广东省揭阳市普宁市2020-2021学年九年级上学期期末数学试题
广东省2020-2021年九年级上册期末数学试卷 含解析

九年级(上)期末数学试卷一.选择题(共10小题)1.在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形 C.正五边形D.等腰三角形2.已知⊙O的直径为6,若AO=3,则点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定3.下列各点中,在函数的图象上的是()A.(2,1)B.(﹣2,1)C.(2,﹣2)D.(1,2)4.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2﹣2x﹣l=0 C.x2﹣1=0D.x2+x+2=05.一个不透明的袋子里装有6个只有颜色可以不同的球,其中4个红球,2个白球.从袋中任意摸出1个球,则摸出的球是红球的概率为()A.B.C.D.6.用因式分解法解一元二次方程4x2﹣9=0,可分解得()A.4(x+3)(x﹣3)=0 B.(2x+3)(2x﹣3)=0C.(2x+3)2=0 D.(2x﹣3)2=07.二次函数y=mx2﹣4x+m有最小值﹣3,则m等于()A.1 B.﹣4 C.1或﹣4 D.﹣1或4 8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.60°B.50°C.40°D.25°9.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,﹣2)C.(0,﹣1)D.(﹣2,1)10.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt △AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED 长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π二.填空题(共6小题)11.方程x2﹣2x=3的常数项为.12.将一个等边三角形绕着其中心,至少旋转度可以和原来的图形重合.13.反比例函数y=的图象经过点(2,3),则k=.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD =6,则BE=.15.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.16.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为.三.解答题(共9小题)17.解方程:x(x﹣2)+x﹣2=0.18.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2010年为10万只,预计2012年将达到14.4 万只.求该地区2010年到2012年高效节能灯年销售量的平均增长率.19.用直尺和圆规作图:已知:等边△ABC,(1)作等边△ABC的外接圆⊙O,(保留作图痕迹,不写作法和证明)(2)若OB=6,求劣弧BC的长.20.已知:如图,在Rt△OAB中,∠OAB=90°,OA=AB=6cm,将△OAB绕点O沿逆时针方向旋转90°得到Rt△OA1B1(1)直接写出线段OA1的长度和∠AOB1的度数;(2)连接AA1,则四边形OAA1B1是平行四边形吗?请说明理由.21.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.22.如图,有一个抛物线的拱形立交桥,这个桥拱的最大高度为16m,跨度为40m,现把它放在如图所示的直角坐标系里,若要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?23.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,反比例函数的解析式.24.如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.25.如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,﹣2).(1)求此函数的关系式;(2)求P点坐标;(3)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标.参考答案与试题解析一.选择题(共10小题)1.在下列图形中,为中心对称图形的是()A.等腰梯形B.平行四边形 C.正五边形D.等腰三角形【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.已知⊙O的直径为6,若AO=3,则点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定【分析】先确定⊙O的半径,再将半径与点到圆心的距离比较即可得.【解答】解:∵⊙O的直径为6,∴⊙O的半径r=3,又∵AO=3=r,∴点A在⊙O上,故选:A.3.下列各点中,在函数的图象上的是()A.(2,1)B.(﹣2,1)C.(2,﹣2)D.(1,2)【分析】反比例函数的比例系数为﹣2,找到横纵坐标的积等于﹣2的坐标即可.【解答】解:A、2×1=2,不符合题意,B、﹣2×1=﹣1,符合题意;C、2×﹣2=﹣4,不符合题意;D、1×2=2,不符合题意;故选:B.4.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2﹣2x﹣l=0 C.x2﹣1=0D.x2+x+2=0【分析】一元二次方程实数根的情况是:判别式△≥时,方程有两个实数根,判别式△<0时,方程没有实数根,据此可解.【解答】解:选项A:△=4﹣1>0,故A有两个不相等的实数根,A不符合题意;选项B:△=(﹣2)2﹣4×1×(﹣1)=4+4=8>0,故B有两个不相等的实数根,B不符合题意;选项C:很明显,方程有实数根为±1,故C不符合题意;选项D:△=1﹣4×2=﹣7<0,故D没有实数根.故选:D.5.一个不透明的袋子里装有6个只有颜色可以不同的球,其中4个红球,2个白球.从袋中任意摸出1个球,则摸出的球是红球的概率为()A.B.C.D.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:因为一共有6个球,红球有4个,所以从布袋里任意摸出1个球,摸到红球的概率为:.故选:D.6.用因式分解法解一元二次方程4x2﹣9=0,可分解得()A.4(x+3)(x﹣3)=0 B.(2x+3)(2x﹣3)=0C.(2x+3)2=0 D.(2x﹣3)2=0【分析】根据因式分解法即可求出答案;【解答】解:∵4x2﹣9=0,∴(2x﹣3)(2x+3)=0,故选:B.7.二次函数y=mx2﹣4x+m有最小值﹣3,则m等于()A.1 B.﹣4 C.1或﹣4 D.﹣1或4 【分析】根据二次函数的最值公式列式计算即可得解.【解答】解:∵二次函数有最小值,∴m>0且=﹣3,解得m=1.故选:A.8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.60°B.50°C.40°D.25°【分析】连接OC,根据切线性质得:∠OCD=90°,利用同圆的半径相等得:∠OCA=∠A=25°,则∠DOC=50°,则直角三角形两锐角互余得出∠D的度数.【解答】解:连接OC,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵OC=OA,∠A=25°,∴∠OCA=∠A=25°,∴∠DOC=∠A+∠OCA=25°+25°=50°,∴∠D=90°﹣50°=40°,故选:C.9.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,﹣2)C.(0,﹣1)D.(﹣2,1)【分析】易得原抛物线顶点,把横坐标减1,纵坐标加1即可得到新的顶点坐标.【解答】解:由题意得原抛物线的顶点为(1,﹣2),∵图象向左平移1个单位,再向上平移1个单位,∴新抛物线的顶点为(0,﹣1).故选:C.10.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt △AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED 长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.二.填空题(共6小题)11.方程x2﹣2x=3的常数项为﹣3 .【分析】方程整理为一般形式,找出常数项即可.【解答】解:方程整理得:x2﹣2x﹣3=0,则方程的常数项为﹣3.故答案为:﹣3.12.将一个等边三角形绕着其中心,至少旋转120 度可以和原来的图形重合.【分析】根据旋转角及旋转对称图形的定义结合图形特点作答.【解答】解:∵360°÷3=120°,∴等边三角形绕中心至少旋转120度后能和原来的图案互相重合.故答案为:120.13.反比例函数y=的图象经过点(2,3),则k=7 .【分析】根据点的坐标以及反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k﹣1=2×3,解得:k=7.故答案为:7.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD =6,则BE=4﹣.【分析】连接OC,根据垂径定理得出CE=ED=CD=3,然后在Rt△OEC中由勾股定理求出OE的长度,最后由BE=OB﹣OE,即可求出BE的长度.【解答】解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.故答案为4﹣.15.