03岩浆铀矿床

合集下载

铀矿地质课件——7.2火山岩型铀矿床

铀矿地质课件——7.2火山岩型铀矿床

7.2.1 成矿地质条件
7.2.1.2 储矿火山构造
1、火山穹窿构造 粘稠的酸性、中酸性熔浆缓慢上升,气体压力增大, 引起穹状隆起,穹顶幅度可达几百米。火山穹窿的 发生,一是在火山喷发前夕,一是在火山沉陷后的 回返阶段。穹窿形成时,同时形成辐射状断裂、环 状断裂,层间滑动等构造。我国北方有古穹窿流纹 岩层间构造控制的矿床。
7.2.1 成矿地质条件
7.2.1.1 产铀火山岩的岩性特征
2、火山岩的机械物理性质
直接与成矿有关的是岩石的抗压强度和有效空隙度。就火山岩的抗 压强度来说,熔岩(如石英粗面岩,为2400千克/厘米2)与花岗 岩(为2470千克/厘米2)差不多;火山碎屑岩的较低,如凝灰岩 为420千克/厘米2,凝灰角砾岩为900千克/厘米2,它们容易发生 破裂。此外,火山岩中玻璃成分较多,性脆易碎,因而火山岩型 铀矿床常受裂隙构造控制。就火山碎屑岩的有效空隙度来说,一 般在5%以上;有些凝灰岩可达20%以上;熔岩和次火山岩的小得 多,我国的碎斑流纹岩、流纹斑岩、次花岗岩多数为1%左右。火 山岩遭受热液蚀变,特别是遭受碱性蚀变,碱性热液使SiO2强烈 淋失,钠长石替代钾长石,矿物体积缩小,因而岩石的有效空隙 度大大增加,有效空隙度有时可达10%左右,而且岩石易破碎。
7.2.1 成矿地质条件
7.2.1.1 产铀火山岩的岩性特征
4、火山岩中铀的配分
根据哈萨克斯坦查保哥梁地区流纹岩和英安岩铀配分情况的 研究表明,流纹岩和英安岩全岩平均铀含量分别为7.1ppm 和6.7ppm,略高于酸性火山岩中的平均有含量3—6ppm。 铀主要存在于基质中,在主要造岩矿物中含量却很低。因为 U4+的离子半径大(0.97Å)不能进入熔岩硅酸盐矿物的晶 格,造成造岩矿物铀含量偏低。当熔岩溢出地表后,由于快 速冷凝,铀分散在火山玻璃内,所以基质中铀含量较高。经 强烈蚀变后,粒间吸附铀有很大增加,而在矿石产出部位绝 大部分铀存在于粒间和裂隙中。

