(完整版)第七章抽样推断与检验习题(含答案)

合集下载

抽样检验基础知识试题及答案

抽样检验基础知识试题及答案

抽样检验基础知识考试试题姓名_______ 编号_______ 分数:_______ 一.填空题。

(每小空2分,共40分)1.写出简写英文的中文意思:N- 批产品n-样本d-不合格品数或不合格数2.写出简写英文的中文意思:Ac-接收数Re- 不接收数,L:level水平)3.抽样检验按抽样次数分类:1.一次抽样 2. 二次抽样 3.多次抽样4.序贯抽样4.抽样检验按数据的性质分类:计数抽样检验,计量抽样检验5.抽样美国军用标准:MIL-STD-105E,美国国家标准:ANSI/ASQZ1.4-20036.抽样国际标准:ISO2859-1 1999,中国国家标准:GB/T2828.1-20037.抽样三种严格度:正常检验、放宽检验、加严检验8.AQL共有26档,在選擇AQL時Major 、Minor最好相差一個等級。

9.致命不合格CR(Critical)--通常称为A类不合格,严重不合格MA (Major) --通常称为B类不合格,轻微不合格MI (Minor)--通常称为C类不合格10.我司不合格批的处理: 退货返工. 或让步接收(特采)二、问答题(共60分)。

1.写出MIL-STD-105E一般检验水平3个检验水平和4个特殊检验水平,各个检验水平判断能力及给它们排序答:一般检验水平分别是I II III ,4个特殊检验水平分别是S-1 S-2 S-3 S-4。

一般检验水平高于特殊检验水平。

水平II的样本量是水平I样本量的2倍水平III的样本量是水平II样本量的的1.5倍。

III>II>I> S-4>S-3>S-2>S-1.2.简述AQL的定义答:接收质量限AQL( Acceptance Quality Limit),是当一个连续系列批被提交验收抽样时,可允许的最差过程平均水平.AQL以不合格品百分数或每百单位产品不合格数表示.3. 简述AQL选用原则←答:(1)军用产品的AQL比工业产品的小,工业产品的AQL值要比民用产品的小.←(2)A类不合格品的AQL值应比B类不合格品的小,B类不合格品的AQL值要比A类小.←(3)检验项目越多,AQL值越大;←(4)单项检验的AQL值应严于多项目检验;←(5)电气性能的检验AQL值应严于机械性能,其次是外观性能.←(6)原材料、零部件的AQL值比成品检验的AQL值小.←(7)订货方可根据要求提供满意的AQL值,但需考虑生产方的生产能力.AQL值提得过严(过小),会使生产方的成本增加,故确定AQL值应与产品的质量和性能水平一致.4. 我司成品出货检验采用MIL-STD-105E,不合品MA AQL=0.4,MI AQL=1.0,一般检验水平Ⅱ,搅拌器送检1008PCS,写出一次抽样方案:答:抽125PCS ,MA: 1,2 MI:3,45. 我司成品出货检验采用MIL-STD-105E,不合品:B类AQL=0.4,C类AQL=1.0,一般检验水平Ⅱ,CO成品送检10002PCS,写出一次抽样方案:答:抽315PCS , MA:3,4 MI:7,86. 应急灯补焊线送检摇控器CP-TX HAND HELD 30PCS,采用MIL-STD-105E,不合品MAAQL=0.4,MI AQL=1.0,一般检验水平Ⅱ,写出一次抽样方案:答:30PCS全检7.IQC进料开关20000PCS,不合品AQL=0.4,盐雾测试按特殊抽样S-2, 写出一次抽样方案:答:抽8PCS,0,18. IQC进料螺丝20000PCS,不合品AQL=0.4,尺寸量测按特殊抽样S-2, 写出一次抽样方案:答:抽32PCS,0,1。

抽样推断计算题及答案

抽样推断计算题及答案

抽样推断计算题及答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】5、某工厂有1500个工人,用简单随机重复抽样的方法抽出50个工人作为样本,调查其工资水平,资料如下:要求:(1)计算样本平均数和抽样平均误差;(2)以%的可靠性估计该工厂的月平均工资和工资总额的区间。

