第七章抽样推断

合集下载

第七章 抽样设计与推断(改)

第七章  抽样设计与推断(改)

第七章抽样设计与推断第一节抽样设计一、抽样推断与抽样设计的概念(一)抽样推断抽样推断(Sampling inference)是在抽样调查的基础上,利用样本的实际资料计算样本指标(统计量),并据以推算总体相应特征值(总体参数)的一种统计分析方法。

抽样推断具有如下特点:第一,抽样推断是建立在随机取样的基础上。

按随机原则抽取样本单位,是抽样推断的前提。

所谓随机原则就是在抽选调查单位的过程中,完全排除人为的主观因素的干扰,以保证使现象总体中的每一个个体都有一定的可能性被选中。

换句话讲,哪些单元能够被选作调查单位纯属偶然因素的影响所致。

这里需说明几点:①随机并非“随意”。

随机是有严格的科学含义的,可用概率来描述,而“随便”仍带有人为的或主观的因素,它不是一个科学的概念;②随机原则不等于等概率原则;③随机原则一般要求总体中每个单元均有一个非零的概率被抽中;④抽样概率对总体参数的估计有影响。

只有坚持抽取的随机原则,才能使被抽中单位的频数分布类型与调查对象相同,从而增强被抽中单位对总体的代表性,达到推断总体的目的。

第二,抽样推断是由部分推算整体的—种认识方法。

即对抽取的调查单位进行调查研究,取得调查单位的实际资料,计算出调查单位的指标数值,并据以推断和估计总体的指标数值。

第三,抽样推断以概率论中的大数法则和中心极限定理为理论依据。

第四,抽样误差可以事先计算和控制。

抽样调查除具有十分明显的特色之外,还在实际应用过程中发挥着突出的作用。

其一,抽样调查能够解决全面调查所无法解决的现象的调查问题。

在实际工作中,对某些现象常常可能一方面需要了解其全面情况,另一方面又由于现象自身的特性决定了无法通过全面调查获取资料。

此时,只有使用抽样调查。

该类现象主要有:(1)产品质量的破坏性检验。

如轮胎的里程寿命试验,青砖的抗折耐压试验,炮弹的杀伤力试验,弹簧的抗拉强度试验等等。

(2)无限总体的调查。

无限总体所包含的总体单位数目无限多个,无法一一调查。

统计学原理第七章 抽样调查

统计学原理第七章 抽样调查
29


x A 2 x A ( d ) f ( d )f d σ f f
2
256 72 σ 50 11504 50 53.63 200 200
2
30
第三节 全及指标的推断
一、全及指标的点估计
22
不具有某一标志的单位数用N0表示。 ► 总体成数和标准差与样本成数和标准差的计 算方法相同。只是总体指标用大写字母表示, 样本指标用小写字母表示。例如: ► 具有某一标志的单位数占总体的比重:
N1 P N
总体成数
n1 p n
样本成数
不具有某一标志的单位数占总体的比重:
N0 Q 1 P N
13
► 2.
(二)中心极限定律 ► 1. 独立同分布中心极限定理:证明不论变量 总体服从何种分布,只要它的数学期望和方 差存在,从中抽取容量为n 的样本,则这个 样本的总和或平均数是个随机变量,当n 充 分大时,样本的总和或平均数趋于正态分布.
► 2.
德莫佛-拉普拉斯中心极限定理:证明属性 总体的样本成数和样本方差,在n足够大时, 同样趋于正态分布。
σ N n σ n μx ( ) μx (1 ) n N 1 n N
2 2
总体单位总数
样本单位总数
抽样比例
21
(一)抽样成数的抽样平均误差μp ► 属性总体的标志值是用文字表示的,且标志 只有两个取值,非此即彼,故将属性总体的 标志称为“交替标志”或“是非标志”。 ► 交替标志也可以计算平均数(即成数)和标 准差。为了计算交替标志的平均数和标准差 必须将交替变异的标志过渡到数量标志。 ► 交替标志仍以x表示,设:x =1表示单位具有 某一标志, x = 0表示单位不具有某一标志。 具有某一标志的单位数用N1表示;