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为﹣1或2或1 .【分析】直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.16.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为370 .【分析】首先观察规律,求得n与m的值,再由右下角数字第n个的规律:2n(2n﹣1)﹣n,求得答案.【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.三.解答题(共9小题)17.解方程:x(x﹣2)+x﹣2=0.【分析】把方程的左边分解因式得到(x﹣2)(x+1)=0,推出方程x﹣2=0,x+1=0,求出方程的解即可【解答】解:x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,∴x1=2,x2=﹣1.18.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2010年为10万只,预计2012年将达到14.4 万只.求该地区2010年到2012年高效节能灯年销售量的平均增长率.【分析】设该地区2010年到2012年高效节能灯年销售量的平均增长率为x,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设该地区2010年到2012年高效节能灯年销售量的平均增长率为x,依据题意,列出方程10(1+x)2=14.4,化简整理,得(1+x)2=1.44,解这个方程,得1+x=±1.2,∴x=0.2或﹣2.2,∵该地区2010年到2012年高效节能灯年销售量的平均增长率不能为负数,∴x=﹣2.2舍去,∴x=0.2=20%,答:该地区2010年到2012年高效节能灯年销售量的平均增长率为20%.19.用直尺和圆规作图:已知:等边△ABC,(1)作等边△ABC的外接圆⊙O,(保留作图痕迹,不写作法和证明)(2)若OB=6,求劣弧BC的长.【分析】(1)作等边三角形其中两条边的垂直平分线,交点即为三角形的外心;(2)根据弧长公式即可求解.【解答】解:(1)如图即为等边三角形ABC的外接圆⊙O.(2)∵∠BAC=60°,∴∠BOC=120°,OB=6,∴==4π.答:劣弧BC的长为4π.20.已知:如图,在Rt△OAB中,∠OAB=90°,OA=AB=6cm,将△OAB绕点O沿逆时针方向旋转90°得到Rt△OA1B1(1)直接写出线段OA1的长度和∠AOB1的度数;(2)连接AA1,则四边形OAA1B1是平行四边形吗?请说明理由.【分析】(1)根据旋转的性质得出;(2)根据旋转的性质易得A1B=OA,∠OA1B1=∠A1OA=90°,从而证明四边形OAA1B1是平行四边形.【解答】解:(1)线段OA1=OA=6cm,∠AOB1=135°;(2)四边形OAA1B1是平行四边形.∵△OAB绕点O沿逆时针方向旋转90°;∴∠A1OA=90°,∠OA1B1=∠OAB=90°,A1B1=OA;∴∠OA1B1=∠A1OA=90°;∴A1B1∥OA;∴四边形OAA1B1是平行四边形.21.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有6种等可能的结果数,再找出数字之积能被3整除的结果数,然后根据概率公式求解.【解答】解:(1)树状图如下:(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为=.22.如图,有一个抛物线的拱形立交桥,这个桥拱的最大高度为16m,跨度为40m,现把它放在如图所示的直角坐标系里,若要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?【分析】根据抛物线形的拱桥在坐标系中的位置,找出抛物线上顶点和另一个点的坐标,代入抛物线的顶点式求出抛物线的解析式,再根据铁柱所在地的横坐标求出纵坐标,就是铁柱的高度.【解答】解:由题意,知抛物线的顶点坐标为(20,16),点B(40,0),∴可设抛物线的关系为y=a(x﹣20)2+16.∵点B(40,0)在抛物线上,∴a(40﹣20)2+16=0,∴a=﹣.∴y=﹣(x﹣20)2+16.∵竖立柱柱脚的点为(15,0)或(25,0),∴当x=15时,y=﹣(15﹣20)2+16=15m;当x=25时,y=﹣(25﹣20)2+16=15m.∴铁柱应取15m.23.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,反比例函数的解析式.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)设AB与x轴交于点C,由对称性得到△OAC的面积为3.根据反比例函数比例系数k的几何意义得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)设AB与x轴交于点C.∵点B与点A关于x轴对称,∴AB⊥x轴,∵△OAB的面积为6,∴△OAC的面积为3,∴(m﹣7)=3,解得m=13.24.如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求⊙O的半径.【分析】(1)由DE是⊙O的切线,且DF过圆心O,可得DF⊥DE,又由AC∥DE,则DF⊥AC,进而可知DF垂直平分AC;(2)可先证△AGD≌△CGF,四边形ACED是平行四边形,即可证明FC=CE;(3)连接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;设圆的半径为r,则AO=r,OG=r﹣3,在Rt△AOG中,由勾股定理可求得r=.【解答】(1)证明:∵DE是⊙O的切线,且DF过圆心O,∴DF是⊙O的直径所在的直线,∴DF⊥DE,又∵AC∥DE,∴DF⊥AC,∴G为AC的中点,即DF平分AC,则DF垂直平分AC;(2分)(2)证明:由(1)知:AG=GC,又∵AD∥BC,∴∠DAG=∠FCG;又∵∠AGD=∠CGF,∴△AGD≌△CGF(ASA),(4分)∴AD=FC;∵AD∥BC且AC∥DE,∴四边形ACED是平行四边形,∴AD=CE,∴FC=CE;(5分)(3)解:连接AO,∵AG=GC,AC=8cm,∴AG=4cm;在Rt△AGD中,由勾股定理得GD2=AD2﹣AG2=52﹣42=9,∴GD=3;(6分)设圆的半径为r,则AO=r,OG=r﹣3,在Rt△AOG中,由勾股定理得AO2=OG2+AG2,有:r2=(r﹣3)2+42,解得r=,(8分)∴⊙O的半径为cm.25.如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点P,顶点为C(1,﹣2).(1)求此函数的关系式;(2)求P点坐标;(3)作点C关于x轴的对称点D,顺次连接A,C,B,D.若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标.【分析】(1)根据顶点式直接写出函数解析式;(2)令x=0,代入y=(x﹣1)2﹣2,即可求出函数图象与y 轴的交点;(3)求出M点的坐标,然后利用待定系数法求出直线PM的解析式,与抛物线解析式联立组成方程组即可求出E点坐标.【解答】解:(1)∵函数的图象顶点为C(1,﹣2),∴函数关系式可表示为y=(x﹣1)2﹣2,即y=x2﹣2x﹣1,(2)当x=0时,y=﹣1,则有P(0,﹣1).(3)设直线PE的函数关系式为y=kx+b,由题意知四边形ACBD是菱形,∴直线PE必经过菱形的中心M,由P(0,﹣1),M(1,0)得,解得,∴直线PE的函数关系式为y=x﹣1,联立方程组,得∴点E的坐标为(3,2).。
广东省揭阳市2021_2022学年九年级数学上学期期末试题

11广东省揭阳市2021-2022学年九年级上学期期末数学试题试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .【答案】C【分析】 根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间. 故选:C .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.2.若一元二次方程20ax bx c ++=有一个根为1,则下列等式成立的是()A .1a b c ++=B .0a b c -+=C .1a b c -+=D .0a b c ++=【答案】D【分析】将1x =代入方程即可得出答案.【详解】解:由题意,将1x =代入方程20ax bx c ++=得:0a b c ++=,故选:D .【点睛】本题考查了一元二次方程的根,熟记一元二次方程的根的定义(使方程左、右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根)是解题关键.3.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起.则其颜色搭配一致的概率是( )A .14B .12C .34D .1【答案】B【详解】试题分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出概率即可.用A 和a 分别表示粉色有盖茶杯的杯盖和茶杯;用B 和b 分别表示白色有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa 、Ab 、Ba 、Bb , 所以颜色搭配正确的概率是12.故选B .考点:列表法与树状图法.4.ABC 中,90C ∠=,且3c b =,则cos (A =)A B C .13 D 【答案】C【分析】本题可以利用锐角三角函数的定义求解.【详解】∵在Rt △ABC 中,∠C=90°,且c=3b ,∴cosA=b c =b 3b =13. 