6、采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件。

(1)计算合格品率及其抽样平均误差;(2)以%的概率保证程度(2t=)对合格品的合格品数量进行区间估计;(3)如果极限差为%,则其概率保证程度是多少7、某电子产品使用寿命在3000小时以下为不合格品,现在用简单随机抽样方法,从5000个产品中抽取100个对其使用寿命进行调查。

其结果如下:根据以上资料计算:(1)按重复抽样和不重复抽样计算该产品平均寿命的抽样平均误差;(2)按重复抽样和不重复抽样计算该产品合格率的抽样平均误差;(3)根据重复抽样计算的抽样平均误差,以%的概率保证程度(1t=)对该产品的平均使用寿命和合格率进行区间估计。

8、外贸公司出口一种食品,规定每包规格不低于150克,现在用重复抽样的方法抽取其中的100包进行检验,其结果如下:要求:(1)以%的概率估计这批食品平均每包重量的范围,以便确定平均重量是否达到规格要求;(2)以同样的概率保证估计这批食品合格率范围;9、某学校有2000名学生参加英语等级考试,为了解学生的考试情况,用不重复抽样方法抽取部分学生进行调查,所得资料如下:试以%的可靠性估计该学生英语等级考试成绩在70分以上学生所占比重范围。

11、对一批成品按重复抽样方法抽选100件,其中废品4件,当概率为%(2t=)时,可否认为这批产品的废品不超过6%14、某乡有5000农户,按随机原则重复抽取100户调查,得平均每户纯收入12000元,标准差2000元。

要求:(1)以95%的概率( 1.96t=)估计全乡平均每户年纯收入的区间;(2)以同样概率估计全乡农户年纯收入总额的区间范围。

抽样推断练习试卷1(题后含答案及解析)

抽样推断练习试卷1(题后含答案及解析)

抽样推断练习试卷1(题后含答案及解析)题型有:1. 单选题单项选择题以下每小题各有四项备选答案,其中只有一项是正确的。

1.抽样推断的主要目的是( )。

A.用样本指标来推算总体指标B.对调查单位作深入研究C.计算和控制抽样误差D.广泛运用数学方法正确答案:A解析:抽样推断是指按照随机的原则从调查的总体中抽取一部分样本单位进行观察,并以样本指标对总体指标做出具有一定可靠性的估计和推断,从而达到对调查总体的认识的一种统计方法。

抽样推断的主要目的是用已知的样本指标来推断未知的总体指标。

知识模块:抽样推断2.某大学的一位研究人员希望估计该大学本科生平均每月的生活费支出,为此,他调查了该大学200名本科生,发现他们每月平均生活费支出是500元。

该研究人员感兴趣,的样本指标是( )。

A.该大学的所有本科生人数B.该大学所有本科生月平均生活费支出C.该大学所有本科生的月生活费支出D.所调查的200名本科生的平均月生活费支出正确答案:D解析:样本指标是指根据样本各单位标志值计算的综合指标,常用的样本指标有样本平均数、样本成数、样本方差和样本标准差。

题中,研究人员想通过所调查的200名学生的平均月生活费支出来推断该大学所有本科生月平均生活费支出,感兴趣的指标是样本平均数,即所调查的200名学生的平均月生活费支出。

A项属于总体单位总量指标;B项属于总体指标;C项属于总体标志总量指标。

知识模块:抽样推断3.在抽样推断中,总体成数是一种( )。

A.总体中某一部分的单位数占总体单位总数之比重B.总体中某一部分的单位数与另一部分的单位数之比例C.总体的某一指标与另一相联系的指标对比的比率D.一个总体的某一指标与另一总体的同类指标对比的比率正确答案:A解析:总体成数是指一个现象有两种表现时,其中具有某种标志的单位数,在总体中所占的比重。