第7章 抽样方法

第7章 抽样方法

分层抽样
所谓分层抽样,就是先依据某一种或某几种 特征,将总体划分成几个小的部分,每一个 部分称为一层或一类。然后,在每一个层次 中,采取简单抽样或系统抽样的方法抽取一 个子样本,最后,将这几个子样本合起来构 成总体的样本。
例如:某地共有居民20000户,按经济收入高低进 行分类,其中高收入的居民为4000户,占总体的 20%;中收入的居民为12000户,占总体的60%; 低收入的居民为4000户,占总体的20%。要从中抽 选200户进行购买力调查,则各类型应抽取的样本 单位数为: 经济收入高的样本单位数目为:200*20%=40户 经济收入中的样本单位数目为:200*60%=120户 经济收入底的样本单位数目为:200*20%=40户
较适用于同质性较高的总体
同学练习:
某学校有200位学生,采用等距离抽样方法抽 10个学生做样本。假设抽中的第一位学生排 在第三位,请问其他的样本单位的号码为?
整群抽样
整群抽样先要把调查总体划分为若干个群体, 然后用单纯随机抽样法,从中抽取某些群体 进行全面调查。 例如,要调查家庭副业发展情况,不是直接 抽取居民户.而是以村为单位,从中抽取若 干自然村,然后对中选村的全体居民户进行 调查。
• 样本平均数 x=∑xi / n • 样本标准差 S=√∑(xi- x)2 /n • 样本方差 S2=∑(xi - x)2 /n
6.总体与样本的相互关系 总体与样本的相互关系 样本是总体的缩影。 一次抽样时,一个样本单位必然同时又是一 个总体单位。但一个总体单位却不一定是一 个样本单位。 对一定的调查目的而言,总体是唯一的,样 本则不然。
第七章 抽样调查
胡林娜 温州职业技术学院
7.1抽样调查的基本概念
1.抽样调查的含义 抽样调查是按照一定的规则从总体中抽取 一部分个体单位作为样本,通过对样本的调 查研究所获得的信息资料,来推断总体的信 息资料的方法;因而抽样调查也称作抽样推 断。

第7章 《抽样推断》练习题

第7章 《抽样推断》练习题

《第7章抽样推断》练习题一、单项选择题1、对某市居民生活状况作了一次抽样调查, 据样本资料计算, 平均每居民实际月生活费用76元, 抽样平均误差3元, 调查队推断市居民实际月生活费用在70—82之间, 这一推断的可靠程度为:A、68.27%B、95%C、95.45%D、99.73%2、在一定的抽样平均误差条件下,A、扩大极限误差范围,可以提高推断的可靠程度B、扩大极限误差范围,会降低推断的可靠程度C、缩小极限误差范围,可以提高推断的可靠程度D、缩小极限误差范围,不改变推断的可靠程度3、按设计标准,某自动食品包装机所包装食品的平均每袋重量应为500克。

若要检验该机实际运行状况是否符合设计标准,应该采用A、左侧检验B、右侧检验C、双侧检验D、左侧检验或右侧检验4、一所较大规模的大学教务部决定调整课程时间安排,以便提供足够的时间使大家可以为上课做好准备。

到目前为止,教务部认为课间安排20分钟的时间足够了。

表述零假设H0和备择假设H1A、H0:µ=20 H1:µ≠20B、H0:µ≥20 H1:µ<20C、H0:µ≤20 H1:µ>205、当我们根据样本资料对零假设作出接受或拒绝的决定时,可能出现的情况有:①当零假设为真时接受它;②当零假设为假时接受它;③当零假设为真时拒绝它;④当零假设为假时拒绝它.A、①B、②C、①②③D、①②③④6、根据某城市抽样调查225户,计算出户均储蓄额30000元,抽样平均误差800元,试问概率为90%,户均储蓄余额极限误差是多少?A、53.3B、1.65C、720D、13207、在其他条件不变的情况下,要使抽样误差减少1/3,则样本量必须增加多少倍?A、1/3B、1.25C、3D、9二、多项选择题1、推断统计学研究的主要问题是A、如何科学地确定总体B、如何科学地从总体中抽取样本C、怎样控制样本对总体地代表性误差D、怎样控制总体对样本地代表性误差E、由所抽取地样本去推断总体特征2、在抽样推断中,样本单位数的多少取决于A、总体标准差的大小B、允许误差的大小C、抽样估计的把握程度D、总体参数的大小E、抽样方法和组织形式3、抽样推断的概率度、可靠性和精确度的关系为()A、概率度增大,估计的可靠性也增大B、概率度增大,估计的精确度下降C、概率度减小,估计的精确度下降D、概率度减小,估计的可靠性增大E、估计的可靠性增大,估计的精确度也增大3、影响抽样平均误差大小的因素有A、样本各单位标志值的差异程度B、总体各单位标志值的差异程度C、样本单位数D总体单位数E、抽样方法4、在其他条件不变时,抽样估计的置信度(1-α)越大,则:A、允许误差范围越大B、允许误差范围越小C、抽样估计的精确度越高D、抽样估计的精确度越低E、抽样估计的可靠性越高5、在假设检验中,当我们作出拒绝原假设而接受备择假设的结论时,表示A、有充足的理由否定原假设B、原假设必定是错误的C、犯错误的概率不大于αD、犯错误的概率不大于βE、在原假设为真的假设下发生了小概率事件三、判断改错题1、在抽样推断中,作为推断的总体和作为观察对象的样本都是确定的、唯一的。

