第7章 抽样推断

合集下载

第七章 抽样调查技术

第七章 抽样调查技术

13
一、简单随机抽样

(一)具体操作步骤:
第一,对总体的每个单位进行编号,总体单位数 为10,000的总体可编为00 001到期10,000号;

第二,在随机数码表(一般的数理统计书中都有 此表)中从任意一个编号数开始,向上、向下或 跳跃选取编号,在00 001和10,000之间选出200个 (样本单位数);
5
2015/12/22
(二)样本总体


概念: 也称抽样总体(sampled population)或者“子 样”、“样本”,是指从全及总体中抽取出来的 单位集合。 大样本与小样本: 样本总体通常是有限总体,它所包含的的总 体单位数目称为样本容量(通常用英文字母n来表 示)。一般来说,样本单位数达到或者超过30个 称为大样本,而在30个以下的称为小样本。
第二,等距抽样的效率取决于对总体进行 排列时所使用的标志值。在等距抽样中, 调研人员假设总体是有序的。

2015/12/22
23
三、分层抽样

(一)分层抽样的具体步骤 (二)分层抽样的方法 (三)分层指标的选择 (四)分层抽样的优缺点 (五)分层抽样适用的范围
2015/12/22
24

假如我们要进行北京市居民家用电器的拥 有状况调查,采用整群抽样方法,那么, 我们在北京市3,600个居民委员会中随机抽 取20个居委会,这20个居委会中的所有户都 成为我们的调查样本。
2015/12/22
32
(二)采用整群抽样的原因


原因一:当缺少基本单位的名单而难以 直接从总体中抽取所要调查的基本单位。 原因二:即使容易获得个体的抽样框, 但从费用上考虑,直接从个体抽样获得 的样本可能比较分散。 原因三:采用整群抽样是抽样调查本身 目的的需要。 原因四:如果某些总体的各个子总体之 间的差异不大。

(抽样检验)第七章整群抽样最全版

(抽样检验)第七章整群抽样最全版

(抽样检验)第七章整群抽样第七章整群抽样第壹节整群抽样概述壹、整群抽样的概念整群抽样是先将总体各单元划分成若干群(组),然后以群为单位,从中随机抽取壹部分群,对中选群内的所有单元进行全面调查。

确切地说,这种抽样组织形式应称为单级整群抽样。

如果总体中的单元能够分成多级,则能够对前几级单元采用多阶抽样,而在最后壹阶中对该阶抽样单元所包含的全部个体(最基本单元)进行调查,这种抽样称作多级整群抽样。

本章只讨论单级整群抽样。

设总体被划分为N群,第i群含有Mi个次级单元,全部总体次级抽样单元数记为M0,即M0=∑M i。

当诸Mi都相等时,称为等群;否则,称为不等群。

采用整群抽样的俩个理由:-抽选群能大大降低数据收集的费用,当总体的分布比较广且调查采用面访时更是如此;-从总体中直接抽选个体在实际中且不总是可行的(没有关于个体的抽样框);有时,抽选单元组成群体组更简便易行(如整个住户)。