知识模块:抽样推断4.在理论上最符合随机原则的抽样组织方式是( )。

A.简单随机抽样B.分层抽样C.等距抽样D.整群抽样正确答案:A解析:简单随机抽样是指对总体不作任何处理,不进行分类也不进行排队,而是完全按随机的原则,直接从总体全部单位中抽选样本单位。

第七章 抽样推断与检验习题(含答案)

第七章  抽样推断与检验习题(含答案)

第七章 抽样推断与检验习题一、填空题1.抽选样本单位时要遵守 随机 原则,使样本单位被抽中的机会 均等 。

2.常用的总体指标有 均值 、 成数(比例) 、 方差 。

3.在抽样估计中,样本指标又称为 统计 量,总体指标又称为 参数 。

4.全及总体标志变异程度越大,抽样误差就 越大 ;全及总体标志变异程度越小,抽样误差 越小 。

5.抽样估计的方法有 点估计 和 区间估计 两种。

6.整群抽样是对被抽中群内的 所有单位 进行 全面调查 的抽样组织方式。

7.常用的离散型随机变量分布包括 几何分布 、二项分布和 泊松分布 。

8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下:()n u p ππ-=1;不重复抽样条件下:()⎪⎭⎫⎝⎛---=11N n N nu p ππ。

9.误差范围△,概率度t 和抽样平均误差σ之间的关系表达式为 。

10.对总体指标提出的假设可以分为原假设和 备选假设(备择假设) 。

二、单项选择题1.所谓大样本是指样本单位数在()及以上A 30个B 50个C 80个 D100个2.抽样指标与总体指标之间抽样误差的可能范围是( )A 抽样平均误差B 抽样极限误差C 区间估计范围D 置信区间3.抽样平均误差说明抽样指标与总体指标之间的( )A 实际误差B 平均误差C 实际误差的平方D 允许误差4.成数方差的计算公式( )A P(1-P)B P(1-P)2C )1(P P -D P 2(1-P)5.对入库的一批产品抽检100件,其中有90件合格,最高可以( )概率保证合格率高于80%。

A 95.45%B 99.73%C 68.27%D 90%6.假设检验是检验( )的假设值是否成立A 样本指标B 总体指标C 样本方差D 样本平均数7.在假设检验中的临界区域是( )A 接受域B 拒受域C 置信区间D 检验域8.假设检验和区间估计之间的关系,下列说法正确的是( )A 虽然概念不同,但实质相同B 两者完全没有关系C 互相对应关系D 不能从数量上讨论它们之间的对应关系 222∆=σt n三、简答题1.什么是随机原则?在抽样调查中为什么要遵循随机原则?2.样本和总体有什么区别和联系?3.影响抽样误差的因素有哪些?4.抽样误差、抽样极限误差和概率度三者之间有何关系?5.什么是假设检验?其作用是什么?四、计算题1.工商部门对某超市经销的小包装休闲食品进行重量合格抽查,规定每包重量不低于试以95.45%概率推算:(1)这批食品的平均每包重量是否符合规定要求;(2)若每包食品重量低于30克为不合格,求合格率的范围。

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章

写在前面:由于答案是一个个复制到word rh,比校耗时耗力,故下载收取5分・希望需要的朋友给予理解和支持!PS网上有一些没经我同总就将我的答案整合、转换成pdf,放在文库里的.虽然是免费的.但是窃取f我的劳动成果,希望有心的朋友支持我一下.下载我的原版答案。