第七章 抽样调查

第七章  抽样调查

数据计算出样本均值(平均耐用时间)
x=1055小时,样本成数(合格率) p=91% 依据样本统计量可以对总体参数进行估 计(估计方法将在第三节介绍)。
六、抽样推断的基本原理
样本指标 1、理论基础: 大数定律 中心极限定理 2、抽样估计的基本要求:
无偏性、有效性、一致性
总体指标
第二节 抽样组织方式
对无限总体不能采用全面调查。
另外,有些产品的质量检查具有破坏性,不可能进行全面调
查,只能采用抽样调查。 从理论上讲,有些现象虽然可以进行全面调查,但实际上没 有必要或很难办到,也要采用抽样调查
抽样调查可以用于工业生产过程的质量控制。
三、抽样推断的内容
(一)参数估计。特点是不知道总体的数量特征,
X
x

2
K
p
P p
K
2
抽样平均数平均误差的计算公式:
采用重复抽样:
x

n
此公式说明,抽样平均误差与总体标准差成正 比,与样本容量成反比。(当总体标准差未知 时,可用样本标准差代替)
例:假定抽样单位数增加 2 倍、0.5倍时, 抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍
1 则: x 0.577 3n 3
即:当样本单位数增加2倍时,抽样平均误差为原来的0.577倍。 抽样单位数增加 0.5倍,即为原来的 1.5倍

则:
1 x 0.8165 1.5n 1.5

即:当样本单位数增加0.5倍时,抽样平均误差为原来的0.8165 倍。
例:某施工班组5个工人的日工资分别为:34、38、
例:
某厂生产一种新型灯泡共2000只,随机抽出400只作耐 用时间试验,测试结果平均使用寿命为4800小时,样 本标准差为300小时,求抽样推断的平均误差? 已知:

第七章 抽样推断

第七章 抽样推断

x x X x x
第七章 抽样推断
p p P p p
合适统计量 的估计值 合理的允 许误差 可接受的 置信度水平
t
概率度
5-40
• 区间估计的三要素 估计区间覆盖 总体参数真值 的概率 F(t)
• 区间估计的特点: • 不指出参数的确定数值,而是在一定的概 率保证程度下指出参数的可能范围。 • 估计的可靠程度可知,即为概率保证程度
X
区间估计的两个基本要求: 置信度 精确度
• 希望置信度尽可能大,精确度尽可能高。 • 但在样本容量n一定时,两者矛盾。
一般在给定的概率保证程度下,尽可能 提高估计的精度(通过降低标准误)。
第七章 抽样推断
抽样极限误差(精度) 与概率保证程度(可靠程度) 99.73%
95.45% 68.27%
3 x 2x x
抽样推断包括三方面的内容:
1、抽样。按照随机原则从总体中抽取部分调查 单位(样本)。
2、 构造统计量 。对样本资料进行加工计算, 获得既能反映样本特征又能用于推断总体的样本数 据。 3、推断。运用概率估计方法,以一定的可靠 性推断总体指标数值。
二、抽样推断的特点 1、按随机原则抽取样本单位 2、用部分推断总体 3、抽样推断的误差可以事先计算并加以控 制 4、运用概率估计方法
实际上就是对估计量可允许取的最高值或最 低值进行了限制

ˆ ˆ Biblioteka 例子• 要估计某乡粮食亩产,从8000亩粮食作物中,用不 重复抽样抽取400亩,求得平均亩产为450公斤。如 果确定抽样极限误差为5公斤,这就要求某乡粮食 亩产为450〒5公斤,即在445公斤到455公斤之间。
x
i 1 n

