剂有氯气和臭氧。
游离氯在水中分解为次氯酸,能降低天然水中80%左右的COD,但是过量的氧化剂会对凝胶型苯乙烯系强碱树脂造成损害。
在采用添加氧化剂方法去除COD 时,必须去除残余的氧化剂,常用的方法为活性炭过滤。
2、混凝-澄清过滤。
当天然水中有悬浮的和胶体的有机物时,使用混凝澄清和过滤的方法去除是很有效的。
使用混凝澄清的方法还可去除粒径在2-10mm的杂质,对粒径为0.2-1mm的腐殖物,大约可以去除60-80%。
3、活性炭过滤。
活性炭可以用于吸附多种物质,包括无机、有机的胶体和溶解的高分子有机物等,同时,还可以除去水中的游离氯和氯胺等。
4、有机物清除器。
包括Cl型有机物清除器和OH型有机物清除器。
5、选择抗污染的树脂。
包括选用大孔型树脂、均孔树脂、大孔型弱碱阴树脂以及丙烯酸系强碱树脂。
6、丙烯酸系强碱树脂的特点有:(1)交换容量高,交换速度快;(2)物理稳定性好,使用寿命长;(3)能有效地去除天然水中的有机物,并在再生过程中能很好地洗脱。
丙烯酸系强碱树脂除了含有强碱基团外,尚含有一定量的弱碱叔胺基团,所以具有较高的交换容量,一般可达800-1100mol/m3R。
当进水中弱酸阴离子/总阴离子的比值大于20%时,其工作交换容量有一定的下降,这是由于该树脂含有一定的弱碱基团的结果。
当水中的游离矿质酸(简称FMA)含量超过90%时,使用丙烯酸系强碱树脂可以相当于弱、强型树脂联合应用工艺的串联系统或双室浮床的效果;FMA含量为80-90%时,可相当于双层床的效果;FMA含量在67-80%以下时,可降低再生剂用量,以保持经济的比耗。
丙烯酸系强碱树脂具有弹性和多孔结构,从Cl型变为OH型时,其体积膨胀率只在7%左右,明显地小于苯乙烯系同等交联度的强碱树脂和弱碱树脂。
在工业设备中运行两年(共580个周期),没有发现树脂颗粒的破碎现象。
由于丙烯酸系强碱树脂的骨架与官能团是由酰胺键连接的,因此降低了这种的树脂的热稳定性,其使用温度为30°C,最高不超过35°C。
丙烯酸系强碱树脂对有机物具有良好的吸附和解析能力,不易被有机物所污染。
四、强碱阴树脂的复苏1、复苏液的选择。
对强碱树脂吸着的,不能用正常再生方法交换出来的杂质,定期地进行一些有针对性的处理,以提高树脂交换性能的方法,称为树脂的复苏。
复苏的方法要根据污染树脂的杂质性质进行选择,如铁的污染可用HCl清洗,吸着的有机物可用碱性氯化钠溶液洗去等。
不同成分的复苏液,消除强碱树脂上的有机物的效果有所不同,NaNO3、NaCl和Na2SO4的碱性混合液都有良好的洗脱效果,尤以NaNO3的碱性混合液最佳。
经对碱性氯化钠溶液的浓度进行选择性试验,结果表明以10%NaCl +2-5%NaOH混合液的效果较佳。
2、常用的清洗方法。
(1)碱性氯化钠混合液清洗:氯化钠浓度为10%,氢氧化钠浓度为2-5%,每升树脂用量为160克NaCl及32克NaOH。
阴床清洗需3个树脂床体积,如为混床清洗,应为阳、阴树脂总量的3倍体积,溶液应先预热至35°C。
将交换床上部人孔打开,疏水至水位在树脂表面5-10cm处,如为阴床单床,第一个床体积的碱性氯化钠溶液流经树脂床的流速不超过2个床体积/小时,疏水速率使液位维持在树脂表面上5-10cm处。
第2床体积溶液的进入速率与前同,并保持在树脂床内约8小时或放置过夜,通过空气排管在整个期间不时搅拌。
浸泡完毕后,进入第3床体积碱性氯化钠溶液,流速如前。
装回人孔,以阳床出水或生水冲洗。
如为混床系统,碱性氯化钠溶液则进入阳、阴树脂层,疏水如前述,然后进入第一床体积的碱性氯化钠溶液,淋洗过程也与阴床单床相同。
在淋洗前,人孔须装回,使用床内正常布水系统进行淋洗。
清洗后,阴床单床系统的再生,至少须用96克NaOH/升树脂的再生水平,再生后进行淋洗,并再次再生和淋洗,共再生两次。
混床系统则应先反洗将阳、阴树脂分层,将阳树脂及阴树脂都分别再生两次。
阴树脂的再生水平如前,而阳树脂则至少用100克HCl/升树脂的再生水平。