铀矿床成因模式及其控制因素分析

铀矿床成因模式及其控制因素分析

铀矿床成因模式及其控制因素分析铀矿床是指含有富集铀矿物的地质体,是铀矿的自然产出地。

铀矿床形成的成因模式与其控制因素是地质学和矿床学领域的研究重点之一。

下面将通过对铀矿床成因模式及其控制因素的分析,详细介绍铀矿床的形成过程。

1. 成因模式:铀矿床的形成主要包括三个过程:铀的富集、矿化作用和矿床形成。

从成因模式的角度来看,铀矿床可以归纳为地壳富集型、沉积型和剥蚀型。

地壳富集型铀矿床主要富集在大陆地壳中。

它们一般与花岗岩、离子吸附体系和硫酸铀型矿床相关。

地壳富集型铀矿床的形成与岩浆作用和热液作用有关,富集铀的物质主要来自岩浆或热液中的溶解铀离子。

这些离子在适宜的地质条件下,可以通过各种矿化作用被富集成矿。

沉积型铀矿床是在海洋、湖泊或沉积盆地中形成的。

主要有浅海沉积型、深海沉积型、沉积岩型和粉砂质砂岩型铀矿床。

沉积型铀矿床的形成与沉积过程、成岩作用和次生矿化作用有密切关系。

一般来说,沉积体系中富集铀的机制包括离子吸附、碳酸盐沉淀和有机物还原等过程。

剥蚀型铀矿床是由于剥蚀侵蚀作用而形成的。

这些铀矿床主要富集在风成、水成和冻结圈等剥蚀残留物中。

剥蚀型铀矿床形成的原因是富集铀的物质被风、水或冻结作用带走,然后在特定的地理环境中沉积和富集成矿。

2. 控制因素:铀矿床形成的控制因素非常复杂,包括地质、地球化学、地球物理因素等。

首先,地质因素是铀矿床形成的重要控制因素之一。

包括构造、岩性、沉积环境等。

构造因素主要体现在构造带的选择和构造运动的活动程度上。

地壳破裂和岩石变形有很大的可能会形成裂隙、断裂、断层等储集空间,进而有利于铀矿物的富集。

岩性因素则与岩石结构、岩石矿物和岩石类型有关。

不同类型的岩石具有不同的富集能力,如含有脱水矿物的岩石、富含石英的岩石、含有碳酸盐的岩石等可能更容易富集铀矿物。

沉积环境因素主要是指海洋、湖泊、盆地等不同环境中的沉积过程,其中的沉积物对富集铀矿物起到了重要的影响。

其次,地球化学因素是铀矿床形成的另一个重要控制因素。

铀资源地质学复习资料

铀资源地质学复习资料

铀资源地质学复习资料铀资源地质学复习资料四价铀矿物:在化学成分上既含有四价铀,又含有六价铀,在结构上以U4+基本结构单元的矿物。

六价铀矿物:在化学成分上以六价铀为主,在结构上以铀酰—阴离子结合为基本结构单元的矿物。

变生作用(非晶化作用):系指在铀、钍衰变过程中放出的射线作用下和核裂变碎片的作用下某些含铀、钍矿物的晶体结构遭到破坏从而呈非晶态的现象。

变生矿物:内部结构遭到破坏,但仍保持着晶体外形的矿物。

多型性:是一种特殊类型的同质多象,是指化学成分相同的物质,形成若干种仅仅在层的堆积顺序上有所不同的层状晶体结构的现象。

放射性:系指铀、钍、镭等元素的原子核能自发地蜕变为另一种原子核,同时释放出α、β、γ射线的现象。

岩浆铀矿床:又称侵入体内型或正岩浆铀矿床。

系指通过岩浆结晶分异作用直接富集形成的铀矿床。

伟晶岩型铀矿床:系指经结晶分异的残余酸性熔浆(极少为碱性熔浆)经冷凝结晶和气成交代而形成铀矿床。

热液铀矿床:是指由不同成因的含铀热水溶液,以及它们的混合热液,在适宜的物理化学条件下及各种有利的地质条件下,经过充填和交代等方式形成的铀的富集体。

蚀变围岩:因热液交代作用而引起的围岩变化称为热液蚀变,而蚀变后的岩石称为蚀变围岩。

火山岩型铀矿床:是指在成因上、时间上和空间上与火山岩密切相关的铀矿床。

铀黑:含氧系数为2.70-2.92的粒状晶质铀矿同质多像:相同化学成分的物质在不同的地质条件(如T,P)下可以形成不同的晶体结构,从而成为不同的矿物。

类质同像:矿物晶体结构中的某种原子或离子可以部分地被性质相似的它种原子或离子替代而不破坏其晶体结构的现象;填空:1、铀在地壳的存在形式主要有三种:铀矿物形式、类质同象置换形式、分散吸附状态形式2四价铀矿物稳定存在的环境条件:还原条件、六价铀矿物稳定存在的环境条件:氧化条件3、铀元素的放射性同位素是:铅4、产铀花岗岩的化学成分特点:酸度大、碱质高、铝过饱、暗色组分少、铀含量高5、不整合面型铀矿床的主要层位的时代是:古元古代6、含铀热液中的来源通常包括:岩浆来源、地下水来源、变质热液来源和构造热液来源7、列举出四种以上当今世界最具工业意义的铀矿床类型:砂岩型、不整合面型、岩浆型、角砾杂岩型8、碳硅泥岩型铀矿床的成因类型分三种:成岩型、淋积型、热造型9、四种工业铀矿物主要是:晶质铀矿、沥青铀矿、钛铀矿、铀石等10、不整合面型铀矿床的主要产地是加拿大和澳大利亚11、碳酸泥岩型铀矿床“二带一区”的分布具体是南秦岭成矿带、江南成矿带和华南成矿带12、铀在各种变质岩中含量的变化规律是随变质作用的加深铀含量逐渐降低13、国际原子能机构将砂岩型铀矿划分为卷状亚型、底河道亚型、板状亚型和前寒武纪亚型14、铀在外生作用中主要的迁移形式有离子形式、机械破碎屑物形式和有机络合物形式。

