人教版七年级上册数学上册全册期末总复习
人教版七年级数学上册期末专项复习四套含答案

人教版七年级数学上册 期末专项复习01—有理数一、选择题(每小题3分,共30分)1.如果气温上升5℃记为5+℃,则8-℃表示( ) A .下降3℃B .上升3℃C .下降8℃D .上升8℃2.12020的相反数是( ) A .12020-B .12020C .2020-D .20203.下列说法中,正确的是( ) A .0是最小的整数B .最大的负整数是1-C .有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列各组数中,相等的一组是( ) A .2-和()2--B .2--和()2--C .2和2-D .2-和2-5.若a 是有理数,则下列说法正确的是( ) A .a 一定是正数 B .a -一定是正数 C .a --一定是负数D .1a +一定是正数6.表示a ,b 两数的点在数轴上的位置如图所示,则下列判断错误的是( )A .0a b +<B .0a b ->C .0a b ⨯>D .a b <7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片,现在中国高速铁路营运里程将达到22 000公里,将22 000用科学记数法表示应为( ) A .42.210⨯B .32210⨯C .32.210⨯D .50.2210⨯8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( ) A .它精确到千分位B .它精确到0.01C .它精确到万位D .它精确到十位9.()()1352013201524620142016+++++-+++++L L =( ) A .0B .1-C .1008D .1008-10.若()212102x y -++=,则23x y +的值是( ) A .38B .18C .18-D .38-二、填空题(每小题2分,共16分)11.数轴上与表示数1的点的距离为8个单位长度的点所表示的数是________. 12.已知7a =,3b =,且0a b +>,则a =________. 13.有理数 3.7-,2,243,23-,0,0.83中,属于正数的有________,属于负数的有________. 14.若a 、b 互为倒数,c 、d 互为相反数,则式子()343ab c d -+=________.15.已知()23a -与1b -互为相反数,则式子a b b a ⎛⎫- ⎪⎝⎭的值为________.16.计算()()()20202019202020201101-+-++-=________.17.A 点为数轴上表示4-的对应点,B 点对应的数为1-的相反数,若固定A 点不动,将B 点________个单位后,B 与A 相距1个单位.(请填上移动方向和距离)18.用“●”“○”定义新运算:对于实数a ,b ,都有a b a =●和a b b =d .例如323=●,322=d ,则()()2200920100210009=d d ●________.三、解答题(共54分)19.(12分)计算.(尽可能用简便方法)(1)()31664 5.66577⎡⎤++--⎢⎥⎣⎦;(2)()11731348126424⎛⎫-+-⨯- ⎪⎝⎭;(3)()2413111421412⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭;(4)()()()()23220202231-----÷-20.(5分)若3x -与2y +互为相反数,求3x y ++的值.21.(6分)按下列程序进行计算(如图),如果第一次输入的数是20,而结果不大于100时,那么就把结果作为输入的数再进行第二次运算,直到符合要求为止,当输入值为20时,请计算输出结果.22.(6分)小明家与学校相距2.5千米,小华家与学校相距32千米.请你想一下,小明家和小华家处在学校什么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科学记数法表示)24.(9分)某天晚上,一辆治安巡逻车从A地出发,在东西方向的马路上巡逻,第七次巡逻到达B地后结束,如果规定向东行驶为正,向西行驶为负,七次巡逻的纪录如下:(单位:千米)(1)在第________次巡逻时离开A地最远.(2)求第七次巡逻结束时B地与A地的距离与方向.(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.25.(10分)观察下列一组有规律的数,解答下列问题.第1个数记为:1111 2122 ==-⨯;第2个数记为:1111 62323 ==-⨯;第3个数记为:1111 123434==-⨯;(1)第7个数记为________,190是第________个数;(2)计算:①1111 12233420192020 ++++⨯⨯⨯⨯L;②1111 13355720172019 ++++⨯⨯⨯⨯L;期末专项复习—有理数答案解析一、1.【答案】C 【解析】由题意,得8-℃表示下降8℃.