《统计学》第七章抽样推断第二节 抽样误差

《统计学》第七章抽样推断第二节 抽样误差
6-3
经济、管理类 基础课程
统计学
二、抽样误差的影响因素
差异越大,抽 样误差越大
单位数越多, 抽样误差越小
1.总体各单位标志值的差异程度; 2.样本的单位数; 3.抽样的方法; 4.抽样调查的组织形式。
重复抽样的抽 样误差比不重 复抽样的大 6-4 简单随机抽样 的抽样误差最 大
三、抽样平均误差

p p P


如果抽样极限误差用抽样平均误差来 衡量,则有: x t x 或 p t p
9
式中, N为总体单位数; n为样本容量;σP2 为总体成数方 差一般情况下是末知,可用样本成数方差替代σp2 。
8
四、抽样极限误差

抽样极限误差是指用绝对值形式表示的样本指 标与总体指标偏差可允许的最大范围。即:

x x X

即,抽样极限误差是 抽样平均误差的多少 式中, x样本平均指标 ;X 为总体平均指标 倍。我们把倍数 t称 p为样本成数;P 为总体成数 。 为抽样误差的概率度
2
n ( 1- ) 当N 很大时,可近似表示为: = n N
6
1. 重复抽样的条件下
平均数的抽样平均误差 : x

n
式中,n为样本容量; 为总体标准 。


成数的抽样平均误差 : p
p
n
式中,n为样本容量; 为总体成数标准差 P 一般情况下是末知,可用样本成数标准差替代 p。
P(1 P)

7
2. 不重复抽样的条件下
平均数的抽样平均误差 : x 当N很大时近似为 x
2 ( N n)
n( N 1)

2

经济统计学第7章抽样调查

经济统计学第7章抽样调查
CHAPTER ONE
参数的假设检验是根据样本,对总体参数某种假设的正确性作出判断。 可以分别提出两种假设: 前一种不能轻易拒绝的假设为原假 设,后一种为备选假设。假设检验就是根据样本,检验 是否成立, 不成立就接受备选假设 。
一、基本思想: 小概率原则:认为在一次实验中 小概率事件几乎是不可能发生的,小概率事件的概率为显著性水平 。
一个总体的检验
Z 检验 (单尾和双尾)
t 检验 (单尾和双尾)
Z 检验 (单尾和双尾)
2检验 (单尾和双尾)
均值
一个总体
比例
方差
总体方差已知时的均值检验 (双尾 Z 检验)
均值的双尾 Z 检验 (2 已知)
假定条件 总体服从正态分布 若不服从正态分布, 可用正态分布来近似(n30) 原假设为:H0: =0;备择假设为:H1: 0
单侧检验 (原假设与备择假设的确定) 例如,某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在1000小时以上
除非样本能提供证据表明使用寿命在1000小时以下,否则就应认为厂商的声称是正确的 建立的原假设与备择假设应为
H0: 1000 H1: < 1000
第二节
一个正态总体参数的假设检验
-10
100
20
25
-5
25
30
30
0
0
离差
40
35
5
25
50
40
10
100
10
25
-5
25
20
30
0
0
30
35
5
25
40
40
10
100
50
45
15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章抽样推断
一、单项选择
1.抽样调查所必须遵循的基本原则是()。

A.随意原则B.可比性原则C.随机原则D.准确性原则
2.抽样调查的主要目的是( )。

A.广泛运用数学的方法B.计算和控制抽样误差
C.用样本指标来推算总体指标D.修正普查的资料3.是非(交替)标志的标准差为( )。

A.p B.pq C.p(1-P) D.
4.抽样调查按抽取样本的方法不同,可分为( )。

A.大样本和小样本B.重复抽样和不重复抽样
C.点估计和区间估计D.纯随机抽样和分层抽样
5.抽样平均误差反映了样本指标与总体指标之间的()
A.实际误差B.实际误差的绝对值C.平均误差程度D.可能的误差范围
6.抽样平均误差,确切地说是所有样本指标(样本平均数和样本成数)的( )。

A.全距B.平均差C.标准差D.离散系数
7.重复抽样条件下的抽样平均误差与不重复抽样条件下的抽样平
均误差相比( )。

A.前者总是大于后者B.前者总是小于后者C.两者总是
相等D.不能确定大小
8.在抽样平均误差一定的条件下,要提高推断的可靠程度,必须
()。

A.扩大误差B.缩小误差C.扩大极限误差D.缩小极限误差
9.当提高抽样推断的可靠性时,则推断的准确性将( )。

A.保持不变B.随之缩小C.随之扩大D.无法确定10.计算抽样平均误差时,如有若干个样本方差的资料,应根据()
计算。

A.最大一个B.最小一个C.中间一个D.平均值11.抽样平均误差和允许误差的关系是()。

A.抽样平均误差大于允许误差B.抽样平均误差等于允许误差
C.抽样平均误差小于允许误差D.抽样平均误差可以大于、等于或小于允许误差
)。

A.成数的数值越接近于1,成数标准差越大;
B.成数的数值越接近于0,成数标准差越大;
C.成数的数值越接近于0.5,成数标准差越大;
D.成数的数值越接近于0.25,成数标准差越大。

