七年级上册数学全册基础知识整合

合集下载

人教版七年级数学上册第一章有理数全章知识点总结归纳

人教版七年级数学上册第一章有理数全章知识点总结归纳

人教版七年级数学上册第一章有理数全章知识点总结归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数1) 大于的数为正数。

2) 在正数前面加上负号“-”的数为负数。

3) 数既不是正数也不是负数,是正数与负数的分界。

4) 在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数1) 凡能写成分数形式的数,都是有理数,整数和分数统称有理数。

注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数:正整数、正分数。

负有理数:负整数、负分数。

零。

3) 自然数:和正整数;a>:a是正数;a<:a是负数;a≥0:a是正数或是非负数;a≤0:a是负数或是非正数。

3、数轴1) 用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:在直线上任取一个点表示数,这个点叫做原点;通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2) 数轴的三要素:原点、正方向、单位长度。

3) 画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

4) 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

4、相反数1) 只有符号不同的两个数叫做互为相反数。

注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。

2、设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点的两侧,表示a和-a。

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级上册数学基础知识点

七年级上册数学基础知识点

·有理数加减法法那么·——口诀记法 先定符号,再计算, 同号相加不变号;异号相加“大〞减“小〞, 符号跟着“大数〞跑; 减负加正不混淆。

一、【正负数】有理数分类: _____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

二、【数轴】 规定了 、 、 直线,叫数轴 三、【相反数】概念像2和-2、--2.5这样,只有 不同两个数叫做互为相反数。

0相反数是 。

一般地:假设a 为任一有理数,那么a 相反数为-a 相反数相关性质:1、相反数几何意义:表示互为相反数两个点〔除0外〕分别在原点O 两边,并且到原点间隔 相等。

2、互为相反数两个数,和为0。

四、【肯定值】一般地,数轴上表示数a 点与原点 叫做数a 肯定值,记作∣a ∣. 一个正数肯定值是 ; 一个负数肯定值是它 ; 0肯定值是 . 五、【有理数运算】 ·有理数加减法法那么 ·有理数乘除法法那么·求几个一样因数积运算,叫做有理数乘方。

即:a n =aa …a(有n 个a)五、【科学记数法】【近似数及有效数字】·把一个大于10数记成a ×10n 形式(其中a 是整数数位只有 一位数),叫做科学记数法.·对一个近似数,从左边第一个不是0数字起,到末位数字止, 全部数字都称为这个近似数有效数字。

一、【本章根本概念】★☆▲π 1、______和______统称整式。

①单项式:由 与 乘积..式子称为单项式。

单独 一个数或一个字母也是单项式,如a ,5。

·单项式系数:单式项里 叫做单项式 系数。

·单项式次数:单项式中 叫 做单项式次数。

②多项式:几个 和叫做多项式。

其中,每个单项式叫做多项式 ,不含字母项叫做 。

有理数【任一个有理数a 绝值】用式子表示就是:〔1〕当a 是正数〔即a >0〕时,∣a ∣= ;〔2〕当a 是负数〔即a <0〕时,∣a ∣= ; 〔3〕当a =0时,∣a ∣= . ·有理数乘除法法那么·同号得 ,异号得 ,肯定值相乘〔除〕。

人教七年级数学上知识点

人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。

二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。

三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。

四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。

五、解方程
一元一次方程的概念和性质,基本解法和应用。

六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。

七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。

八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。

九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。

十、几何变换
平移、旋转、翻折及其组合。

以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。

希望本文对广大师生有所帮助,祝大家学习进步!。

七年级上册数学基础知识

七年级上册数学基础知识

第一章:有理数一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-"去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别.②正数和负数的应用:正数和负数通常表示具有相反意义的量。

③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数,正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;2、有理数的概念及分类:整数和分数统称为有理数.有理数的分类如下:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 概念剖析:①整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数; ②正有理数和0又称为非负有理数,负有理数和0又称为非正有理数③整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;3、数轴:标有原点、正方向和单位长度的直线叫作数轴。

数轴有三要素:原点、正方向、单位长度。

画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。

概念剖析:①画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;④有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数—a 的点在原点的左边,与原点的距离是a 个单位长度。

人教版七年级上册数学知识要点汇总(全册)

人教版七年级上册数学知识要点汇总(全册)