整群抽样包括俩步:首先,总体被分为群;然后,在总体中抽取群的样本且访问群中的所有单元。

如果总体单元是自然分成组或群的,创建壹个这种关于群的抽样框且对它们进行抽样比创建总体中所有单元的名录框更为容易。

或者,无法得到关于总体中所有单元的名录框,但却有这些单元分布地域的地图,因而能够创建地域框。

群的抽取能够采用简单随机抽样、系统抽样或PPS抽样等各种不同的方法。

二、群的划分问题整群抽样策略的统计效率取决于群内单元的相似程度有多大,每个群中有多少单元,及抽中群的数量。

同分层抽样壹样,整群抽样的前提是先要对总体进行分群。

关于群的划分,有俩个问题:壹是如何定义群,即当群且非是壹个自然形成的单位时,确定每个群的组成;二是如何确定群的规模即群的大小。

分层抽样是在各层都进行随机抽样,“层是缩小了的总体”,抽样单元仍然是总体基本单元。

这决定了分层的原则是:尽量缩小层内差异,而扩大层间差异。

而整群抽样只是在各群之间抽取壹部分群进行调查,且在抽中的群内作全面调查。

统计学原理第七章 抽样调查

统计学原理第七章 抽样调查
29


x A 2 x A ( d ) f ( d )f d σ f f
2
256 72 σ 50 11504 50 53.63 200 200
2
30
第三节 全及指标的推断
一、全及指标的点估计
22
不具有某一标志的单位数用N0表示。 ► 总体成数和标准差与样本成数和标准差的计 算方法相同。只是总体指标用大写字母表示, 样本指标用小写字母表示。例如: ► 具有某一标志的单位数占总体的比重:
N1 P N
总体成数
n1 p n
样本成数
不具有某一标志的单位数占总体的比重:
N0 Q 1 P N
13
► 2.
(二)中心极限定律 ► 1. 独立同分布中心极限定理:证明不论变量 总体服从何种分布,只要它的数学期望和方 差存在,从中抽取容量为n 的样本,则这个 样本的总和或平均数是个随机变量,当n 充 分大时,样本的总和或平均数趋于正态分布.
► 2.
德莫佛-拉普拉斯中心极限定理:证明属性 总体的样本成数和样本方差,在n足够大时, 同样趋于正态分布。
σ N n σ n μx ( ) μx (1 ) n N 1 n N
2 2
总体单位总数
样本单位总数
抽样比例
21
(一)抽样成数的抽样平均误差μp ► 属性总体的标志值是用文字表示的,且标志 只有两个取值,非此即彼,故将属性总体的 标志称为“交替标志”或“是非标志”。 ► 交替标志也可以计算平均数(即成数)和标 准差。为了计算交替标志的平均数和标准差 必须将交替变异的标志过渡到数量标志。 ► 交替标志仍以x表示,设:x =1表示单位具有 某一标志, x = 0表示单位不具有某一标志。 具有某一标志的单位数用N1表示;

《统计学原理》课件第七章抽样调查

《统计学原理》课件第七章抽样调查
4 -6
第二节 抽样调查的基本概念
全及总体(总体) 样本总体(样本)
几组基 本概念
重复抽样 不重复抽样
大数定律 中心极限定理
4 -7
研究对象
抽 取 方 法
重复考虑顺序 不重复不考虑 顺序

究 原
总体分布 样本分布 抽样分布

一、全及总体和样本总体
全及总体:也称总体。指所要认识对象的全体。 用N表示有限总体的单位数,称总体容量。
m
lim p n
n
p
ε
1
贝努大数定律对于抽样调查的意义:
从理论上解释了用频率代替概率的理论依据, 即随着抽样单位数n的增加,事件A发生的频率接近 于事件A发生的概率。
4 - 18
大数定律特点
大数定律论证了抽样平均数趋近于总体平均 数的趋势,这为抽样推断提供了重要依据。 但是:
抽样平均数和总体平均数的离差究竟有多大? 离差的分布状况怎样? 离差不超过一定范围的概率究竟有多少?
(二)抽样成数的抽样平均误差
重复抽样: 不重复抽样:
p
p1 p
n
p
p1 p 1 n
n N
说明:实际应用中,平均数和成数的标准差一般是 未知的,通常采用如下方式解决 (1)用过去调查的资料 (2)样本方差的资料代替总体方差 (3)用小规模调查资料 (4)用估计材料
4 - 30
【进上例行者】测为试合某(1,格灯)平资品泡均料,厂使如计对用下算10时。这00按批0间个质灯:x产量泡品规的进定时x行ff,间寿灯抽命2泡样12检10使平40测0用均0,寿误随1命差0机5在和7(抽小1合0取时格002)率小%样的时本平以
按照随机原则 从调查对象中抽取一部分单位进行 观察,并运用数理统计的原理,以被抽取的那部分 单位的数量特征为代表,对总体做出数量上的推断 分析