火山岩型铀矿床

火山岩型铀矿床

5. 具多部位成矿特点:盖层火山岩、基底变质岩或花岗岩 都有可能含矿。火山穹隆、火山口、破火山口、爆发岩筒、 环状、半环状、放射状裂隙都可以含矿。矿体产在断裂交 叉密集裂隙带中、次火山岩体内外接触带、次火山岩体变 异部位、两种不同岩性接触带、喷发间断面、层间破碎带 等部位。 6. 矿体多半成群成带出现,形态复杂,矿体形态呈似层状、 透镜状和脉状、巢状及不规则状。单个矿体规模不大,一 般长几到几十米,少数可达百米以上,厚数厘米至十余米 不等。 7. 热液蚀变发育,矿化时代广。火山岩型铀矿床的成矿从 元古代到新生代均有分布,一般每次成矿都与大陆壳各地 。 区的钙碱性系列火山活动旋回有关。从已有资料来看,国 外同类矿床的形成主要是古生代至第三纪,我国则以中生 代为主晚古生代次之。
1、火山塌陷构造(破火山口构造)
2、火山通道(爆发岩筒)构造
3、火山穹隆构造 4、复合火山岩构造 5、其他控矿构造
火山塌陷构造
概况
特点
火山岩型 铀矿 地质条件 矿化与成 因
岩性岩相 条件 构造条件 火山盆地 控制
实例分析
<2>火山岩型铀矿床的构造条件
古老地盾 边缘带 大地构造 背景 构造级别 地台活化 带
中间地块 带
地槽褶皱带
构造条件
断裂构造 火山机构 构造
<2>火山岩型铀矿床的构造条件
大地构造背景
A,古老地盾的边缘带:该构造单元的基底岩石主 要为太古界的深变质岩和花岗杂岩体,盖层为 元古界的陆相火山沉积岩、砂岩和砾岩层。元 古代是产生了多次构造活动,并伴随岩浆活动。 铀矿床大部分产在安山质火山碎屑岩和沉积岩 的互层中,受构造破碎带和挤压片理化带控制。 矿石中与铀相伴生的元素有Co、Ni、Ag、Bi。 矿床实例以加拿大地盾西部火山岩铀矿床为代 表,如埃尔多拉多矿床。

03铀矿

03铀矿

世界铀储量分布情况
世界主要产铀国家或地区:
– 1. 澳大利亚 – 2. 南非 – 3. 美国 – 4. 加拿大 – 5. 尼日尔 – 6. 巴西 – 7. 纳米比亚
世界已探明的具有工业价值的铀矿床, 大都分布于北美和非洲,其储量约占 目前世界铀总储量的62%。
70年代以来,澳大利亚大规模铀矿床 的发现使之成为世界铀矿资源重要基 地之一。
《能源矿产学》
张静 zhangjing@矿床与勘探教研室铀矿源自质学简介矿床与勘探教研室 张静
zhangjing@
铀矿资源用途
国防工业;
– 核武器
民用核能源
– 核电站
1954年,前苏联原子能发电站开始运转;1956年, 英国;1975年,美国。
法国,比利时、保加利亚瑞典等国的核电量也已占 本国总电力生产的50%~70%。
– 医用等
我国核电站的建设也正在稳步发展。核能是一种很有发展前途 的能源。铀矿资源是核工业的基础,是国家的战略性资源。
第一节 世界铀矿资源概况 第二节 铀的性质与铀矿物特征 第三节 铀矿床的工业要求 第四节 铀矿床学概论 第五节 我国的铀矿资源
(三)酸性火山岩型铀矿床
1980 年 , 前 苏 联 学 者 丹 切 夫 提 出 了
外生铀矿床的分类方案。
(一)地面表生作用形成的铀矿床
1.机械风化作用形成的残积和坡积-洪积含 铀矿物砂矿床
2.化学风化作用形成的矿床氧化带和淋积 铀矿床
(二)沉积作用形成的铀矿床
1.冲积和滨海砂矿床
(三)成岩作用形成的铀矿床
铀矿物也依其成因分为原生和次生铀矿物。
– 从数量上看,次生铀矿物种类较多,而原生 铀矿物种类较少。
– 从工业利用上看,原生铀矿物是铀的主要来 源,次生铀矿物是次要的。