七年级上册数学知识要点(全册)第一章 有理数1、有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数(小数)负整数零正整数整数有理数 (分类标准不同,分类不同)2.数轴三要素:原点、正方向、单位长度。

3.数轴上0左边的数是负数,0右边的数是正数;左边的数<0<右边的数(负数 < 0 < 正数)。

4.相反数:(1)只有符号不同的两个数互为相反数;(2)相反数是相互依存的,单独一个数不能说是相反数数;(例如2与-2互为相反数,就是指:2的相反数是-2,-2的相反数是2)。

(3)a 的相反数是-a, 0的相反数是0.(4)相反数的和为0 ;如果 a+b=0 ,则a 与b 互为相反数.5、倒数:(1)乘积为1的两个数互为倒数。

(例如83×38=1,则83与38互为倒数,就是指83的倒数是38,38的倒数是83。

)(2)1的倒数是1,0没有倒数。

注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数。

6、绝对值:(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a .(2)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。

注意:绝对值的几何意义是数轴上表示某数的点与原点的距离。

(3) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或 ⎩⎨⎧<-≥=)0a (a )0a (a a注:涉及到绝对值的问题经常需要分类讨论。

7、绝对值具有非负性的性质:a≥0,若+a b =0,则a=0,b=0 8、比较两个数的大小: (1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)单元一:数的概念和认识
- 自然数、整数、有理数、无理数的概念及其表示方法- 数轴的认识和使用
- 数的比较和大小的判断方法
- 数的分类和性质
单元二:整数的加减法
- 整数的加法和减法运算规则
- 整数的加减法计算方法
- 整数加减法的应用
单元三:小数的认识和运算
- 小数的概念和表示方法
- 小数和分数的转换
- 小数的加减乘除运算法则
- 小数的应用问题
单元四:比例与相等
- 比例的概念和性质
- 比例的表示方法和比例的简化- 比例的相等和比例的应用
单元五:百分数
- 百分数的概念和表示方法
- 百分数与比例的关系
- 百分数的转化和运算法则
- 百分数的应用问题
单元六:图形的认识
- 几何图形的基本概念和性质- 点、线、面、体的认识
- 常见平面图形的名称和特征
- 三角形的分类和性质
单元七:平面图形的性质和计算
- 四边形的分类和性质
- 平行四边形的性质和判定方法
- 直角、等腰和等边三角形的性质
- 平面图形的周长和面积的计算方法
单元八:数据的收集和整理
- 数据的收集方法和调查问题的设计
- 数据的整理和分类
- 数据的统计和分析
- 数据的应用和解读
以上是七年级上册数学的主要知识点,通过学习这些内容,你可以打下坚实的数学基础。