故选C .【点睛】33本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.函数k y x=的图象经过(1,-1),则函数2y kx =-的图象是() A . B . C . D .【答案】A【详解】试题解析:∵图象经过(1,﹣1),∴k=xy=﹣1,∴函数解析式为y=﹣x ﹣2,所以函数图象经过(﹣2,0)和(0,﹣2).故选A .考点:1.反比例函数图象上点的坐标特征;2.一次函数的图象.6.若234a b c ==,则a b c a +-的值为() A .2B .19C .12D .9【答案】C【分析】设比值为k (k≠0),用k 表示出a 、b 、c ,然后代入比例式进行计算即可得解.【详解】 设()0234a b c k k ===≠, 则a=2k ,b=3k ,c=4k , ∴原式234122k k k k +-==, 故选C.【点睛】本题考查了比例的性质,利用“设k 法”求解更简便.7.点()11,x y 、()22,x y 、()33,x y 在反比例函数2y x =-的图象上,且1230x x x <<<,则有( )A .123y y y <<B .231y y y <<C .132y y y <<D .321y y y <<【答案】B【分析】先判断出函数的增减性,再判断出各点所在的象限,根据每个象限内点的坐标特点解答即可.【详解】解:∵k=-2<0,∴函数图象在二,四象限,由x1<0<x2<x3可知,横坐标为x1的点在第二象限,横坐标为x2,x3的点在第四象限.∵第四象限内点的纵坐标总小于第二象限内点的纵坐标,∴y1最大,在第二象限内,y随x的增大而增大,∴y2<y3<y1.故选:B.【点睛】在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.8.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.1:2 D.1:1【答案】C【分析】本题考查的是平行四边形的性质和相似三角形的判定和性质定理.【详解】解:在平行四边形ABCD中,AB∥CD,∴1,,,,,3DE DF DE DFDEF BEA OB BD OE DEBE AB BE AB~∴===∴==∴1.2DFFC=故选C.9.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()55A .5c os α米B .5cos α米C .5sin α米D .5sin α米 【答案】B【分析】 作BE ⊥AC ,垂足为E ,利用所给的角的余弦值求解即可.【详解】解:作BE ⊥AC ,垂足为E ,∵BE 平行于地面,∴∠ABE =∠α,∵BE =5米,∴AB =cos BC a =5cos a. 故选:B .【点睛】此题主要考查了解直角三角形的应用,正确选择三角函数是解题关键.10.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n ﹣1C .(14)n ﹣1D .(14)n 【答案】B【详解】解:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1, 3个这样的正方形重叠部分(阴影部分)的面积和为:1×2,4个这样的正方形重叠部分(阴影部分)的面积和为:1×3,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n 个这样的正方形重叠部分(阴影部分)的面积和为:1×(n ﹣1)=n ﹣1. 故选B .第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.若k 为整数,关于x 的一元二次方程2(1)2(1)50k x k x k --+++=有实数根,则整数k 的最大值为__________.【答案】3【分析】根据一元二次方程的二次项的系数不等于0、根的判别式求出k 的取值范围,由此即可得出答案.【详解】解:由题意得:[]2102(1)4(1)(5)0k k k k -≠⎧⎪⎨-+--+≥⎪⎩, 解得3k ≤,且1k ≠,k 为整数, ∴整数k 的最大值为3,故答案为:3.【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键. 12.若点()3,1A -、(),2B m 都在反比例函数()0k y k x=≠的图象上,则m 的值是___________. 【答案】32-## 【分析】77将点,A B 的坐标都代入反比例函数的解析式即可得.【详解】 解:点()3,1A -、(),2B m 都在反比例函数()0k y k x=≠的图象上, 231k m ∴==-⨯, 解得32m =-, 故答案为:32-. 【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.13.如图,矩形ABCD 中,E 是AD 的中点,4AB =,6AD =,M 是线段CE 上的动点,则BM 的最小值是___________.【答案】245【分析】先利用勾股定理求出CE 的长,再根据垂线段最短可得当BM CE ⊥时,BM 取得最小值,然后根据相似三角形的判定证出BCM CED ,最后根据相似三角形的性质即可得.【详解】 解:矩形ABCD 中,E 是AD 的中点,4AB =,6AD =,3,4,6,90,DE CD BC D AD BC ∴===∠=︒,5,CE BCM CED ∴=∠=∠,由垂线段最短可知,当BM CE ⊥时,BM 取得最小值,在BCM 和CED 中,90BCM CED BMC D ∠=∠⎧⎨∠=∠=︒⎩, BCMCED ∴, BM BC CD CE ∴=,即645BM =,解得245= BM,即BM的最小值是245,故答案为:245.【点睛】本题考查了垂线段最短、矩形的性质、相似三角形的判定与性质等知识点,正确找出两个相似三角形是解题关键.14.从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为___.【答案】12【详解】试题分析:利用列举法得到所有四种结果,然后根据三角形三边的关系得到能组成三角形的结果数,然后根据概率公式求解.从长度分别为3,5,6,9的四条线段中任取三条,共有(3 5 6)、(3 5 9)、(3 6 9)、(5 6 9)四种等可能结果,其中能组成三角形的有(3 5 6)、(5 6 9)两种等可能结果,所以能组成三角形的概率=24=12.故答案为12.考点:1.列表法与树状图法;2.概率公式.15.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,ODDA=23,则△DEF与△ABC的面积比是______.【答案】4:25【分析】本题考查解直角三角形的应用,解题的关键是理解题意,属于中考常考题型.【详解】解:∵△DEF是由△ABC经过位似变换得到的,∴△DEF∽△ABC,∵23=ODDA,∴25ODOA=,即△DEF与△ABC的相似比为25,∴△DEF与△ABC的面积比是4:25,99 故答案为4:25.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.16.如图,大坝的横截面是一个梯形,坝顶宽10m DC =,坝高15m ,斜坡AD 的坡度11:2l =,斜坡BC 的坡度23:4l =,则坡底宽AB =__________m .【答案】60【分析】过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥于点F ,先根据矩形的判定与性质可得10m EF DC ==,再根据坡度的定义求出,AE BF 的长,然后根据线段的和差即可得.【详解】解:如图,过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥于点F ,则15m DE CF ==,四边形DEFC 是矩形,10m EF DC ∴==,斜坡AD 的坡度11:2l =,斜坡BC 的坡度23:4l =,13,24DE CF AE BF ∴==,即151153,24AE BF ==, 解得30(m),20(m)AE BF ==,则坡底宽30102060(m)AB AE EF BF =++=++=,故答案为:60.【点睛】本题考查了解直角三角形的应用(坡度)、矩形的判定与性质等知识点,掌握理解坡度的定义(坡面的铅直高度和水平宽度的比叫做坡度)是解题关键.17.如图,已知矩形OABC 的面积为1003,它的对角线OB 与双曲线k y x=相交于点D ,且OB :OD =5:3,则k =____.【答案】12【详解】过点D 作DE OA ⊥,则ODE OBA ~,由相似三角形性质得,29()25ODE OBA SOD S OB ==, 而110050233OBA S=⨯=, 则6ODE S=, 由于62k =, 所以12k =故答案为:12.三、解答题 18.计算:102tan 601)|-︒-++【答案】32【分析】根据零指数幂、负整指数幂、特殊角的三角函数值、绝对值对式子进行计算即可.【详解】1111解:102tan 601)-︒-++112=32=. 【点睛】本题主要考查了实数的综合运算能力,涉及特殊角的三角函数值、负整数指数幂、零指数幂、绝对值等知识点,细心运算是解题关键.19.画出如图所示物体的主视图、左视图、俯视图.【答案】画图见解析.【分析】三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】如图所示:主视图左视图俯视图【点睛】本题考查了三视图,但需要注意在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.20.如图:一次函数的图象与反比例函数k y x=的图象交于()2,6A -和点()4,B n .