故选C .2.【答案】A 【解析】12020的相反数是12020-.故选A . 3.【答案】B 【解析】没有最小的整数,故A 错误;B 正确;有理数包括0、正有理数和负有理数,C 错误;有理数的平方是非负数,D 错误.故选B .4.【答案】C5.【答案】D 【解析】A 选项,0a =时,0a =,不是负数,故本选项错误;B 选项,0a =时,0a -=,不是正数,故本选项错误;C 选项,0a =时,0a --=,不是正数,故本选项错误;D 选项,11a +≥,一定是正数,故本选项正确.故选D .6.【答案】C 【解析】由图可知,a ,b 异号,故0a b ⨯<,C 错误,符合题意,其他选项都正确,不符合题意.故选C .7.【答案】A 【解析】422000 2.210=⨯.故选A .8.【答案】D 【解析】4.609万中的9在原数46090中的十位上,所以4.609万精确到了十位.故选D . 9.【答案】D【解析】()()1352013201524620142016+++++-+++++=L L ()()()123420152016-+-++-=L()()()1111008-+-++-=-L .故选D .10.【答案】B 二、11.【答案】7-或912.【答案】713.【答案】2,243,0.83 3.7-,23- 14.【答案】3b 15.【答案】22316.【答案】117.【答案】向左移动4个单位或6个单位 18.【答案】2010 三、19.【答案】(1)31664 5.6657731664 5.665773166 5.646577512751.7⎡⎤++-⎢⎥⎣⎦⎡⎤=+--⎢⎥⎣⎦⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+- ⎪⎝⎭=-()- (2)117313481264241173134848484812642444+5636+262⎛⎫-+-⨯- ⎪⎝⎭=⨯-⨯-⨯-⨯-==()()-()+()-()--(3)421311142141213111014121⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭⎛⎫=---⨯ ⎪⎝⎭=-() (4)232202022314891489=3.-----÷-=--÷=+-()()()()()- 20.【答案】解:因为3x -与2y +互为相反数,所以320x y -++=.因为30x -≥,20y +≥,所以30x -=,20y +=.即30x -=,20y +=.所以3x =,2y =-.所以()33234x y ++=+-+=.21.【答案】解:当输入20时,211201044010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入40-时, 211402048010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入80时,2118040416010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入160-时,21116080432010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()>,故输出的结果为320. 22.【答案】解:当小明家和小华家处在学校两侧,且在一条直线上时相距最远,最远为()2.5 1.54+=千米;当小明家和小华家处于学校同侧,且在一条直线上时相距最近,最近为()2.5 1.51-=千米.23.【答案】解:1个草履虫每天吞食细菌:()460302443200 4.3210⨯⨯==⨯个,100个草履虫每天吞食细菌:()46100 4.3210 4.3210⨯⨯=⨯个.24.【答案】解:(1)Q 第一次:()044+-=-, 第二次:()43-=+7, 第三次:()396+-=-, 第四次:()682-=+, 第五次:268+=, 第六次:()853+-=, 第七次:()321+-=, ∴第五次巡逻时离开A 地最远.(2)第七次巡逻结束后,B 地在A 地东边1千米处.(3)()()4798652100124110012 4.92-+++-+++++-+-÷⨯=÷⨯=升,故该晚巡逻车共耗油4.92升.25.【答案】解:(1)1111567878==-⨯ 9 (2)①原式1111111111223342018201920192020111111111122334201820192019202020192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-+-+-+-+-=…+…+ ②原式11111111111123235257220172019111111111233557201720191112201910092019⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=⨯-+-+-+- ⎪⎝⎭⎛⎫=⨯- ⎪⎝⎭=…+…+人教版七年级数学上册 期末专项复习02—整式的加减一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习03—一元一次方程一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习04—几何图形初步一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .平角是一条直线 B .周角是一条射线C .用2倍的放大镜看1cm 长的线段,这条线段变成了2cmD .用2倍的放大镜看°30的角,这个角变成了°602.如图所示,在AOB ∠的内部有4条射线,则图中角的个数为( )A .10B .15C .5D .203.下面说法:①若线段AC BC =,C 是线段AB 的中点;②两点之间直线最短;③延长直线AB ;④若一个角既有余角又有补角,则它的补角一定比它的余角大.正确的有( ) A .0个B .1个C .2个D .3个4.如图所示,小于平角的角有( )A .9个B .8个C .7个D .6个5.如图,C ,D 是线段AB 上两点,4cm CB =,7cm DB =,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm6.小明由点A 出发向正东方向走10m 到达点B ,再由点B 向东南方向走10m 到达点C ,则下列结论正确的是( ) A .°22.5ABC ∠= B .°45ABC ∠= C .°67.5ABC ∠=D .°135ABC ∠=7.如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式正确的是( )A .12COD AOB ∠=∠ B .23AOD AOB ∠=∠C .13BOD AOB ∠=∠D .23BOC AOD ∠=∠8.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来9.射线OA 上有B 、C 两点,若8OB =,2BC =,线段OB 、BC 的中点分别为D 、E ,则线段DE 的长为( ) A .5B .3C .1D .5或310.如图,AOB COD ∠=∠,若°110AOD ∠=,°70BOC ∠=,则以下结论正确的有( )①°90AOC BOD ∠=∠=;②°20AOB ∠=;③AOB AOD AOC ∠=∠-∠;④211AOB BOD ∠=∠ A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.用度、分、秒表示:°35.12=________°________′________″. 12.已知°4231α∠=′,则α∠的余角的补角是________. 13.延长线段AB 到点C ,使12BC AB =,反向延长线段AC 到点D ,使12AD AC =.若8cm AB =,则CD =________cm .14.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于________.15.如图所示,C 是线段AB 外一点,那么AC BC +________AB (填“>”“<”或“=”),理由是________.16.如图所示,A 、O 、B 在一条直线上,°1302AOC BOC ∠=∠+,OE 平分BOC ∠,则BOE ∠=________.17.有公共顶点的两条射线分别表示南偏东°15与北偏东°25,则这两条射线组成的角的度数为________. 18.延长线段AB 到C ,使13BC AB =,D 为AC 的中点,且6cm DC =,则AB 的长是________cm . 三、解答题(共46分)19.(8分)已知平面上的三点,如图所示. (1)按下列要求画出图形:①画直线AC ;②画射线BC ;③画线段AB .(2)指出图中有几条线段,并表示出来.(3)图中有哪些线段?用图中的字母表示出来.(4)图中有哪些直线?并用图中的字母表示出来.20.(6分)如图所示的平面展开图折叠成正方体后,相对面上的两个数之和为5,求x y z ++的值.21.(6分)若:::1234134:1::∠∠∠∠=,而且°1231048∠∠∠∠=+++,那么这四个角分别为多少度?22.(8分)如下图,某轮船上午8时在A 处,测得灯塔S 在北偏东°60的方向上,向东行驶至中午12时,轮船到达B 处,在B 处测得灯塔S 在北偏西°30的方向上,已知轮船行驶速度为20千米/时. (1)在图中画出灯塔S 的位置;(2)量出船在B 处时,离灯塔S 的图上距离,并求出它的实际距离.23.(8分)如图所示,点C 是线段AB 上一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果0cm 1AB =,3cm AM =,求NC 的长.(2)如果6cm MN =,求AB 的长.24.(10分)如图所示,从一点O 出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引n (n 为大于等于2的整数)条射线,则会得到多少个角?