第七章假设检验假设检验的基本談念习题1 样木容fin确定后,在一个假设检验中•给定显著水平为*设此第一类错的概率为。

•则必有()•(A)a+p=l; (B)a+p>l; (C)a+p<l; {D)a+p<2.解答: 应选(D)・当样木容Sn确定后.aQ不能同时都很小.即a变小时,p变大:而P变小时• a变大.理论上,自然希望犯这两类错误的概率都很小・但a*的大小关系不能确定.并且这两类错谋不能同时发生,即a=l且p=l不会发生.故选(D).习題2设总休X^(g,a2b其中02已知,着要检验W需川统计a U=X"-gOa/n,(1)若对敢边检验,统计假设为则拒绝区间为(2)若肌边假设为H0:g=g0,Hl:n<^0,则拒绝区间为. (给定显着性水平为4样木均值为X•,样木容fi 为n,且可记ul・a为标准正态分布的(l・a)分位数).解答:由敢侧检验及拒绝的概念即可御到.习題3 如何理解假设检验所作出的〃拒绝原假设H0"和“接受原假设Hcr的判断解答:拒绝H0是有说服力的,接受H0是没有充分说服力的•因为假设检验的方法是概率性质的反证法.作为反证法就是必然要〃推出矛盾r才能得出"拒绝HO"的结论.这是有说服力的・如果“推不出矛盾化这时只能说〃目前还找不到拒绝H0的充分理由W此“不拒绝H0”或〃接受HCr\这并没有肯定H0—定成立•由于样木观察值是随机的• W此拒绝H0.不童味着H0是假的•接受H0也不意味着H0是真的•都存在着错误决策的可能.当原假设H0为真,而作出r拒绝H0的判断,这类决策错谋称为第一类错谋.又叫弃真错洪•显然犯这类错渓的概率为前述的小槪率a:a=P(拒绝HOIHO为真);而原假设HO不真•却作出接受H0的判断•称这类错误为第二类错误,又称取伪错误.它发生的槪率P为P二P(接受HO|H0不真).习題4 犯第一类错误的概率a与犯第二类错谋的概率P之间有何关系一般來说.当样木容g固定时,若减少犯一类错误的槪率.则犯另一类错渓的概率往往会增大•要它们同时减少,只有増加样木容a n.在实际问题中,总是控制犯節一类错误的概率a而使犯第二类错谋的概率尽可能小・a的大小视具体实际问题而定.通常取a弓等tfL 习題5 在假设检验中•如何理解指定的显著水平a 解答:我们希望所作的检验犯两类错谋的槪率尽可能都小・但实际上这是不可能的•当样木容Sn固定时,一般地•减少犯其中一个错谋的槪帑就会增加犯另一个错误的概率• W此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平6因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,«原因是不知道犯第二类错误的概率P处竟有多少.且a小,P就大.所以通常用JW 相容r 〃不拒绝HO"等词语來代替“接受H0".而"不拒绝HO"还包含有再进一步作抽样检验的意思.习题6 在假设检验中•如何确定原假设H0和备择假设H1 解答: 在实际中・通常把那些需要着重考虑的假设视为原假设H0.而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设.而将新方案取为备择假设:(2)若提出一个假设・检验的目的仅仅是为r判断这个假设是否成立.这时直接取此假设为原假设H0即可. 习題7 假设检验的基木步腺有哪些解答:根据反证法的思想和小概率原理•可将假设检验的步骤归纳如下:(1)根据问题的要求.提出原理假设H0和备择假设HL (2)根据检验对紀构造检验统计gT(Xl,X2宀Xn),使肖H0为真时汀有确定的分布.(3)由给定的显著水平6直统计址T所服从的分布表,定出临界值K使P{ 1 T I >A)=a,或P(T>M)=P(T<X2)=a/2,从而求出H0的拒绝域:I T I >入或T>MJ<X2,(4)由样木观察值计算统i|・fi T的观察值t(5)作出判断,将t的值与临界值比较大小作出结论:当tW拒绝域g时,则拒绝H0.否则,不拒绝H0.即认为在显著水平a下,H0与实际悄况差界不显著.习題8 假设检验与区间估il•有何异同解答:假设检验与区间估ii•的提法虽不同,但解决问题的途径是相通的.