(1)求点B 的坐标;(2)根据图象回答,当x 在什么范围时,一次函数的值大于反比例函数的值.【答案】(1)()4,3B -;(2)2x <-或04x <<.【分析】(1)先根据点A 的坐标可得反比例函数的解析式,再将点B 的坐标代入计算即可得;(2)结合点,A B 的坐标,根据一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方即可得.【详解】解:(1)将点()2,6A -代入k y x =得:2612k =-⨯=-, 则反比例函数的解析式为12y x =-, 将点()4,B n 代入12y x =-得:1234n =-=-, 则点B 的坐标为()4,3B -;(2)一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,2x ∴<-或04x <<.【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定系数法和函数图象法是解题关键.21.据某市车管部门统计,2013年底全市汽车拥有量为150万辆,而截至到2015年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.(1)求年平均增长率;(2)如果不加控制,该市2017年底汽车拥有量将达多少万辆?【答案】(1)年平均增长率为20%.(2)如果不加控制,该市2017年底汽车拥有量将达311.04万辆.【详解】试题分析:(1)假设出平均增长率为x ,可以得出2013年该市汽车拥有量为150(1+x ),2015年为150(1+x )(1+x )=216,即150(1+x )2=216,进而求出具体的值;(2)结合上面的数据2017应该在2015年的基础上增长,而且增长率相同,同理,即为216(1+20%)2.解:设该市汽车拥有量的年平均增长率为x .根据题意,得150(1+x )2=216.解得:x=0.2或x=﹣2.2(不合题意,舍去).∴年平均增长率为20%.(2)216(1+20%)2=311.04(万辆).1313答:如果不加控制,该市2017年底汽车拥有量将达311.04万辆.考点:一元二次方程的应用.22.如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=23, AD=4.(1)求BC 的长;(2)求tan ∠DAE 的值.【答案】(1) (2【详解】试题分析:(1)先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADC,得出DC=4;解Rt△ADB,得出AB=6,根据勾股定理求出BC=BD+DC 即可求解;(2)先由三角形的中线的定义求出CE 的值,则DE=CE-CD ,然后在Rt△ADE 中根据正切函数的定义即可求解.试题解析:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°.在△ADC 中,∵∠ADC=90°,∠C=45°,AD=4,∴DC=AD=4.在△ADB 中,∵∠ADB=90°,sinB=23,AD=4, ∴AB=6sin AD B ==∴BC=BD+DC=4(2)∵AE 是BC 边上的中线, ∴CE=122,∴DE=CE2,∴tan∠DAE=DE AD = 考点: 解直角三角形.23.已知,在矩形ABCD 中,AB a ,BC b =,动点M 从点A 出发沿边AD 向点D 运动.(1)如图1,当2b a =,点M 运动到边AD 的中点时,请证明90BMC ∠=︒;(2)如图2,当2b a >时,点M 在运动的过程中,是否存在90BMC ∠=︒,若存在,请给与证明;若不存在,请说明理由.【答案】(1)见解析;(2)存在,理由见解析【分析】(1)根据b =2a ,点M 是AD 的中点,可得AB =AM =MD =DC =a ,再由矩形的性质,即可求证;(2)假设∠BMC =90°,则∠AMB +∠DMC =90°,可先证得△ABM ∽△DMC ,从而得到AM AB CD DM=,然后设AM =x ,则x a a b x =-,可得到220x bx a +=-,再由2,0,0b a a b >>>,可得到2240b a ∆=->,进而得到方程220x bx a +=-有两个不相等的实数根,且两根均大于0,即可求解.【详解】解:(1)证明:∵b =2a ,点M 是AD 的中点,∴AB =AM =MD =DC =a ,又∵在矩形ABCD 中,∠A =∠D =90°,∴∠AMB =∠DMC =45°,∴∠BMC =90°;(2)存在,理由:若∠BMC =90°,则∠AMB +∠DMC =90°,又∵∠AMB +∠ABM =90°,∴∠ABM =∠DMC ,又∵∠A =∠D =90°,∴△ABM ∽△DMC , ∴AM AB CD DM=, 设AM =x ,则xa ab x =-, 整理得:220x bx a +=-,∵2,0,0b a a b >>>,1515∴224b a >,∴2240b a ∆=->,∴方程220x bx a +=-有两个不相等的实数根,且两根均大于0,符合题意, ∴当2b a >时,点M 在运动的过程中,存在90BMC ∠=︒.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,一元二次方程根的判别式的应用,熟练掌握相似三角形的判定和性质定理,一元二次方程根的判别式是解题的关键.24.如图,四边形ABCD 中,AC 平分DAB ∠,90ADC ACB ∠=∠=︒,E 为AB 的中点.(1)求证:2AC AB AD =⋅;(2)求证:CE AD ∥;(3)若4=AD ,6AB =,求AC AF的值. 【答案】(1)证明见解析;(2)证明见解析;(3)74. 【分析】 (1)先根据相似三角形的判定证出ACD ABC ~,再根据相似三角形的性质即可得证;(2)先根据直角三角形斜边上的中线等于斜边的一半可得AE CE =,再根据等腰三角形的性质可得ACE CAE ∠=∠,从而可得ACE DAC ∠=∠,然后根据平行线的判定即可得证;(3)先根据相似三角形的判定证出CEF ADF ,再根据相似三角形的性质可得34CF CE AF AD ==,由此即可得出答案. 【详解】证明:(1)AC 平分DAB ∠,DAC CAB ∴∠=∠,在ACD △和ABC 中,90DAC CAB ADC ACB ∠=∠⎧⎨∠=∠=︒⎩, ACDABC ∴, AC AD AB AC∴=,2AC AB AD ∴=⋅;(2)90ACB ∠=︒,E 为AB 的中点,12AE CE AB ∴==, ACE CAE ∴∠=∠,由(1)已得:DAC CAB ∠=∠,ACE DAC ∴∠=∠,CE AD ∴;(3)6AB =,E 为AB 的中点,132CE AB ∴==, 由(2)已证:CE AD ∥,CEFADF ∴, 34CF CE AF AD ∴==, 3114CF AF ∴+=+,即74CF AF AF +=, 74AC AF ∴=. 【点睛】本题考查了相似三角形的判定与性质、平行线的判定等知识点,熟练掌握相似三角形的判定与性质是解题关键.25.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),k y x 0k 0x =>>的图象上,点()P m n ,是函数(),k y x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值;(2)写出S 关于m 的函数关系式;(3)当3S =时,求点P 的坐标.1717【答案】(1)(3,3)B ,9k =;(2)93(03)279(3)m m S m m -<<⎧⎪=⎨-≥⎪⎩;(3)(92,2)或9(,2)2. 【分析】(1)先根据正方形的面积公式可得3OA AB ==,从而可得点B 的坐标,再利用待定系数法即可得k 的值;(2)先将点(,)P m n 代入反比例函数的解析式可得9n m=,再分①点P 在点B 的右侧,②点P 在点B 的左侧两种情况,分别利用矩形的面积公式即可得;(3)根据(2)的结果,求出3S =时,m 的值,由此即可得出答案.【详解】解:(1)正方形OABC 的面积为9,3OA AB ∴==,(3,3)B ∴,将点(3,3)B 代入ky x =得:339k =⨯=;(2)由(1)得:反比例函数的解析式为9y x =,将点(,)P m n 代入9y x =得:9n m =,由题意,分以下两种情况:①如图,当点P 在点B 的右侧,即3m ≥时,则9,OE m PE n m ===,3AE OE OA m ∴=-=-,927(3)9S AE PE m m m ∴=⋅=-⋅=-;②如图,当点P 在点B 的左侧,即03m <<时,则9,PF OE m OF PE n m =====, 93CF OF OC OF AB m ∴=-=-=-, 9(3)93S PF CF m m m∴=⋅=⋅-=-, 综上,S 关于m 的函数关系式为93(03)279(3)m m S m m -<<⎧⎪=⎨-≥⎪⎩; (3)①当03m <<时,933S m =-=,解得2m =, 则92n =, 即此时点P 的坐标为9(2,)2P ; ②当3m ≥时,2793S m =-=,解得92m =, 则9292n ==,即此时点P 的坐标为9(,2)2P ; 综上,点P 的坐标为(92,2)或9(,2)2. 【点睛】本题考查了反比例函数与几何综合等知识点,较难的是题(2),正确分两种情况讨论是解题关键.。
2020年揭阳市初三数学上期末试题含答案