如果8n =时,检验你所得的结论是否正确.期末专项复习—几何图形初步答案解析一、 1.【答案】C 2.【答案】B 3.【答案】B【解析】①如图,C 不是线段AB 的中点,故①不正确;②两点之间线段最短,故②不正确;③直线向两边无限延伸,不能延长,故③不正确;④正确.故选B . 4.【答案】C【解析】符合条件的角中以A 为顶点的角有1个,以B 为顶点的角有2个,以C 为顶点的角有1个,以D 为顶 点的角有1个,以E 为顶点的角有2个,共有121127++++=(个)角,故选C . 5.【答案】B【解析】因为7cm DB =,4cm CB =所以743cm DC DB CB =-=-=.根据D 是AC 的中点,得2236cm AC DC ==⨯=.6.【答案】D【解析】由题意作图如下:由图可得°°°9045135ABC ∠=+=. 7.【答案】D【解析】设COD x ∠=,因为OD 平分BOC ∠, 所以BOD COD x ∠=∠=,2BOC x ∠=. 又OC 平分AOB ∠, 所以2AOC BOC x ∠=∠=,则4AOB x ∠=,所以14COD AOB ∠=∠,34AOD AOB ∠=∠,14BOD AOB ∠=∠,23BOC AOD ∠=∠,故 选D . 8.【答案】D【解析】根据正方体的表面展开图的特征,易知与“你”字所在面相对的面上标的字是“来”,与“遇” 字所在面相对的面上标的字是“的”,与“见”字所在面相对的面上标的字是“未”,故选D .9.【答案】D【解析】如图1,3DE =;如图2,5DE =.图1图210.【答案】C【解析】因为°110AOD ∠=,°70BOC ∠=,所以°40COD AOB ∠+∠=,又因为AOB COD ∠=∠,所以°20AOB COD ∠=∠=,所以°90AOC BOD ∠=∠=,故①②正确;AOD AOC COD AOB ∠-∠=∠=∠,故③正确;29AOB BOD ∠=∠,故④不正确.所以正确的有3个. 二、11.【答案】35 7 12 12.【答案】°13231′ 13.【答案】18 14.【答案】2415.【答案】>两点之间线段最短 16.【答案】°50 17.【答案】°140 18.【答案】9 三、19.【答案】解:(1)如图所示:(2)图中有3条线段,分别是线段AB 、AC 、BC .(3)图中的射线有:射线CE 、CF 、AG 、AF 、CG 、BE . (4)图中的直线有:直线AC 20.【答案】421.【答案】°120∠=,°260∠=,°380∠=,°420∠=. 22.【答案】解:(1)灯塔S 的位置如下图:(2)量得图中2cm BS =,轮船上午8时到中午12时行驶了4小时,则行驶的路程为20480⨯=(千米).而图 中AB 的距离为4cm ,故该图的比例为418010001002000000=⨯⨯.所以轮船离灯塔S 的实际距离为 20000002400000040⨯==(厘米)千米.23.【答案】(1)因为M 为AC 的中点,所以2AC AM =.因为3cm AM =,所以236cm AC =⨯=.因为10cm AB =,所以10cm 6cm 4cm BC AB AC =-=-=,又因为N 为BC 的中点,所以12cm 2NC BC ==. (2)因为M 为AC 的中点,所以12MC AC =.因为N 为CB 的中点,所以12CN CB =,所以 111222MC CN AC CB AC CB +=+=+(),即12MN AB =,而6cm MN =,所以12cm AB =. 24.【答案】解:当2n =时,角的个数为1;当3n =时,角的个数为123+=;当4n =时,角的个数为1236++=; 当5n =时,角的个数为123410+++=;当射线的条数为n 时,角的个数为112342112n n n n ++++-+-=-…()()().当8n =时,1118182822n n -=⨯-⨯=()().所以n 条射线可 得到112n n -g ()个角的结论也是正确的.。
新人教版七年级数学上册期末专题总复习资料

新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。
B。
-1 C。
2016 D。
-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。
人教版七年级数学(上册)期末全套复习资料全

第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。
有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。
在数的研究上它起着重要的作用。
它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。
但要注意数轴上的所有点并不是都有有理数和它对应。
借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。
2、相反数是指只有符号不同的两个数。
零的相反数是零。