参数0的a信水平为i・a的a信区间对应于双边假设检验在駄着性水平a下的接受域:参数e的a信水平为1-a的爪侧置信区对应于爪边假设检验在显著性水平a下的接受域.在总休的分布已知的条件下•假设检验与区间估计是从不同的角度回答同一个问題•假设检验是判别原假设H0是否成立,而区间估计解决的是“多少"(或范前者是宦性的.后者是定fi的.习题9 某天开工时,需检验自动包装工作是否正常•根据以往的经验,其装包的质a在正常情况下服从正态分布N(100,仲位:kg).现抽测了9包,其质S为:问这天包装机工作是否正常将这一问题化为假设检验问题.写出假设检验的步驟(am 解答: ⑴提出假设检验问题H0:尸100, Hl:"100;(2)选取检验统il S U:U=X; HO成立时,UW((U);(3)a=,ua/2=,拒绝域W={ 1 u 1 >};(4))f勺I u I =. hM 1 u I <ua/2=,故接受HO,认为包装机.I:作正常.设总休X^(pJbXl,X2/7Xn是取自X的样木.对于假设检验HO:|i=O'Hl:pMO,取显著水平a,拒绝域为W={ i U i >ua/2b其中u=nX-,求:H0成立时,犯第一类错误的槪率aO;(2)十HO不成立时(若"0),犯第二类错的概率p.(l)X^(H4)/X'MM(g,l/n),故nX'=uMM(O,l). a0=P{ I u I >ua/2 I g=0}=l-P{-ua/2<u<ua/2}=1-[<D(ua/2)-(D(-ua/2)]=l-[(l-a2)-a2]=a,即犯第一类错误的概率是显著水平a.(2)F H0不成立.即PMO时.犯第二类错误的概率为P=P{ I U I 30/2 I E(X)=n}=P{・uct/2<u<ua/2 I E(X)=A}=P{-ua/2<nX'<ua/2 I E(X)=|i}=P{-ua/2-nn<n(X'-n)<ua/2-nn I E(X)=n}=(I)(ua/2-niJi)-®(-ua/2-nn),注1 '^1 H T+8或时,PTO.由此可见.当实际均值H偏离原假设校大时,犯第二类错误的概率很小.检验效果较好.注2!勺卩工0但接近于0时.Pdw.Wa很小.故犯第一娄错误的概率很大.检验效果较差.单正态总体的假设检験习题1 已知某炼铁厂铁水含碳量服从正态分布N,・现在测定r 9炉铁水•其平均含碳虽为•如果估计方差没有变化.可否认为现在生产的饮水平均含碳fi仍为(a=解答^ 木问题是在a二下检验假设HO:ns由r a2=已知,所以可选取统计sU=X •在HO 成立的条件下• UW(OJ),且此检验问题的拒绝域为I U 1 = I X •这里 说明U 没有落在拒绝域中.从而接受H0.即认为现在生产之饮水平均含碳S 仍为•习題2要求一种元件平均便用寿命不斜低于1000小肘,生产者从一批这种元件中随机抽取25件,测御其寿命的 平均值为950小时.已知该种元件寿命服从标准差为0=100小时的正态分布,试在显著性水平(1=卜确定 这批元件是否合格设总体均值为卩川未知.即需检验假设H0:H >1000,H1:H <1000.解答:检验假设 HO :n>1000,Hl :n<1000.这是飛边假设检验问题.由于方差02二,故用U 检验法.对于显着性水平a 二,拒绝域为W={X"-1000a/n<-ua.査标准正态分布表•得 又知n=25X=950,故可计算出x'-1000a/n=950-1000100/25=,因为&故在a=下拒绝H0,认为这批元件不合格.习题3 打包机装糖入包,每包标准重为100kg.毎天开工后,要检验所装糖包的总体期望值是否合乎标准 (100kg)•某日开工后.测御9包糖重如下位:kg):打包机装糖的包得服从正态分布•问该天打包机1:作是否正常(a 二 解答: 木问题是在a 二下检验假设HO:p=100,Hl :"100・由于02未知.所以可选取统讣fi T=X--100S/n,在HO 成立的条件下.W(n-1K 且此检验问題的拒绝域为I T I = 1 X'-lOOS/n I >ta/2(n-l).I t 1 =<=(8),即t 未落在拒绝域中・从而接受H0,即可以认为该天打包工作正常.