铀资源重点

铀资源重点

铀资源地质学绪论学科的发展阶段第一次找铀高潮:第二次世界大战后到20世纪五六十年代,例如:南非的维特瓦斯兰德矿床。

在外生成矿作用方面:卷型铀矿床成矿期。

内生成矿方面:发现花岗岩中有相当一部分铀易被稀酸和天然水溶液侵出。

发张高峰期:20世纪七八十年代后。

铀矿化类型:有内生和外生或表生类型。

成矿时代:元古代到古生代直到中新生代都有。

成矿主岩:类型有变质岩或花岗岩,火山岩,沉积岩。

矿床实例:1976,北澳的贾比卢卡矿床1968,加拿大阿萨巴斯卡盆地中拉比特湖矿床1975,敖湖矿床1966,非洲尼尔利亚的阿尔利特砂岩型矿床,纳比利亚的罗辛花岗岩型矿床1975,南澳的隐爆角砾岩杂岩型奥林匹克坝矿床1966,俄罗斯斯特烈措夫矿田火山岩型铀矿床1973,澳西区钙结岩型伊利里铀矿床低谷期:上个世纪九十年代思考题及答案1.世界铀资源的分布特点:澳大利亚,哈萨克斯坦,加拿大铀发现较多2.何谓铀矿工业指标,各项指标具体内容是什么?铀矿工业指标:指矿床储量的最低限量,最低可采品位和最低可采厚度。

对于中国,铀矿开采至少达到100t,地浸品位达到万分之一=100pm,开采厚度0.7m以上。

最低品位百分之五,边界品位百分之三。

中国标准:3.我国四大工业铀矿类型:花岗岩型,砂岩型,火山岩型,石英硅泥岩型。

铀元素及矿物的基本特征铀的性质:同位素:U的原子序数是92,原子量是238,有三种同位素,即U238、U235和U234,铀的稳定氧化态只在自然界只有+4和+6价两种。

离子性质:②离子的颜色:U4+呈绿色,UO22+呈黄色③离子的酸碱性:U4+呈弱碱性U6+显两性,但酸性较强,碱性较弱,在酸性溶液中呈UO22+,在碱性溶液中呈U2O72-。