互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。
有了相反数的概念后,有理数的减法运算就可以转化为加法运算。
3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
对于任何有理数a,都有a≥0 。
4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。
有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。
5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。
7、近似数与精确度:近似数:一个与实际数很接近的数,称为近似数;精确度:右边最后一位数所在的位数,就是精确到的数位。
二、有理数的运算法则1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。
新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一有理数的意义一、双基回顾1、前进8米的相反意义的量是;盈利50元的相反意义的量是。
2、向东走5m记作+5m,则向西走8记作,原地不动用表示。
正数{…};负数{…};分数{…};整数{…};非负整数{…};非正数{…}。
4、与表示-1的点距离为3个单位的点所表示的数是。
5、数轴上到原点的距离为2的点所表示的数是。
6、3的相反数的倒数是。
7、最小的自然数是;最小的正整数是;绝对值最小的数是;最大的负整数是。
8、相反数等于它本身的数是,绝对值等于它本身的数是,平方等于它本身的数是,,倒数即是它自己的数是。
9、如图,如果a<,b>0,那么a、b、-a、-b的大小关系是.10、已知︱a+2︱+(3- b)2=0,则a b =。
ab二、例题导引例1(1)大于-3且小于2.1的整数有哪些?(2)绝对值大于1小于4.3的整数的和是多少?例2已知a、b互为相反数,m、n互为倒数,︱x︱=3,求(a+b)2-3mn+2x的值。
例3(1)若a<,a2=4,b3=-8,求a+b的值。
(2)已知︱a︱= 2,︱b︱=5,求a-b的值;3、操演升华1、判断下列叙述是否正确:①零上6℃的相反意义的量是零下6℃,而不是零下8℃()②如果a是负数,那末-a就是正数()③正数与负数互为相反数()④一个数的相反数长短正数,那末这个数肯定长短负数()⑤若a=b,则︱a︱=︱b︱;若︱a︱=︱b︱,则a=b()2、一种零件标明的要求是Ф10(单位:mm)表示这种零件的标准尺寸是10mm,加工零件要求最大直径不超过mm,最小直径不小于mm.。
3、某天气温上升了-2℃的意义是。
5、12的相反数与-7的绝对值的和是。
6、若a<0,b<0,则下列各式正确的是( )A、a-b<0 B、a-b>0 C、a-b=0 D、(-a)+(-b)>07、两个非零有理数的和是,它们的商是()A、0B、-1C、1D、不能确定8、若|x|=-x,则x=_____;若︱x-2︱=3,则x= .9、古希腊科学家把数1,3,6,10,15,21,……叫做三角形数它有一定的规律性,第个三角形数为_______。
新人教版数学七年级上册期末复习资料(全)

新人教版数学七年级上册期末复习资料(全)第一章:有理数1. 有理数的概念- 有理数是可以表示为两个整数比值的数。
- 包括正整数、负整数、零、分数和小数。
2. 有理数的四则运算- 加法:同号相加,异号相减,保留同号。
- 减法:转化为加法运算,借位计算。
- 乘法:符号相同得正,符号不同得负。
- 除法:转化为乘法运算,利用倒数。
3. 数轴和有理数的关系- 数轴上每个点对应一个有理数。
- 有理数左边的数较小,右边的数较大。
第二章:代数式1. 代数式的概念- 含有字母和数的组合,可以表示数。
2. 代数式的运算- 同类项相加或相减,系数相加或相减。
- 乘法:同底数幂相乘,指数相加。
- 除法:同底数幂相除,指数相减。
3. 代数式的值- 给字母赋值,代入代数式计算值。
第三章:方程与不等式1. 方程的概念- 含有等号的等式。
2. 解方程的方法- 移项、合并同类项、解得未知数的值。
3. 不等式的概念- 包含大于、小于等符号的等式。
4. 解不等式的方法- 移项、合并同类项、解得未知数的范围。
第四章:平面图形1. 图形的基本概念- 点、线、面。
2. 几何图形的分类- 点、线段、射线、线、角、多边形。
3. 直角与平行线- 直角:互相垂直的角。
- 平行线:同一平面内不相交的直线。
第五章:数据的整理与分析1. 统计调查与数据收集- 通过统计调查获取数据。
2. 数据的整理与分析- 整理数据:频率表、频数、频率等。
- 分析数据:直方图、折线图、饼图等。
3. 数据的利用- 利用数据进行预测、对比和判断。
以上是《新人教版数学七年级上册期末复习资料(全)》的内容概要。
请根据需要进一步添加详细内容。
人教版2024-2025学年七年级数学上册章末复习(课件)

–(+ ) < –|– |
5. 下表是某公司某年四个季度的盈利情况, 把它们按从高到低的顺序排列.