习題4机器包装食盐.假设毎袋盐的净重服从正态分布•规定毎俊标准含fi 为500g,标准差不斜趙过lOg •某天开 工后•随机抽取9袋.测得浄重如下仲位:g):497, 507, 510, 475, 515, 484, 488, 524, 491,I U I =<=ua/2・这里 t=x"-100s/ns :试在駄著性水平a二下检验假设:HO:n=500,Hl:n#500,解答:x'=499,ss:,n=9,t=(x~-|jiO)sn==,a=, (8)=.Will <(8b故接受HO,认为该天每袋平均质a可视为500g・习«5从清凉饮料自动售货机・随机抽样36杯,其平均含g为219(mL),标准差为/在a二的显I?性水平下・试检验假设S HO:A=|I O=222,H1:H<M=222・解答: 设总休X-W(g,a2bX代表自动售货机售出的清凉饮料含S・检验假设H0:n=n0=222(mL), Hl:n<222(mL),由asn=36,査表毎(36・1)弓拒绝域为W={t=x'-nOs/n<-ta(n-l).il•算t值并判断:t=36»习題6 某种寻线的电阻服从正态分布N(x・今从新生产的一批导线中抽取9根・测«电阻•得s=Q,对于a®能否认为这批导线电阴的标准差仍为解答:木问题是在a二下检验假设H0:a2=, Hl:o2匕选取统计fi x2=n-la2S2,在HO成立的条件下,X2^2(n-1),且此检验问題的拒绝域为X2>xa/22(n-l)或x2<xl-a/22(n-l).这里X2==x=,X(8)=,x(8)-落在拒绝域中,从而拒绝HO,即不能认为这批导线电阻的标准差仍为.习题7某厂生产的铜线,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容fi为9的样木•测得其折断力如下(飛位:N):289, 286, 285, 286, 285, 284, 285, 286, 298, 292设总体服从正态分布,问该日生产的铜线的折斷力的方差是否符合标准(a二解答: 检验问題为n=9, s2勺X2=8XS216勺am X(8)=・因X2<X(8)s故接受HO,可认为铜丝的折断力的方差不超过16N2.习题8过去经验示.商三学生完成标准考试的时间为一正态变其标准差为6min.若随机样木为20位学生, 其标准差为X,试在显着性水平a= b\检验假设:H0:a>6,Hl:a<6,解答:HO:a>6,Hl:a<6,a=,n-l=19,ssx(19)-拒绝域为W={x2<},i l•算X2值X2=(20-l)x^.因为>■故接受H0,认为a>6.习題9测定某种潯液中的水分・它的10个测定值给出*%,设测定值总体服从正态分布.02为总休方差.02未知,试在a二水平下检验假设:在a= b\拒绝域为W={(n-l)S2a02<xl-a2(9).查X2分布表得X(9)m讣算得(n-l)s2o02=(10-l)x\per)2\per)2^>,未落入拒绝域•故接受H0.取正态总体的假设检越习題1制造厂家宜称•线A的平均张力比线B至少强120N,为证实其说法.在同样情况下测试两种线各50条.线A的平均张力x-=867N,标准差为01=;而线B的平均张力为y・=778N,标准差为o2m在a二的显善性水平下,试检验此制造厂家的说法.解答:H0:nl4l2=120,Hl:pl 屮2<120・am=・W={u=x'-y~-120ol2nl+a22n2<-ua,拒绝域为由x'=867,y'=778,nl=n2=50, 012=2,o22=2,得□=867-778-120250+250^^^,因为&故拒绝H0,认为pl-rx2<120,即厂家的说法不对.习题2 欲知某新血清是否能抑制白血球过多症,选择已患该病的老畝9只•并将其中5只施予此种血清,另外4 只则不热•从实验开始.其存活年限表示如下假设两总体均服从方差相同的正态分布,试在显著性水平a二下检验此种血清是否有效解答^ 设pl- p2分别为老鼠接受和未接受血清的平均存活年限。