希望你在学习中能够发现数学的乐趣,不断提升自己的数学能力。

加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—7, 0。125, , -3 , , 0, 50%, -0。3, 3.14
(1)整数 { }
(2)分数 { }
(3)负分数 { }
(4)非负数 { }
(5)有理数 { }
2.选择题
(1)下列说法正确的是( )
A.整数就是自然数 B.0不是自然数
C.正数和负数统称为有理数 D.0是整数而不是正数
(2)下面关于有理数的说法正确的是( )
(1)守门员是否回到球门的位置?
(2)守门员离开球门的位置最远是多少?
(3)守门员离开球门位置10m以上(包括10m)的次数是多少?
二、有理数
【知识概述】
1.小学时我们学过这样一些数3,5.7,—7,-9,—10,0, , ,-3 , -7。4,5.2, …
我们把正整数、0、负整数、正分数、负分数这种都能化成分数形式的数,叫做有理数。
(2)在—7,0,—3, ,+9100,—0。27中,负数有…………………( )
A.0个B.1个C.2个D.3个
(3)向东行进-50m表示的意义是……………………………( )
A.向东行进50mC.向北行进50m
1、填空题
(1)零下15℃,表示为_________,比O℃低4℃的温度是_________.
(2)地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为—5米,其中最高处为_____地,最低处为_____地.
(3)某天中午11时的温度是11℃,早晨6时气温比中午低7℃,则早晨温度为_____℃,若早晨6时气温比中午低13℃,则早晨温度为______℃.
【同步训练】
1。 用正数和负数表示下列各量:
(1)零上24℃表示为________,零下3。5℃表示为_________。
(2)足球比赛,赢2球可记作________的长度比标准长度长2mm,记作+2mm,那么比标准长度短1.5mm,记作_______mm。
(4)“甲比乙大—3岁"表示的意义是_____________________.
2、选择题
(1)在下列四组数(1)-3,2。3, ;(2) ,0, ;(3) ,0.3,7;(4) , ,2中,三个
数都不是负数的组是……………………………………( )
A.(1)(2)B.(2)(4)C.(3)(4)D.(2)(3)(4)
第一组10名男生成绩如下(单位cm):
+2
-4
0
+5
+8
—7
0
+2
+10
—3
问:第一组有百分之几的学生达标?
5、教室高2。8米,课桌高0.6米,如果把课桌面记作0米,则教室的顶部和地面分别记作什么?教室中天花板与地面的距离是多少?如果以天花板为0米,那么桌面高度和地面各记作什么?
【拓展提升】
1.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:m):+5,-3,+10,-8,-6,+12,-10.
正数和负数,及有理数分类
一、正数和负数
【知识概述】
1. 正数与负数是实际需要而产生的
正数和负数是根据实际需要而产生的,随着知识面的拓宽,小学学过的自然数、分数和小数已不能满足实际需要,比如一些具有相反意义的量,收入200元和支出100元,零上6℃和零下4℃等等。它们不但意义相反,而且表示一定的数量。怎么表示它们呢?我们把一种意义规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数。
正数集合 负数集合 整数集合 分数集合
例2 以下是两位同学的分类方法,你认为他们的分类的结果正确吗?为什么?
有理数 有理数
例3 选择正确的答案( )
①0是最小的正整数 ②0是最小的有理数
③0不是负数 ④0既是非正数,也是非负数
A.1个 B.2个 C.3个 D.4个
【同步训练】
1.把下列各数填入相应的大括号内:
A。整数集合和分数集合合在一起就是有理数集合
B. 正整数集合与负整数集合合在一起就构成整数集合
C. 正数和负数统称为有理数 D。 正数、负数和零统称为有理数
(3)π是( )
A.整数 B。分数 C.有理数 D.以上都不对
(4)给出下列说法:
①0是整数;② 是负分数;③4。2不是正数;④自然数一定是正数;⑤负分数一定是负有理数.其中正确的有( )
(2)运进 吨化肥
(3)向东走了 米
(4)盈利 元
例2. 某人月收入1800元表示为1800元,那么每月支出350元应该怎样表示?
例3。 判断题。
(1)一个数不是正数就是负数。( )(2)海拔 米表示比海平面低155米.( )
(3)温度0℃就是没有温度。( )(4)零是最小的有理数.( )
(5)零是正数。( )
2。 判断:
(1)正整数和负整数统称整数。( )
(2)运出20吨货物记作 ,则运进25吨货物记作+25.( )
(3)如果下降记作“-",则不升不降记作0。( )
3.下列各数中,哪些是正数?哪些是负数?
+8,-25,68,O, ,-3。14,0。001,-889
4.学校对初一男生进行立定跳远的测试,以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.
A.1个B.2个C.3个D.4个
【拓展提升】
如图所示的A,B,C表示三个数集,每个数集所包含的数都写在各自的大括号内中,请把这些数填在集合圈内.
A={—1,—3,-5,7,10,2010}
B={-1,-3,-5,—7,200,2011}
C={-3,—5,7,-9,200,2010}
【课后作业】《正负数》
注意:无限不循环小数不能化成分数,所以小数当中只有无限不循环小数不是有理数。比如我们小学时学过的π就不是有理数.
2.有理数分类
(1)按整数分数分类 (2)按数的正负性分类
【例题精讲】
例1把下列各数填入相应的集合内:
, 3.147, 0, 2004, — , -0.23456, 10%, 10。l, 0。67, -89
2。 正数和负数的概念
(1)像5,8.7, ……这样的数叫正数。如58, 18。9 , 等都是正数.
在正数前面加上“-”(读作负)号的数叫做负数。如—58,—18。9 , 等都是负数。
(2)零既不是正数也不是负数,它表示正数和负数的分界。
【例题精讲】
例1. 说明下列语句的实际意义。
(1)温度上升 ℃
相关文档
最新文档