UO22+显碱性④离子的稳定条件:U4+在还原条件下稳定,UO22+在氧化条件下稳定,两者可以相互转化。

铀在地壳中的分布:①铀在岩浆岩中的分布:由超基性岩到酸性岩含量逐渐增高,分布在造岩矿物和副矿物中。

铀资源地质学实验

铀资源地质学实验

二、实验内容:
1、火山岩型铀矿床成矿理论回顾 2、实验矿床介绍 (1)660矿床、610矿床简介 (2)矿床分析步骤与分析方法提示 3、矿床资料:包括文字资料、图表、标本、薄片、 光片等
三、实验安排及重点:
1、实验老师先结合理论课内容对矿例进行介绍,分 析矿床的区域背景、矿床的地质概况、矿化特征及成矿 过程等。
发光分析快速简便,结果可靠。如能与其他方法配合使用, 就能取得较好的效果。
ห้องสมุดไป่ตู้
2、常见铀矿物的特征介绍
包括物理特征、放射性特征、荧光特征等多个方面
3、矿物种
沥青铀矿、晶质铀矿、铀黑、钛铀矿、铈铀钛铁矿、 铀石、脂铅铀矿、红铀矿、水沥青铀矿、钙铀云母、钡 铀云母、铜铀云母、芙蓉铀矿、纤铀碳钙石、板菱铀矿 等。
2、突出富铀层位在成矿中的重要性,强调后期改造 的关键性。
3、学生自我观察与分析。
四、实验作业:
总结碳硅泥岩型铀矿床成矿的一般特征。
2、强调沉积环境、氧化作用与铀成矿的关系。 3、学生自我观察与分析。
四、实验作业:
总结砂岩型铀矿床成矿的一般特征,并对比层 间氧化带型和潜水氧化型铀矿床的异同。
实验六、碳硅泥岩型铀矿床
一、实验目的:
通过本次实验,要求学生掌握碳硅泥岩型铀矿床的 成矿地质条件和矿化特征的分析思路和分析方法,并能 够比较熟练的掌握本类铀矿床的一般特点。
(1)放射性照相 放射性照相是利用铀、钍矿物对照相底片辐照后能使其感光
的特性来检查铀、钍矿物和研究其分布特点的方法。 该方法要求将含有铀、钍矿物的标本磨制成光面或光片。在暗室
中将光面或光片紧压在照相底片(最好是X光底片)上,样品即自行 对底片发生辐照(同时可用弱光源在底片上作好定位标记)。经过一 段时间后,取出底片,按规定处方冲冼即可。底片上与铀、钍矿物 对应处因受射线辐照而变黑,其黑度与矿物中铀、钍含量及辐照时 间成正比。辐照时间可通过试验确定,以变黑部分的轮廓比较清晰 为宜。据试验,沥青铀矿等铀含量高的矿物只需4-5小时的辐照即 可;铀含量1-5%的矿物需时1-3日,铀含量0.5-1%的矿物需时 3-5日。当铀矿物单体很细小时,需适当延长辐照时间。

22种矿床勘查类型划分依据(20201116212324)

22种矿床勘查类型划分依据(20201116212324)
具体类型特征: 05 硫铁矿——硫铁矿和多金属型矿床 确定因素: 第Ⅰ勘查类型:矿体形状简单 -较简单,厚度稳定 -较稳定, 构造简单 -中等的大型矿床 第Ⅱ勘查类型:矿体形状较简单, 厚度较稳定 -不稳定, 构造 简单 -复杂的大 -中型矿床,矿体形状较简单,厚度较稳定, 构造中等的中小型矿床 第Ⅲ勘查类型:矿体形状复杂, 厚度不稳定, 构造中等 -复杂 的中 -小型矿床
第Ⅲ勘查类型:矿体延展规模中 -小型, 矿体不稳定, 构造较
简单 -复杂或岩 (盐 )溶不发育 -发育 ( 或破坏矿体 )
具体类型特征: 09 盐湖和盐类矿床——浅藏卤水矿床