机电设备评估基础第七章机器设备的诊断检验与鉴定练习题含解析14版 (2)

机电设备评估基础第七章机器设备的诊断检验与鉴定练习题含解析14版 (2)

第七章机器设备的诊断检验与鉴定一、单项选择题1、故障程度尚不严重,可勉强“带病”运行的,称为()。

A、早期故障B、一般功能性故障C、严重故障D、晚期故障2、()是对机器设备进行状态监测,根据机器无故障及机器性能的劣化程度决定是否进行维修。

A、状态维修B、预防维修C、日常维修D、事后维修3、描述故障的特征参量有直接特征参量和间接特征参量。

下列参量中,属于直接特征参量的是()。

A、温度B、裂纹长度C、震动幅度D、噪声强度4、下列描述设备故障的特征参量中,()为设备的输出参数。

A、设备运行中的输入、输出关系B、设备零部件的损伤量C、设备运行中产生的振动D、设备运行中的声音5、设备故障诊断过程可划分三个阶段,即;状态监测、分析诊断和治理预防,其中()属于分析诊断阶段。

A、信号处理系统B、停机检修C、状态识别D、巡回监测6、下列属于强度诊断技术的状态检测参数的是()。

A、变形B、瞬态振动C、扭矩D、功率7、下列叙述中,正确的是()。

A、故障诊断的任务就是判断设备是否发生了故障B、状态检测就是故障诊断C、用间接特征参量进行故障诊断可在设备不做任何拆卸的情况下进行D、用直接特征参量进行故障诊断可判断故障的部位及原因8、()是振动强度的标志。

A、振幅B、位移C、频率D、相位9、下列关于压电式和磁电式两种测振传感器的说法中,正确的是()。

(2010年真题)A、两种测振传感器都有机械运动元件B、压电式测振传感器有机械运动元件,磁电式测振传感器没有机械运动元件C、压电式测振传感器没有机械运动元件,磁电式测振传感器有机械运动元件D、两种测振传感器都没有机械运动元件10、测量汽轮机、压缩机主轴的径向振动以及旋转体转速的测量,经常采用的是()传感器。

A、压电式加速度传感器B、磁电式速度传感器C、电涡流位移传感器D、频谱分析仪11、按照ISO-2372 标准的振动总值法判断异常振动时,采用的测量值为()的均方根值。

A、振动位移B、振动速度C、振动加速度D、振动幅度12、专门用于滚动轴承的磨损和损伤的诊断方法是()。

(完整版)抽样推断计算题及答案

(完整版)抽样推断计算题及答案

5、某工厂有1500 个工人,用简单随机重复抽样的方法抽出50 个工人作为样本,调查其工资水平,资料如下:要求:(1)计算样本平均数和抽样平均误差;(2)以95.45%的可靠性估计该工厂的月平均工资和工资总额的区间。

6、采用简单随机重复抽样的方法,在2000 件产品中抽查200 件,其中合格品190 件。

(1)计算合格品率及其抽样平均误差;(2)以95.45%的概率保证程度(t = 2 )对合格品的合格品数量进行区间估计;(3)如果极限差为2.31%,则其概率保证程度是多少?7、某电子产品使用寿命在3000 小时以下为不合格品,现在用简单随机抽样方法,从5000 个产品中抽取100 个对其使用寿命进行调查。

其结果如下:根据以上资料计算:(1)按重复抽样和不重复抽样计算该产品平均寿命的抽样平均误差;(2)按重复抽样和不重复抽样计算该产品合格率的抽样平均误差;(3)根据重复抽样计算的抽样平均误差,以68.27%的概率保证程度(t = 1)对该产品的平均使用寿命和合格率进行区间估计。

8、外贸公司出口一种食品,规定每包规格不低于150 克,现在用重复抽样的方法抽取其中的100 包进行检验,其结果如下:要求:(1)以99.73%的概率估计这批食品平均每包重量的范围,以便确定平均重量是否达到规格要求;(2)以同样的概率保证估计这批食品合格率范围;9、某学校有2000 名学生参加英语等级考试,为了解学生的考试情况,用不重复抽样方法抽取部分学生进行调查,所得资料如下:试以95.45%的可靠性估计该学生英语等级考试成绩在70 分以上学生所占比重范围。