2020年揭阳市初三数学上期末试题含答案一、选择题1.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2 B .1 C .0 D .﹣12.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 4.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( ) A .16(1+2x)=25 B .25(1-2x)=16 C .25(1-x)²=16 D .16(1+x)²=255.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等6.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°7.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 8.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( )A .4B .5C .6D .79.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m 10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下:x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 12.如图,AB 为⊙O 的直径,四边形ABCD 为⊙O 的内接四边形,点P 在BA 的延长线上,PD 与⊙O 相切,D 为切点,若∠BCD =125°,则∠ADP 的大小为( )A .25°B .40°C .35°D .30°二、填空题13.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.14.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.15.三角形两边长分别是4和2,第三边长是2x 2﹣9x +4=0的一个根,则三角形的周长是_____.16.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分的面积是____.17.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.18.若二次函数y =x 2﹣3x +3﹣m 的图象经过原点,则m =_____.19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.20.若1x 、2x 是方程22x 2mx m m 10-+--=的两个实数根,且x 1+x 2=1-x 1⋅x 2,则 m 的值为________.三、解答题21.如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)22.如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,AC=FC .(1)求证:AC 是⊙O 的切线;(2)已知圆的半径R=5,EF=3,求DF 的长.23.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y (吨)与销售价x (万元)之间的函数关系为y =-x +2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?24.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x 交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.2.A解析:A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm ,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.4.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.5.A解析:A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.6.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B解析:B【解析】A. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.8.B解析:B【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤193且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤193且a≠6,所以整数a的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.9.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.12.C解析:C【解析】【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.二、填空题13.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 14.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.15.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x﹣1)(x﹣4)=0解得:x=或x=4当x=时+2<4解析:【解析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=12或x=4,当x=12时,12+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=10.故答案为:10.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键. 16.π﹣2【解析】【分析】连接CD作DM⊥BCDN⊥AC证明△DMG≌△DNH 则S四边形DGCH=S四边形DMCN求得扇形FDE的面积则阴影部分的面积即可求得【详解】连接CD作DM⊥BCDN⊥AC∵CA解析:π﹣2.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=2,四边形DMCN是正方形,DM.则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=2.则阴影部分的面积是:π﹣2.故答案为π﹣2.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.17.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2 =﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣=﹣=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.18.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入y=x2-3x+3-m得:3-m=0解得:m=解析:【解析】【分析】此题可以将原点坐标(0,0)代入y=x2-3x+3-m,求得m的值即可.【详解】由于二次函数y=x2-3x+3-m的图象经过原点,把(0,0)代入y=x2-3x+3-m,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.19.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x 轴的交点,涉及到圆的垂径定理.20.1【解析】【分析】【详解】若x1x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x1+x2=2m ;x1·x2=m2−m−1∵x1+x2=1-x1x2∴2m=1-(m2−m−1)解得:m1=-解析:1【解析】【分析】【详解】若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个实数根;∴x 1+x 2=2m ;x 1·x 2= m 2−m−1, ∵x 1+x 2=1-x 1x 2,∴2m=1-(m 2−m−1),解得:m 1=-2,m 2=1.又∵一元二次方程有实数根时,△ 0≥,∴22(2)4(1)0m m m ----≥,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程()20?0ax bx c a ++=≠的两根是12x x 、,则1212b c x x x x a a+=-⋅=,,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=24b ac -0≥.三、解答题21.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【详解】解:如图:22.(1)证明见解析;(229【解析】【分析】(1)连结OA 、OD ,如图,根据垂径定理的推理,由D 为BE 的下半圆弧的中点得到OD ⊥BE ,则∠D+∠DFO=90°,再由AC=FC 得到∠CAF=∠CFA ,根据对顶角相等得∠CFA=∠DFO ,所以∠CAF=∠DFO ,加上∠OAD=∠ODF ,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC 是⊙O 的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt △ODF 中利用勾股定理计算DF 的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴225+2=29【点睛】本题考查切线的判定.23.