定因素:
第 1 勘查类型:矿体延展规模大型、矿体稳定、构造简单或
岩(盐)溶不发育 ( 或界则 )
第Ⅱ勘查类型:矿体延展规模大 -中型, 矿体较稳定, 构造简
差,构造中等的中 -小型矿床
具体类型特征: 07 钨、锡、汞、锑矿床 具体类型特征:
08 盐湖和盐类矿床——固体矿床
确定因素:
第Ⅰ勘查类型:矿体延展规模大型,矿体稳定,构造简单或
岩(盐)溶不发育 ( 或界线规则 )
第Ⅱ勘查类型:矿体延展规模大 -中型, 矿体较稳定, 构造简
单-中等或岩 (盐 ) 溶中等 -发育 (或界线较规则 )
定,构造、 脉岩影响大, 主要有用组分分布不均匀的脉状体、 小脉状体、小矿柱、小矿囊
具体类型特征: 02 铜、铅、锌、银、镍、钼矿床 确定因素: 第Ⅰ勘查类型:为简单型,五个地质因素类型系数之和为 2.5-3.0,主矿体规模大到巨大,形态简单到较简单,厚度稳 定到较稳定,主要有用组分分布均匀到较均匀,构造对矿体 影响小或中等 第Ⅱ勘查类型:为中等型,五个地质因素类型系数之和为 1.7-2. 4,主矿体规模中等到大,形态复杂到较复杂,厚度 不稳定,主要有用组分分布较均匀到不均匀,构造对矿体形 状影响明显 第Ⅲ勘查类型:为复杂型,五个地质因素类型系数之和为 1-1.6,主矿体规模小到中等,形态复杂,厚度不稳定,主要 有用组分分布较均匀到不均匀,构造对矿体形状影响明显到 严重 具体类型特征: 03 高岭土、膨润土、耐火粘土矿床 确定因素: Ⅰ勘查类型:矿体 (层)延展规模大型,形态规则,厚度稳定, 内部结构、地质构造简单 Ⅱ勘查类型:矿体 (层 )延展规模中一大型,形态较规则,厚 度较稳定,内部结构、地质特征简单至较简单
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碱性岩建造的平均铀含量(10-6)
建 造 霞斜岩,正长 辉石岩,霓霞 -磷霞岩
霞石正长 岩
碱性正 长岩
碱性花岗 岩
碱交代 岩
平均含 量
碱性超基性岩 类 碱性辉长岩类
2.7(7) 1.7(8)
1.5(6) 3.1(20)
0.6(3) —
— —
30(3) —
1.90(13) 2.85(24)
碱性花岗岩类
岩体 矿物种类 黄铁矿 石 英 钾长石 斜长石 黑云母 磁铁矿 钛铁矿 锆 石 黄铁矿 石 英 钾长石 斜长石 黑云母 钛铁矿 锆 石 样品数 5 8 13 13 27 15 5 13 4 7 12 11 6 3 15 U(×10-6) 398.80 3.63 9.62 13.39 47.53 47.27 237.80 3026.00 262.50 7.00 11.00 2.73 23.23 269.00 2190.60 Th(×10-6) 541.40 4.75 8.15 8.39 125.37 243.60 383.00 3252.00 51.75 8.14 6.66 15.46 141.67 383.30 1779.80 Th/U 1.359 1.310 0.261 0.593 2.638 5.153 1.611 1.075 0.1197 1.163 0.645 5.670 0.071 1.425 0.744
1、超基性岩类和基性岩类的铀地球化学特征
据Gabelman J.W(1977),地幔的平均铀含量为 1.5×10-8,钍含量4.5×10-8,Th/U为2~4。
1、超基性岩类和基性岩类的铀地球化学特征
1)铀是大离子亲石元素,与地幔岩中铁 镁造岩矿物具不相容性
在超基性岩和基性岩中,成矿元素主要是Cr、 Ni、Co、Fe、Ti、V、P等,还有亲硫元素:Cu、
Pb、Zn、Mo、Se、Te。
铀是大离子亲石元素,和地幔成分岩浆不相容。 铀在地幔分熔中向低熔组分玄武岩中聚集,导致难 熔组份超基性岩相对更贫铀,含铀相差达1—2个数 量级。
1、超基性岩类和基性岩类的铀地球化学特征
2)大洋地壳的形成与消亡,铀从地幔分 离、富集再转入地幔再循环形成富铀地幔
通过去水、去气,矿物相转变等多种地质作 用,元素重新改组。 在这一地质作用过程中,铀属于清除对象,