时间 第一季度 第二季度 第三季度 第四季度
盈利/万元 -6.8
-10.7
31.5
27.8
31.5> 27.8 > -6.8 > -10.7
在任意一个数前面添上“-”号,新的数就表示 原数的相反数.
绝对值:一般地,数轴上表示数 a 的点与原点 的距离叫作数 a 的绝对值,记作 | a |.
一个正数的绝对值是它本身;一个负数的绝对 值是它的相反数;0 的绝对Leabharlann 是 0.4. 有理数的大小比较
利用数轴比较:数轴上两个点表示的数,左边 的数小于右边的数. 利用正负性比较:正数大于 0,0 大于负数, 正数大于负数. 利用绝对值比较:两个负数,绝对值大的反而小.
4. 比较下列各组数的大小: (1)+(–3) 和 –(–4); (2)– (–2) 和 –|+2|;
解:(1)+(–3) = –3,–(–4) = 4 +(–3) < –(–4)
(2)–(–2) = 2,–|+2| = –2; –(–2) > –|+2|
(3)+|–3| 和 |–(+5)|; (4)–(+ ) 和 –|– |. (3)+|–3| = 3, |–(+5)| = 5;
拓广探索 10.(1)-1 与 0 之间有负数吗?0 与 1 之间呢? 如果有,请举例;如果没有,请说明理由.
-1 与 0 之间有负数,如 -0.5,-0.2.
新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一:有理数的意义一、双基回顾1.前进8米的相反数是后退8米,盈利50元的相反数是亏损50元。
2.向东走5m记作+5m,则向西走8m记作-8m,原地不动用0表示。
3.把下列各数填入相应的大括号中:正数{7,11/2,0.25};负数{-9.25,-301,-7/3};分数{11/2,-7/3,0};整数{7,-9,-301,0};非负整数{0,7,11/2};非正数{-9.25,-301,-7/3,0}。
4.与表示-1的点距离为3个单位的点所表示的数是-4.5.数轴上到原点的距离为2的点所表示的数是±2.6.3的相反数的倒数是-1/3.7.最小的自然数是1;最小的正整数是1;绝对值最小的数是0;最大的负整数是-1.8.相反数等于它本身的数是0,绝对值等于它本身的数是0,平方等于它本身的数是1,立方等于它本身的数是0,倒数等于它本身的数是1.9.如图,如果a0,那么-a>b>-b>a。
10.已知|a+2|+(3-b)²=0,则a=-2,b=3/2.二、例题导引例11) 大于-3且小于2.1的整数有-2,-1,0,1.2) 绝对值大于1小于4.3的整数的和是-3+2+1+3+4=7.例2由a、b互为相反数可得a+b=0,由m、n互为倒数可得mn=1,代入(a+b)²-3mn+2|x|的式子中得(-6)²-3+6=33.例31) 由a²=4得a=±2,由b³=-8得b=-2,故a+b=0.2) 由|a|=2,|b|=5得a=-2,b=5,故a-b=-7.三、练升华1.判断下列叙述是否正确:①零上6℃的相反数是零下6℃,而不是零下8℃。
(错误)②如果a是负数,那么-a就是正数。
(正确)③正数与负数互为相反数。
(正确)④一个数的相反数是非正数,那么这个数一定是非负数。
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版

可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。