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.24.(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0)【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得MN ONAB BC=或MN ONBC AB=,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得22-2y x x y x⎧=+⎨=⎩﹣,解得2xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得13k bk b =+⎧⎨-=-+⎩,解得:21 kb=⎧⎨=-⎩,∴y=2x﹣1,当y=0,即2x﹣1=0,解得:x=12,∴D(12,0),∴BD=2﹣12=32,∴△ABC的面积=S△ABD+S△BCD=12×32×1+12×32×3=3;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)知,AB=2,BC=32,∵MN⊥x轴于点N,∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时,有MN ONAB BC=或MN ONBC AB=,①当MN ONAB BC=时,∴22232x x x-+=,即|x||﹣x+2|=13|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N点坐标为(53,0)或(73,0);②当或MN ONBC AB=时,∴22322x x x-+=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.25.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用。
2020-2021学年广东省揭阳市揭西县九年级(上)期末数学测试卷

2020-2021学年广东省揭阳市揭西县九年级(上)期末数学测试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A.B.C.D.2.下列函数中①y=√32x ,②3xy=1.③y=1−√2x,④y=x2,反比例函数有()A. 1个B. 2个C. 3个D. 4个3.在一个不透明的布袋中装有50个黄、白两种颜色的球,它们除颜色外无任何不同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A. 15个B. 20个C. 30个D. 35个4.下列说法中,不正确的是()A. 一组邻边相等的矩形是正方形B. 一组邻边相等的平行四边形是菱形C. 一组对边相等且有一个角是直角的四边形是矩形D. 一组对边平行且相等的四边形是平行四边形5.下列一元二次方程中,有两个不相等的实数根的方程是()A. x2−x+1=0B. x2+1=0C. x2+2x+1=0D. x2−3x+1=06.反比例函数y=2k−2x的图象过点(2,1),则k值为()A. 2B. 3C. −2D. −17.如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在图中的方格内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A. (0,0)B. (0,1)C. (1,−1)D. (1,0)8.某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A. 1.25mB. 10mC. 20mD. 8m9.若x1,x2是一元二次方程3x2+x−1=0的两个根,则1x1+1x2的值是()A. −1B. 0C. 1D. 210.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠C=∠E;②△ADE∽△FDB;③∠AFE=∠AFC;④FD=FB.其中正确的结论是().A. ①③B. ②③C. ①④D. ②④第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11.如果四条线段m,n,x,y成比例,若m=2,n=8,y=4.则线段x的长是____.12.若关于x的方程3x2−2x+m=0的一个根为−1,则m的值为______.13.已知P是线段AB的黄金分割点,AP>PB,AB=10,则AP=__________.(k≠0)的图象经过点A(−2,4),则在每一个象限内,y随x的增大14.反比例函数y=kx而.(填“增大”或“减小”)15.如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为___________.(x>0)图像上的三个16.已知A,B,C是反比例函数y=4x整点(即横、纵坐标均为整数的点),分别以这些点向横轴或纵轴作垂线段,以垂线段为边作出三个正方形,再以正方形的边长为直径作两个半圆,组成如图所示的阴影部分,则阴影部分的面积总和是.(用含π的代数式表示)三、解答题(本大题共9小题,共66.0分)17.解方程:x2−3x=−2.18.如图,在△ABC中,AB=AC,若AB2=BD⋅BC.求证:△ABD是等腰三角形.19.一个家庭有3个孩子,请用树形图法求解(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.20.如图所示,路灯下某公路护栏AB的影子为AB′,某棵树CD的影子为CD′,请画出电线杆EF的影子.21.如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:△AOE≌△COF;(2)求证:四边形AFCE为菱形;(2)求菱形AFCE的周长.22.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.23.如图,在三角形ABC中,AH是高,正方形DEFG的顶点D、G分别在AB、AC上,EF在BC上,设BC=120,AH=80,求正方形的边长.24.如图,一次函数y=mx+n(m≠0)与反比例函数y=k(k≠0)的图象相交于A(−1,2),B(2,b)两点,与y轴相x交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.25.如图,在△ABC中,∠A=90°,AB=6cm,AC=8cm,MN是BC的垂直平分线,动点P从点B出发,沿BA边以2cm/s的速度向点A匀速运动;同时点Q从点N出发,沿NC边向点C匀速运动,且始终保持MQ⊥MP.当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t(s).(1)△PBM与△QNM相似吗?请说明理由;(2)求动点Q的运动速度;cm2.(3)当t为何值时,△APQ的面积等于194答案和解析1.【答案】A【解析】解:从上面看易得左侧有2个正方形,右侧有一个正方形.故选:A.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.【答案】C【解析】【分析】根据反比例函数的定义对各小题进行逐一分析即可.(k为常数,k≠0)的函数称为反比例本题考查的是反比例函数的定义,熟知形如y=kx函数是解答此题的关键.【解答】是反比例函数,符合题意;解:①y=√32x②3xy=1可化为y=1是反比例函数,符合题意;3x③y=1−√2是反比例函数,符合题意;x④y=x是正比例函数,不符合题意,2因此是反比例函数的有3个.故选C.3.【答案】D【解析】【分析】本题利用了用大量试验得到的频率可以估计事件的概率.关键是利用黄球的概率公式列方程求解得到黄球的个数.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【解答】=0.3,解:设袋中有黄球x个,由题意得x50解得x=15,则白球可能有50−15=35个.的选D.4.【答案】C【解析】【分析】此题考查了正方形的判定、菱形的判定以及矩形的判定.此题难度不大,注意熟记定理是解此题的关键.直接利用正方形的判定定理、菱形的判定定理以及矩形的判定定理求解即可求得答案。
广东省普宁市2021-2022学年九年级上学期期末教学质量监测数学试卷含答案