第7章 抽样方法

第7章 抽样方法

分层抽样
所谓分层抽样,就是先依据某一种或某几种 特征,将总体划分成几个小的部分,每一个 部分称为一层或一类。然后,在每一个层次 中,采取简单抽样或系统抽样的方法抽取一 个子样本,最后,将这几个子样本合起来构 成总体的样本。
例如:某地共有居民20000户,按经济收入高低进 行分类,其中高收入的居民为4000户,占总体的 20%;中收入的居民为12000户,占总体的60%; 低收入的居民为4000户,占总体的20%。要从中抽 选200户进行购买力调查,则各类型应抽取的样本 单位数为: 经济收入高的样本单位数目为:200*20%=40户 经济收入中的样本单位数目为:200*60%=120户 经济收入底的样本单位数目为:200*20%=40户
较适用于同质性较高的总体
同学练习:
某学校有200位学生,采用等距离抽样方法抽 10个学生做样本。假设抽中的第一位学生排 在第三位,请问其他的样本单位的号码为?
整群抽样
整群抽样先要把调查总体划分为若干个群体, 然后用单纯随机抽样法,从中抽取某些群体 进行全面调查。 例如,要调查家庭副业发展情况,不是直接 抽取居民户.而是以村为单位,从中抽取若 干自然村,然后对中选村的全体居民户进行 调查。
• 样本平均数 x=∑xi / n • 样本标准差 S=√∑(xi- x)2 /n • 样本方差 S2=∑(xi - x)2 /n
6.总体与样本的相互关系 总体与样本的相互关系 样本是总体的缩影。 一次抽样时,一个样本单位必然同时又是一 个总体单位。但一个总体单位却不一定是一 个样本单位。 对一定的调查目的而言,总体是唯一的,样 本则不然。
第七章 抽样调查
胡林娜 温州职业技术学院
7.1抽样调查的基本概念
1.抽样调查的含义 抽样调查是按照一定的规则从总体中抽取 一部分个体单位作为样本,通过对样本的调 查研究所获得的信息资料,来推断总体的信 息资料的方法;因而抽样调查也称作抽样推 断。

第7章 《抽样推断》练习题

第7章 《抽样推断》练习题

《第7章抽样推断》练习题一、单项选择题1、对某市居民生活状况作了一次抽样调查, 据样本资料计算, 平均每居民实际月生活费用76元, 抽样平均误差3元, 调查队推断市居民实际月生活费用在70—82之间, 这一推断的可靠程度为:A、68.27%B、95%C、95.45%D、99.73%2、在一定的抽样平均误差条件下,A、扩大极限误差范围,可以提高推断的可靠程度B、扩大极限误差范围,会降低推断的可靠程度C、缩小极限误差范围,可以提高推断的可靠程度D、缩小极限误差范围,不改变推断的可靠程度3、按设计标准,某自动食品包装机所包装食品的平均每袋重量应为500克。

若要检验该机实际运行状况是否符合设计标准,应该采用A、左侧检验B、右侧检验C、双侧检验D、左侧检验或右侧检验4、一所较大规模的大学教务部决定调整课程时间安排,以便提供足够的时间使大家可以为上课做好准备。

到目前为止,教务部认为课间安排20分钟的时间足够了。

表述零假设H0和备择假设H1A、H0:µ=20 H1:µ≠20B、H0:µ≥20 H1:µ<20C、H0:µ≤20 H1:µ>205、当我们根据样本资料对零假设作出接受或拒绝的决定时,可能出现的情况有:①当零假设为真时接受它;②当零假设为假时接受它;③当零假设为真时拒绝它;④当零假设为假时拒绝它.A、①B、②C、①②③D、①②③④6、根据某城市抽样调查225户,计算出户均储蓄额30000元,抽样平均误差800元,试问概率为90%,户均储蓄余额极限误差是多少?A、53.3B、1.65C、720D、13207、在其他条件不变的情况下,要使抽样误差减少1/3,则样本量必须增加多少倍?A、1/3B、1.25C、3D、9二、多项选择题1、推断统计学研究的主要问题是A、如何科学地确定总体B、如何科学地从总体中抽取样本C、怎样控制样本对总体地代表性误差D、怎样控制总体对样本地代表性误差E、由所抽取地样本去推断总体特征2、在抽样推断中,样本单位数的多少取决于A、总体标准差的大小B、允许误差的大小C、抽样估计的把握程度D、总体参数的大小E、抽样方法和组织形式3、抽样推断的概率度、可靠性和精确度的关系为()A、概率度增大,估计的可靠性也增大B、概率度增大,估计的精确度下降C、概率度减小,估计的精确度下降D、概率度减小,估计的可靠性增大E、估计的可靠性增大,估计的精确度也增大3、影响抽样平均误差大小的因素有A、样本各单位标志值的差异程度B、总体各单位标志值的差异程度C、样本单位数D总体单位数E、抽样方法4、在其他条件不变时,抽样估计的置信度(1-α)越大,则:A、允许误差范围越大B、允许误差范围越小C、抽样估计的精确度越高D、抽样估计的精确度越低E、抽样估计的可靠性越高5、在假设检验中,当我们作出拒绝原假设而接受备择假设的结论时,表示A、有充足的理由否定原假设B、原假设必定是错误的C、犯错误的概率不大于αD、犯错误的概率不大于βE、在原假设为真的假设下发生了小概率事件三、判断改错题1、在抽样推断中,作为推断的总体和作为观察对象的样本都是确定的、唯一的。