13.纯随机重复抽样条件下,当允许误差△扩大一倍,则抽样单位数n()。

A.只需原来的1/2 B.只需原来的1/4 C.只需原来的1倍D.只需原来的倍
14.根据抽样的资料,一年级优秀生比重为10%,二年级为20%,在抽样人数相等的条件下,优秀生比重的抽样平均误差()。

A.一年级较大B.二年级较大C.相同D.无法比较
15.根据抽样测得100名4岁男孩的平均身高为95cm,标准差为4cm,由此估计全体4岁男孩平均身高在93.8cm 到96.2cm之间的概率为( )。

A.68.27% B.95.00% C.59.45% D.99.73%
16.在纯随机重复抽样条件下,当抽样极限误差时,样本单位数n=100;若其他条件不变,当时,样本单位数将是( )。

A.400 B.100C.50 D.25
17.事先将总体各单位按一定标志排序,然后按相等的距离或间隔抽取样本单位加以调查,这种调查的组织形式为()。

A.简单随机抽样B.等距抽样C.类型抽样D.整群抽样
18.在一次抽样推断中要同时对总体平均数和成数进行推断,如果计算的样本容量,则应取( )。

A.B.C.D.
二、填空
1.抽样调查必须按照原则来抽取样本单位。

2.从总体N中抽取容量为n的样本,在重复抽样的条件下,样本的可能数目为。

3.抽样推断的数学依据是概率论中的大数定律和定理。

4.抽样推断中,判断一个样本估计量是否优良的标准
是、一致性和有效性。

三、名词解释
1.样本
2.抽样平均误差
3.区间估计
4.等距抽样
四、简答
1.什么是抽样调查?有什么特点?
2.影响抽样平均误差的因素有哪些?
3.影响样本容量大小的因素有哪些?
五、计算
1.某电视机厂对一批显像管的质量进行抽样检验,随机抽查200台,发现6台不合格,要求:(1)试按68.27%的概率保证程度推
断这批显像管的合格品率。

(2)若概率保证程度提高到95.45%,则抽样推断的合格品率范围是多少?并由此说明误差范围与概率
度之间的关系。

2.某校有一年级学生1000名,从中随机重复抽取100名进行英语测试,得平均成绩74分,标准差12分。

试以99.73%的可靠性估计假若这1000名学生全部参加这一测试,其平均成绩会是多少?
3.对某鱼塘的鱼进行抽样调查,从鱼塘的不同部位同时撒网捕到鱼150条,其中草鱼125条;150条鱼的平均条重为2公斤,标准差为0.75公斤。

试按99.73%的保证程度:⑴对该鱼塘全部鱼平均每条重量作出区间估计;⑵对该鱼塘草鱼所占比重作区间估计。

4.某电子产品使用寿命在3千小时以下为不合格品,现用简单随机重复抽样方法,从5000
个产品中抽取100个对其使用寿命进行调查,结果如下:
根据以上资料,要求以95%(t=1.96)的可靠性估计:(1)该批产品平均使用寿命所在区间;(2)该批产品合格率所在区间。

5.某学院有4500名学生,按纯随机不重复抽样方式抽选20%,调查在校期间撰写论文或调查报告的篇数,所得分布数列见下表。

试以F(t)=95.45%的保证推断,全校学生在校期间平均每人撰写论文篇数的范围。

6.对一批成品按纯随机不重复抽样方式抽取200件,其中废品为8件,又知抽样数目是总量的1/20,当概率为0.9545时(t=2),是否可以认定这一批产品的废品率不超过5%?
7.某村2009年养羊3000只,用纯随机重复抽样方式抽查其中150只,测得平均每只30公斤,标准差为3.5公斤。

计算:⑴在0.9545的概率保证下,平均每只羊重量的可能范围;⑵在0.9545的概率保证下,3000只羊总重量的可能范围。

8.某电视台要了解某项电视节目的收视率,随机抽选500户城乡居民户作为样本,调查结果有160户收看该电视节目,试以95.45%的概率推断:(1)该电视节目收视率的可能范围;(2)如果收视率的允许误差缩小为原来的1/2,其他条件不变,则样本容量是多少?。

相关文档
最新文档