2021-2022学年度第一学期初中教学质量监测九年级数学试卷参考答案一.选择题(本大题10小题,每小题3分,共30分.)1—5 D A B D C ; 6—10 B C C A D.二.填空题( 本大题7小题,每小题4分,共28分)11. 0. 12. 2.13. () . 14. 7.1m .15. 0<x <1或x <﹣1 . 16. 26m . 17. ①③④ 三.解答题(一)(本大题共3小题,每小题6分,共18分)18.解:这里a =1,b =﹣3,c =﹣5, …………………………(1分)∵△=9﹣4×(﹣5)=29>0, …………………………(3分)∴x =…………………………(5分) 2293229321-=+=x x ,即 …………………………(6分)19.解:(1) 21 …………………………(2分) (2)把甲医院的2名医护人员记为A 、B ,乙医院的2名医护人员记为C 、D ,画树状图如图:…………………………(2分)共有12种等可能的结果,2名医护人员来自同一所医院的结果有4种,分别为AB 、BA 、CD 、DC ,则这2名医护人员来自同一所医院的概率是=.………………(6分)20.解:(1)y=x2+4x+4﹣6﹣4…………………………(1分)=(x2+4x+4)﹣10=(x+2)2﹣10;…………………………(3分)(2)二次函数图象的开口向上.对称轴是直线x=﹣2,顶点坐标是(-2,-10).…………………………(6分)四.解答题(二)(本大题共3小题,每小题8分,共24分)21.解:(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,…………………………(1分)∵∠ACB=90°,D为AB的中点,∴CD=AB=AD,…………………………(2分)∴四边形ADCE为菱形;…………………………(3分)(2)解:在Rt△ABC中,BC=6,tan B==,∴AC=BC=×6=8,…………………………(4分)∴AB===10,…………………………(5分)∴CD=AB=5,…………………………(6分)∵四边形ADCE为菱形,∴CD=DA=AE=EC=5,…………………………(7分)∴菱形ADCE的周长为:5×4=20.…………………………(8分)22. 解:(1)设二、三这两个月的月平均增长率为x,由题意得256(1+x)2=400,…………………………(2分)解得:x1=25%,x2=﹣2.25(不合题意,舍去),…………………………(3分)答:二、三月份销售量的月平均增长率是25%;…………………………(4分)(2)设降价y元,由题意得(40﹣y﹣25)(400+5y)=4250,…………………………(6分)整理得:y2+65y﹣350=0,解得:y1=5,y2=﹣70(不合题意,舍去),…………………………(7分)答:当商品降价5元时,商场当月获利4250元.…………………………(8分)23.(1)∵反比例函数的图象经过点B(-2,-1),∴m=-2×(-1)=2,∴反比例函数的表达式为y=.…………………………(2分)∵点A(1,a)在反比例函数y=图象上,∴n=2.∴点A的坐标为(1,2).…………………………(3分)∵一次函数y1=kx+b(k≠0)的图象经过点B(-2,-1)和点A(1,2),∴,解得,∴一次函数的表达式y1=x+1 …………………………(5分)(2)一次函数y=x+1与y轴的交点为M,∴M(0,1).…………………………(6分)∴S△AOB=S△OAM+S△OBM=+=.…………………………(8分)五.解答题(三)(本大题共2小题,每小题10分,共20分)24.(1)证明:∵PE∥DC,PF∥BC,∴四边形PECF是平行四边形,…………………………(1分)∵四边形ABCD是矩形,∴∠C=90°,…………………………(2分)∴四边形PECF是矩形;…………………………(3分)(2)证明:∵PE∥DC,∴∠BPE=∠PDF,…………………………(4分)∵PF∥BC,∴∠PBE=∠DPF,…………………………(5分)∴△BPE∽△PDF;…………………………(6分)(3)解:当四边形PECF是正方形,设此正方形的边长为x,则PE=PF=CE=CF=x,在矩形ABCD中,AB=6,AD=8,∴BE=8﹣x,DF=6﹣x,…………………………(7分)由(2)知,△BPE∽△PDF,∴,∴,…………………………(9分)∴x=,即当四边形PECF是正方形时,正方形的边长为…………………………(10分)25. 解:(1)将点A(1,0),点C(0,3)代入y=x2+bx+c,得,…………………………(1分)∴,∴y=x2﹣4x+3;…………………………(2分)(2)令y=0,则x2﹣4x+3=0,解得x=3或x=1,∴A(1,0),B(3,0)∴AB=2,OB=OC,∴∠CBO=45°,∵BP⊥x轴,∴∠CBP=45°,…………………………(3分)①当∠PCB=∠ACB时,△CAB≌△CPB(ASA),∴AB=BP,∴BP=2,∴P(3,2);…………………………(4分)②当∠CPB=∠ACB时,△CAB∽△PCB,∴=,∵BC=3,∴BP=9,∴P(3,9);…………………………(5分)综上所述:△PBC与△ABC相似时,P点坐标为(3,9)或P(3,2);……(6分)(3)过点B在x轴下方作直线l与x轴成角为30°,与y轴交于点D.过点C作CN⊥l交于点N,交x轴于点M,…………………………(7分)九年级数学初中教学质量监测参考答案(第5页 共5页)∵∠OBN =30°,∴MB =2MN ,∴MN =MB ,∴CM +BM =CM +MN =CN ,此时CM +BM 的值最小. …………………(8分) 在OBD Rt ∆中,︒=∠30OBD ,OB=3,3tan =∠⋅=∴OBD OB OD , …………(9分) 在CND Rt ∆中,︒=∠60CDN ,33+=CD ,2333sin +=∠⋅=∴CDN CD CN , ∴CM +BM 的值最小为2333+. …………………………(10分) D。
广东省揭阳市普宁市九年级(上)期末数学试卷

九年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.如图所示的工件,其俯视图是( )A.B.C.D.2.反比例函数y=kx的图象经过点(3,-2),下列各点在图象上的是( )A. (−3,−2)B. (3,2)C. (−2,−3)D. (−2,3)3.两三角形的相似比是2:3,则其面积之比是( )A. 2:3B. 2:3C. 4:9D. 8:274.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是( )A. 8B. 7C. 4D. 35.下列说法中正确的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是正方形C. 平行四边形的对角线平分一组对角D. 矩形的对角线相等且互相平分6.已知2x=3y,则下列比例式成立的是( )A. x2=3yB. x2=y3C. x3=y2D. xy=237.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是( )A. AC:BC=AD:BDB. AC:BC=AB:ADC. AB2=CD⋅BCD. AB2=BD⋅BC8.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )A. y=(x+2)2−5B. y=(x+2)2+5C. y=(x−2)2−5D. y=(x−2)2+59.已知关于x的一元二次方程mx2-(m+2)x+m4=0有两个不相等的实数根x1,x2.若1x1+1x2=4m,则m的值是( )A. 2B. −1C. 2或−1D. 不存在10.已知二次函数y=(x+m)2-n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是( )A.B.C.D.二、填空题(本大题共6小题,共24.0分)11.计算:18-20180+(13)-1-2cos45°=______.12.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是______m.13.如图,点P在函数y=kx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于______.14.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是______.15.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是______.16.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为______.三、计算题(本大题共1小题,共6.0分)17.有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).四、解答题(本大题共8小题,共60.0分)18.解方程:2x2-7x+6=0.19.如图,点D为△ABC边AB上一点.(1)请用尺规作∠ADE,使点E在边AC上,且∠ADE=∠C;(保留作图痕迹,不写作法)(2)△ADE与△ACB相似吗?为什么?20.已知二次函数y=x2-4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.21.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.22.如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.(1)求证:四边形ADBE是矩形;(2)连接DE,交AB于点O,若BC=8,AO=52,求cos∠AED的值.23.如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=kx的图象交于点A(1,2)和B(-2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1≥y2时x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若∠DAC=30°,求点C的坐标.24.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.M在AB上,且∠APM=∠APD,过点B作BN∥MP交DC于点N.(1)求证:四边形PMBN是菱形;(2)求证:AD•BC=DP•PC;(3)如图2,连接AC,分别交PM,PB于点E,F,若DP=1,AD=2,求EFAE 的值.25.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P、Q、R分别在AB、BC、CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,用t(秒)(0≤t≤2)表示运动时间,在运动过程中:(1)当t为何值时,△APR的面积为4;(2)求出△CRQ的最大面积;(3)是否存在t,使∠PQR=90°?