11、对一批成品按重复抽样方法抽选100 件,其中废品4 件,当概率为95.45%(t = 2 )时,可否认为这批产品的废品不超过6%?14、某乡有5000 农户,按随机原则重复抽取100 户调查,得平均每户纯收入12000 元,标准差2000 元。

要求:(1)以95%的概率(t =1.96 )估计全乡平均每户年纯收入的区间;(2)以同样概率估计全乡农户年纯收入总额的区间范围。

第7章 《抽样推断》练习题

第7章 《抽样推断》练习题

第7章《抽样推断》练习题《第7章抽样推断》练习题一、单项选择题1、对某市居民生活状况作了一次抽样调查, 据样本资料计算, 平均每居民实际月生活费用76元, 抽样平均误差3元, 调查队推断市居民实际月生活费用在70—82之间, 这一推断的可靠程度为:A、68.27%B、95%C、95.45%D、99.73%2、在一定的抽样平均误差条件下,A、扩大极限误差范围,可以提高推断的可靠程度B、扩大极限误差范围,会降低推断的可靠程度C、缩小极限误差范围,可以提高推断的可靠程度D、缩小极限误差范围,不改变推断的可靠程度3、按设计标准,某自动食品包装机所包装食品的平均每袋重量应为500克。

若要检验该机实际运行状况是否符合设计标准,应该采用A、左侧检验B、右侧检验C、双侧检验D、左侧检验或右侧检验4、一所较大规模的大学教务部决定调整课程时间安排,以便提供足够的时间使大家可以为上课做好准备。

到目前为止,教务部认为课间安排20分钟的时间足够了。

表述零假设H0和备择假设H1A、H0:µ=20 H1:µ≠20B、H0:µ≥20 H1:µ<20C、H0:µ≤20 H1:µ>205、当我们根据样本资料对零假设作出接受或拒绝的决定时,可能出现的情况有:①当零假设为真时接受它;②当零假设为假时接受它;③当零假设为真时拒绝它;④当零假设为假时拒绝它.A、①B、②C、①②③D、①②③④6、根据某城市抽样调查225户,计算出户均储蓄额30000元,抽样平均误差800元,试问概率为90%,户均储蓄余额极限误差是多少?A、53.3B、1.65C、720D、13207、在其他条件不变的情况下,要使抽样误差减少1/3,则样本量必须增加多少倍?A、1/3B、1.25C、3 D、9二、多项选择题1、推断统计学研究的主要问题是A、如何科学地确定总体B、如何科学地从总体中抽取样本C、怎样控制样本对总体地代表性误差D、怎样控制总体对样本地代表性误差E、由所抽取地样本去推断总体特征2、在抽样推断中,样本单位数的多少取决于A、总体标准差的大小B、允许误差的大小C、抽样估计的把握程度D、总体参数的大小E、抽样方法和组织形式3、抽样推断的概率度、可靠性和精确度的关系为()A、概率度增大,估计的可靠性也增大B、概率度增大,估计的精确度下降C、概率度减小,估计的精确度下降D、概率度减小,估计的可靠性增大E、估计的可靠性增大,估计的精确度也增大3、影响抽样平均误差大小的因素有A、样本各单位标志值的差异程度B、总体各单位标志值的差异程度C、样本单位数D总体单位数E、抽样方法4、在其他条件不变时,抽样估计的置信度(1-α)越大,则:A、允许误差范围越大B、允许误差范围越小C、抽样估计的精确度越高D、抽样估计的精确度越低E、抽样估计的可靠性越高5、在假设检验中,当我们作出拒绝原假设而接受备择假设的结论时,表示A、有充足的理由否定原假设B、原假设必定是错误的C、犯错误的概率不大于αD、犯错误的概率不大于βE、在原假设为真的假设下发生了小概率事件三、判断改错题1、在抽样推断中,作为推断的总体和作为观察对象的样本都是确定的、唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档