碱 性 火 山 岩 中 铀 偏 高 , Th 增 长 比 铀 明 显 , Th/U比值均大于3.3(地壳中花岗岩比值),4.0(玄 武岩比值)。 南格陵兰伊利莫萨克菱黑稀土矿-异霞正长岩中 U为360×10-6,Th(540-680)×10-6; 前 苏 联 某 地 , 霞 石 正 长 岩 中 U62×10 - 6 , Th38×10-6; 挪威斯特耶诺伊的霞石正长岩U0.09×10 - 6 , Th0.55×10-6; 中国赛马碱性岩体U22.4×10-6,Th56.8×10-6。
碱性岩中铀的富集特点
铀主要富集在晚期阶段形成的岩体中。 如科拉半岛洛沃捷尔的钠质火成岩类中的霞石正长 岩体: 早期U11×10-6,Th19×10-6; 中期U16×10-6,Th(15-100)×10-6; 晚期U(100-300)×10-6,Th(100-800)×10-6。 我国赛马碱性岩体: 第一侵入期U(9.5-20)×10-6 ,Th(38.5-67.4) ×10-6, 第二侵入期U(37.5-122.1)×10-6 ,Th(33.7- 129.6)×10-6。
桃山、诸广岩体(中段)晶质铀矿电子探针资料
地区 侵入 期 侵入阶段 次 第三阶段 补 主 补 主 补 主 补 主 补 主 补 主 2 4 样 数 4 1 3 5 11 12 2 2 2 含量(%) Th Pb 2.36 2.49 5.13 7.17 2.44 4.64 2.90 4.22 0.47 -- 2.37 5.20 1.83 1.70 1.33 1.40 1.36 1.81 1.39 1.76 1.985 -- 1.38 2.13
第三章 岩浆铀矿床
一、概述 二、岩浆作用中的铀地球化学 三、岩浆铀矿床成矿地质条件及矿床一 般特征
一、概述
概念:岩浆铀矿床又称侵入体内型或正岩 浆铀矿床。系指通过岩浆结晶分异作用直接富 集形成的铀矿床。 岩浆铀矿床的特征:矿石品位不高,围岩 与矿体界线不清,成矿与成岩同时发生或接续 形成,成矿温度、压力较其他成因类型的铀矿 床高,成矿作用单一。
1)碱性岩中铀的分布特征
铀含量:各碱性岩比钙碱性系列同类岩石高。 如碱性超基性岩的含铀量为1.9×10-6,而钙碱性
系列超基性岩含铀量为0.0n×10-6;
碱性辉长岩类含铀量为2.85×10 -6 ,而钙碱性辉 长岩含铀量为0.2×10-6; 碱性花岗岩的含铀量为8.9—11.3×10-6,比钙碱 性花岗岩的3.5—4.8×10-6高出许多。
二、岩浆作用中的铀地球化学
铀在岩浆岩中的变化是从超基性岩到酸性岩逐
渐升高。
酸性火成岩的全球丰度值为(3.5-4.8)×10-6;
中性火成岩的全球丰度值为(1.6-2.0)×10-6;
基性岩的全球丰度值为(0.5-0.8)×10-6; 超基性岩的全球丰度值为(0.003-0.066)×10-6。
二、岩浆作用中的铀地球化学
3、碱性岩类的铀地球化学特征
里特曼指数=(K2O+Na2O)2/SiO2-43
里特曼指数>4为碱性岩;里特曼指数<4为钙 碱性岩
3、碱性岩类的铀地球化学特征
碱性岩通常为: 1 ) SiO2 含 量 趋 于 中 性 岩 52—65% ( 多 为 52— 55%); 2)K2O+Na2O含量约12%左右; 3)含有大量挥发组分F、Cl、CO2 ,Nb、Ta、 Zr、Tr、U、Th元素含量高; 4)SiO2不饱和的过碱性中性岩类。
矿省的有利区。
1、超基性岩类和基性岩类的铀地球化学特征 4)基性火山岩的铀含量特点
各类玄武岩铀、钍含量及钍铀比值
玄武岩
大洋拉斑玄武岩 夏威夷拉斑玄武岩 日本的拉斑玄武岩 日本的高铝玄武岩 夏威夷碱性玄武岩
日本碱性—橄榄玄武岩
U(×10-6) 0.10 0.18 0.15 0.22 0.99 0.53
第三阶段
主 补 第二阶段 主 补 第一阶段 主
2)铀、钍在花岗岩浆演化过程中地球化学行为 ②铀、钍在花岗岩浆演化中的丰度变化
随花岗岩浆向超酸、偏碱、铝过饱和、少铁、钙 的演化过程,铀丰度有增长的趋势; 钍丰度则相反,有降低的趋势。 铀的地球化学行为是亲酸、亲碱,既有随钾增高
的趋势,也有随钠增高的趋势。
U 76.38 80.80 74.92 73.70 75.76 76.02 79.08 78.56 74.05 -- 77.71 77.17
Ca 0.13 0.08 0.08 0.016 0.10 0.15 0.055 0.04 0.11 -- 0.02 0.03