第七章 抽样推断

第七章 抽样推断

x x X x x
第七章 抽样推断
p p P p p
合适统计量 的估计值 合理的允 许误差 可接受的 置信度水平
t
概率度
5-40
• 区间估计的三要素 估计区间覆盖 总体参数真值 的概率 F(t)
• 区间估计的特点: • 不指出参数的确定数值,而是在一定的概 率保证程度下指出参数的可能范围。 • 估计的可靠程度可知,即为概率保证程度
X
区间估计的两个基本要求: 置信度 精确度
• 希望置信度尽可能大,精确度尽可能高。 • 但在样本容量n一定时,两者矛盾。
一般在给定的概率保证程度下,尽可能 提高估计的精度(通过降低标准误)。
第七章 抽样推断
抽样极限误差(精度) 与概率保证程度(可靠程度) 99.73%
95.45% 68.27%
3 x 2x x
抽样推断包括三方面的内容:
1、抽样。按照随机原则从总体中抽取部分调查 单位(样本)。
2、 构造统计量 。对样本资料进行加工计算, 获得既能反映样本特征又能用于推断总体的样本数 据。 3、推断。运用概率估计方法,以一定的可靠 性推断总体指标数值。
二、抽样推断的特点 1、按随机原则抽取样本单位 2、用部分推断总体 3、抽样推断的误差可以事先计算并加以控 制 4、运用概率估计方法
实际上就是对估计量可允许取的最高值或最 低值进行了限制

ˆ ˆ Biblioteka 例子• 要估计某乡粮食亩产,从8000亩粮食作物中,用不 重复抽样抽取400亩,求得平均亩产为450公斤。如 果确定抽样极限误差为5公斤,这就要求某乡粮食 亩产为450〒5公斤,即在445公斤到455公斤之间。
x
i 1 n

《统计学》第七章抽样推断第二节 抽样误差

《统计学》第七章抽样推断第二节 抽样误差
6-3
经济、管理类 基础课程
统计学
二、抽样误差的影响因素
差异越大,抽 样误差越大
单位数越多, 抽样误差越小
1.总体各单位标志值的差异程度; 2.样本的单位数; 3.抽样的方法; 4.抽样调查的组织形式。
重复抽样的抽 样误差比不重 复抽样的大 6-4 简单随机抽样 的抽样误差最 大
三、抽样平均误差

p p P


如果抽样极限误差用抽样平均误差来 衡量,则有: x t x 或 p t p
9
式中, N为总体单位数; n为样本容量;σP2 为总体成数方 差一般情况下是末知,可用样本成数方差替代σp2 。
8
四、抽样极限误差

抽样极限误差是指用绝对值形式表示的样本指 标与总体指标偏差可允许的最大范围。即:

x x X

即,抽样极限误差是 抽样平均误差的多少 式中, x样本平均指标 ;X 为总体平均指标 倍。我们把倍数 t称 p为样本成数;P 为总体成数 。 为抽样误差的概率度
2
n ( 1- ) 当N 很大时,可近似表示为: = n N
6
1. 重复抽样的条件下
平均数的抽样平均误差 : x

n
式中,n为样本容量; 为总体标准 。


成数的抽样平均误差 : p
p
n
式中,n为样本容量; 为总体成数标准差 P 一般情况下是末知,可用样本成数标准差替代 p。
P(1 P)

7
2. 不重复抽样的条件下
平均数的抽样平均误差 : x 当N很大时近似为 x
2 ( N n)
n( N 1)

2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


D 所调查的200名学生
正确答案是( C )
同步训练
8. 某大学的一位研究人员希望估计该大学本科生 平均每月的生活费支出,为此,他调查了200名学 生,发现他们每月平均生活费支出是500元。该研 究人员感兴趣的参数是( ) A 该大学的所有学生 B该大学所有大学生的月平均生活费支出 C该大学所有的在校本科生
经常采用的样本指标主要有样本均值、样本比例和样 本方差。
(二)总体指标和样本指标

样本均值:

未分组 分 组
x x2 xn x 1 n
x
i 1
n
i


样本比例:
x f x f
i i
n
i

样本方差:

n1 p n
S
S
2
未分组
2
(x
i
i
x)2
n 1
x)2 fi
全及总体指标:参数 (未知量) 统计推断 样本总体指标:统计量 (已知量)
二、抽样推断的特点 • 按随机原则抽取样本
每个单位都有 相同的被抽中 的机会,哪个单 位被抽中,由随 机因素确定,完 全排除抽样者 的个人主观意 志
• 运用概率论的理论和方法,用样本指标来推断 总体指标。 • 推断的误差可以事先计算和控制。
N! M n!( N n)!
M
( N n 1)! n!( N 1)!
(五)抽样组织方式
简单随机抽样
类型抽样
整群抽样 等距抽样 多阶段抽样
抽样的组织方式
简单随机抽样
简单随机抽样也叫纯随机抽样。它是按照随机原则直接从总体 N个单位中抽取n个单位作为样本,然后通过对样本单位的调
查观测,计算出样本指标,据以对相应的总体指标作出推断
正确答案是( B )
同步训练
12. 为了解大学生的上网时间,从全校所有学生 宿舍中随机抽取50个宿舍,然后对抽中宿舍中的 每个学生进行调查,这种抽样调查方法是 A. 分层抽样


B. 简单随机抽样
C. 系统抽样 D. 整群抽样
正确答案是( D )
同步训练
13. 在抽取样本时,一个元素被抽中后不再放回 总体,然后再从所剩下的元素中抽取第二个元素, 直到抽取n个元素为止,这样的抽样方法称为 A. 重复抽样
抽选样本的方法

直接抽选法 抽签法 随机数码表法
抽样的组织方式
分层抽样
设总体由N个单位构成,把总体划分为K层(组), 使 N N1 N 2 ... N K , 然后从每类中随机抽取个 ni 单位,构成容量为n的样本, 使得 n n1 n1 ... nk
抽样的组织方式
正确答案是( C )
同步训练
6. 为了估计全国高中学生的平均身高,从20个城 市选取了100所中学进行调查。在该项研究中,样 本是( ) A 100所中学


B 20个城市
C 全国的高中学生 D 100所中学的高中学生
正确答案是( D )
同步训练
7. 某大学的一位研究人员希望估计该大学本科生 平均每月的生活费支出,为此,他调查了200名学 生,发现他们每月平均生活费支出是500元。该研 究人员感兴趣的总体是( ) A 该大学的所有学生 B该大学所有大学生的总生活费支出 C该大学所有的在校本科生
同步训练
1. 质检部门从某企业一天生产的手机中随机抽取 20部进行检查,推断该批手机的合格率。这项研 究的总体是

A. 20部手机
B. 一天生产的全部手机


C. 20部手机中合格的手机
D. 一天生产的手机中合格的手机。
正确答案是( B )
同步训练
2. 一所大学从全校学生中随机抽取300人作为样 本进行调查,其中80%的人回答他们的月生活费 支出在500元以上。这里的300人是 A. 总体
第七章 抽样推断
统计学
STATISTICS
统计名言
不象其他科学,统计从来不打算使 自己完美无缺,统计意味着你永远 不需要确定无疑。
—— Gudmund R.Iversen
5-2
学习内容
• • • • • 抽样推断概述 抽样推断的理论依据 抽样分布 参数估计 必要样本数目的确定
第一节 抽样推断概述

分 组
(x
n 1
(三)抽样方法
•重复抽样和不重复抽样
•考虑顺序的抽样和不考虑顺序的抽样
抽样方法—重复抽样
从总体N个单位中随机抽取一个容量为n的样本,每
次抽取一个单位,把结果登记后再放回到总体中,重新
参加下一次的抽取.
抽出个体 登记特征 放回总体 继续抽取
抽样方法—不重复抽样 从总体N个单位中随机抽取一个容量为n的样本, 每次抽取一个单位,把结果登记后不再放回到 总体参加下一次的抽取.
学习目标
• • • • 抽样推断概念(理解) 抽样推断的特点(理解) 抽样推断的应用(理解) 几个基本概念(掌握)
一、抽样推断的概念
抽样推断是建立在概率论基础上的一种科学的统计分
析方法。它是指按照随机原则,从全及总体中抽取一 部分单位作为样本进行实际调查,然后根据调查所得 的样本数据,对总体的特征值做出具有一定可靠程度 的推断,以反映总体的数量特征或数量关系。