第二阶段 山 印 支 燕 山 期
第一阶段


诸广
2)铀、钍在花岗岩浆演化过程中地球化学行为
①铀、钍在花岗岩单矿物中的丰度
铀、钍在各种单矿物中的含量变化较大,出现两 个富集高峰。
早结晶的副矿物和暗色矿物的铀、钍含量高;
中、晚阶段晶出的长石、石英的铀、钍含量均 低; 晚阶段晶出的黄铁矿的铀含量又偏高。 相对来说,钍含量增高幅度比铀小,这反映了铀
桃 山
诸 广
印 支 │ 燕 山 期

第一阶段 主 补
中粒二云母花岗岩
中粗粒斑状黑云母花岗岩 细粒二云母花岗岩 细粒少斑黑云母花岗岩 中细粒二云母花岗岩 中粒斑状黑云母花岗岩 中粒二云母花岗岩 中粗粒斑状黑云母花岗岩
38
70 12 12 3 4 4 47
17
8 23 16 14 18 19 18
34
40 7 39 8 28 22 20
第三阶段 第二阶段

广
第一阶段
2)铀、钍在花岗岩浆演化过程中地球化学行为 ③晶质铀矿特征与铀、钍地球化学行为
晶质铀矿形成有两种情况: A、花岗岩的铀丰度值较小,在黑云母花岗岩中一 般不出现晶质铀矿,或晶质铀矿主要在其边缘或顶部相 的二云母花岗岩中; B、铀的丰度值较高,则晶质铀矿较普遍出现在黑 云母花岗岩中。 晶质铀矿富集条件显示出铀既有超酸、偏碱演化而 富集成独立矿物的地球化学行为,也有在较高铀丰度下 在岩浆早期形成独立矿物的地球化学属性。
1)花岗岩中铀的含量及分布特征
铀多富集于暗色矿物黑云母及副矿物,诸如锆 石、磁铁矿、钛铁矿、黄铁矿中。
浅色矿物的铀含量不高,低于岩体的平均铀含
量,但由于浅色矿物总量大,所以其占全岩铀含量
的分额也大。
2)铀、钍在花岗岩浆演化过程中地球化学行为 以诸广、桃山产铀岩体研究的成果为例:
桃山、诸广复式岩体中单矿物铀、钍含量一览表
铀、钍含量按拉斑玄武岩→高铝玄武岩→碱性玄 武岩的顺序增高。 玄武岩类的铀、钍含量有从海洋向大陆随着岩石 中的钾质增高而逐渐增高的趋势。
2、酸性岩类的铀地球化学特征
酸性岩类以富集亲石元素为代表。 富集大离子亲石元素K、Rb、Cs、Sr、 Ba、Th、U、Ce、Pr和富轻稀土元素。 酸性岩与铀的成矿关系密切。
挤兑出来的铀随大量的挥发份流体分散在地幔中,
随着地幔的再次分熔和地幔楔的形成,生成异常 和富集地幔。
1、超基性岩类和基性岩类的铀地球化学特征 3)富集(U)地幔二大类型:富高场强 元素型和贫高场强元素型
富集(U)地幔有二种类型: 一类是富高场强元素型; 另一类是贫高场强元素。 贫高场强元素的富集地幔源区被认为是铀成
Th(×10-6) 0.18 0.69 0.19 0.78 3.9 3.9
Th/U 1.8 4.0 1.6 3.7 3.7 7.6
资料来源
立本等,1956 海尔等,1964 海尔和罗杰斯,1963 海尔和罗杰斯,1963 海尔等,1964 海尔和罗杰斯,1963
相关文档
最新文档