B. 样本
C. 变量 D. 统计量
正确答案是( B )
同步训练
3. 一项调查表明,在所抽取的2000个消费者中, 他们每月在网上购物的平均花费是200元,这项调 查的样本是 A. 2000个消费者


B. 所有在网上购物的消费者
C. 所有在网上购物的消费者的网上购物的平均花 费金额
11. 分层机抽样的特点是 A. 使得总体中的每一个元素都有相同的机会被 抽中 B. 在抽样之前先将总体的元素划分为若干类,使 得每一类都有相同的机会被抽中 C. 先将总体划分成若干群,使得每一群都有相同 的机会被抽中

D. 先将总体各元素按某种顺序排列,使得总体 中的每一个元素都有相同的机会被抽中
2.概率 概率是用来度量随机事件出现的可能性大小。 从不同角度,概率有三种定义:
(1)概率的统计定义

在相同条件下进行大量的重复试验,一个随机事件出 现的次数和总的试验次数之比,称为这个事件在这次 试验中出现的频率,以频率作为概率的近似值。
统计学
概率的统计定义
(例题分析)
例如,投掷一枚硬币,出现正面和反面的频率, 随着投掷次数 n 的增大,出现正面和反面的频率 稳定在1/2左右

D. 2000个消费者的网上购物的平均花费金额
正确答案是( A )
同步训练
4. 最近发表的一项调查表明,“汽车消费税率调 整后,消费者购买大排量汽车的比例显著下降”。 这一结论属于 A. 对样本的描述


B. 对样本的推断
C. 对总体的描述 D. 对总体的推断
正确答案是( D )
正面 /试验次数
1.00
0.75 0.50
0.25
0.00 0 5 - 49 25 50 75 试验的次数 100 125
(一)随机事件及其概率
1.随机事件
我们经常接触到的现象可以分为两类,一类叫确 定性现象,一类叫不确定性现象,在概率论中称 为随机现象。 为了研究随机现象内部存在的数量规律性,我们 必须对随机现象进行多次重复试验。每次试验中, 可能发生可能不发生的事件称为随机事件(或偶 然事件)。
(一)随机事件及其概率
也可以称为总体参数。
由于全及总体是唯一确定的,所以根据全及总体计算 的总体指标也是确定的量。我们所要估计的总体指标 主要有总体均值、总体比例和总体方差。
(二)总体指标和样本指标

总体均值:

未分组 分 组
X X2 X N X 1 N
X
i 1
N
i

பைடு நூலகம்X F X F
i i
抽出 个体
登记 特征
继续 抽取
抽样方法—考虑顺序的抽样
从总体N个单位中抽取n个单位构成样本,不但考虑样本 各单位成分的不同,而且还要考虑样本各单位的中选顺 序.
即中选成分相同但中选顺序不同的视为不同样本
抽样方法—不考虑顺序的抽样
从总体N个单位中抽取n个单位构成样本,只考虑样本各 单位成分的不同,不管样本各单位的中选顺序.
抽样的组织方式
多阶段抽样
—概念:
• 把抽样过程分成若干阶段来完成。抽样时先抽总体 中范围较大的单位,再从抽中的范围大的单位中抽 取范围小的单位,逐次类推,直到最后抽到样本单 位。
–例如:我们要对全国城市居民的收入状况进行调查,
可以先抽省,再从抽中的省中抽市,从抽中的市中抽 居民区,最后从抽中的居民区中抽取居民,整个抽样 过程分成了四个阶段。
分层抽样 • 可以提高样本的代表性 • 可以缩小总体变异程度对抽样误差的影响, 只受组内方差影响,不受组间方差影响.
抽样方法
•等比例类型抽样
n nk n1 n n 2 3 N1 N2 N3 NK N
ni
Ni n N
•不等比例抽样
抽样的组织方式
等距抽样
先将总体各单位按某一标志排队,然后按固定的顺序和间隔来抽 取调查单位的一种组织方式.
三、抽样推断的应用
• 无法或很难进行全面调查而又需要了解其 全面情况时
• 某些可以采用全面调查的社会经济现象, 也可采用抽样推断 • 可用于生产过程的质量控制
四、抽样推断的几个基本概念
• • • • •
全及总体与样本总体 全及指标与样本指标 抽样方法 样本的可能数目 抽样组织方式
相关文档
最新文档