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.2.【答案】D【解析】解:∵反比例函数y=的图象经过点(3,-2),∴xy=k=-6,A、(-3,-2),此时xy=-3×(-2)=6,不合题意;B、(3,2),此时xy=3×2=6,不合题意;C、(-2,-3),此时xy=-3×(-2)=6,不合题意;D、(-2,3),此时xy=-2×3=-6,符合题意;故选:D.直接利用反比例函数图象上点的坐标特点进而得出答案.此题主要考查了反比例函数图象上点的坐标特征,正确得出k的值是解题关键.3.【答案】C【解析】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.根据相似三角形的面积比等于相似比的平方计算即可.本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4.【答案】A【解析】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.5.【答案】D【解析】解:∵对角线相等的平行四边形是矩形,∴A不正确;∵对角线互相垂直的矩形是正方形,∴B不正确;∵平行四边形的对角线互相平分,菱形的对角线平分一组对角,∴C不正确;∵矩形的对角线互相平分且相等,∴D正确;故选:D.由矩形和正方形的判定方法容易得出A、B不正确;由平行四边形的性质和矩形的性质容易得出C不正确,D正确.本题考查了矩形的判定与性质、平行四边形的性质、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定与性质是解决问题的关键.6.【答案】C【解析】解:A、变成等积式是:xy=6,故错误;B、变成等积式是:3x=2y,故错误;C、变成等积式是:2x=3y,故正确;D、变成等积式是:3x=2y,故错误.故选:C.把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.本题主要考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.7.【答案】D【解析】解:∵∠B=∠B,∴当=时,△ABC∽△DBA,当AB2=BD•BC时,△ABC∽△DBA,故选:D.根据相似三角形的对应边比例且夹角相等进行判断,要注意相似三角形的对应边和对应角.此题主要考查的是相似三角形的性质,正确地判断出相似三角形的对应边和对应角是解答此题的关键.8.【答案】A【解析】解:抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(-2,-5),所以,平移后的抛物线的解析式为y=(x+2)2-5.故选:A.先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并根据规律利用点的变化确定函数解析式.9.【答案】A【解析】解:∵关于x的一元二次方程mx2-(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>-1且m≠0.∵x1、x2是方程mx2-(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵+==4m,∴=4m,∴m=2或-1,∵m>-1,∴m=2.故选:A.先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合+=4m,即可求出m的值.本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式△>0,找出关于m的不等式组;(2)牢记两根之和等于-、两根之积等于.10.【答案】C【解析】解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.故选:C.观察二次函数图象可得出m>0、n<0,再根据一次函数图象与系数的关系结合反比例函数的图象即可得出结论.本题考查了二次函数图象与系数的关系、一次函数图象与系数的关系以及反比例函数的图象,观察二次函数图象找出m>0、n<0是解题的关键.11.【答案】22+2【解析】解:原式=3-1+3-2×=3-1+3-=2+2.故答案为:2+2.直接利用特殊角的三角函数值以及二次根式的性质和零指数幂的性质、负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.【答案】14【解析】解:设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻,平行投影中物体与影长成正比.13.【答案】-8【解析】解:∵点P在反比例函数y=的图象上,PA⊥x轴于点A,PB⊥y轴于点B,∴S△APB=|k|=4,∴k=±8.又∵反比例函数在第二象限有图象,∴k=-8.故答案为:-8.由反比例函数系数k的几何意义结合△APB的面积为4即可得出k=±8,再根据反比例函数在第二象限有图象即可得出k=-8,此题得解.本题考查了反比例函数系数k的几何意义,熟练掌握“在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|”是解题的关键.14.【答案】13【解析】【分析】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:积-2-12-22-4-12-22-4-2由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故答案为:.15.【答案】10%【解析】解:设平均每次降价的百分率是x,根据题意列方程得,6000(1-x)2=4860,解得:x1=10%,x2=(不合题意,舍去);答:平均每次降价的百分率为10%.故答案是:10%设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.此题主要考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.16.【答案】(2)n-1.【解析】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=同理可得:AE=()2,AG=()3…,∴第n个正方形的边长a n=()n-1.故答案为()n-1.首先求出AC、AE、AG的长度,然后猜测命题中隐含的数学规律,即可解决问题;此题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.17.【答案】解:(1)甲选择A部电影的概率=12;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率=28=14.【解析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出甲、乙、丙3人选择同1部电影的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.【答案】解:2x2-7x+6=0,(2x-3)(x-2)=0,∴2x-3=0,x-2=0,x1=32,x2=2,【解析】利用十字相乘法因式分解得到(2x-3)(x-2)=0,推出2x-3=0,x-2=0,求出方程的解即可.此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.【答案】解:(1)如图,∠ADE即为所求作;(2)△ADE与△ACB相似.理由如下:∵∠A=∠A,∠ADE=∠C∴△ADE∽△ACB.【解析】(1)利用基本作图(作一个角等于已知角)作∠ADE=∠C;(2)根据有两组角对应相等的两个三角形相似可判定△ADE与△ACB相似.本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.20.【答案】解:(1)当y=0时,x2-4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2-4x+3=x2-4x+4-1=(x-2)2-1,所以抛物线的顶点坐标为(2,-1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.【解析】(1)通过解方程x2-4x+3=0得该二次函数与x轴的交点坐标;把y=x2-4x+3通过配方得到y=(x-2)2-1,从而得到抛物线的顶点坐标;(2)利用描点法画出二次函数图形,然后利用函数图形,写出图象在x轴下方所对应的自变量的范围即可.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【答案】解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×32=23(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=23(千米),∴BC=2BD=26(千米).答:B,C两地的距离是26千米.【解析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.22.【答案】证明:(1)∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形.∵AB=AC,AD是BC边的中线,∴AD⊥BC.即∠ADB=90°.∴四边形ADCE为矩形.(2)∵在矩形ADCE中,AO=52,∴DE=AB=5.∵D是BC的中点,∴AE=DB=4∴在Rt△ADE中,cos∠AED=AEDE=45.【解析】(1)只要证明四边形ADBE是平行四边形,且∠ADB=90°即可;(2)求出BD、AB,在Rt△ADE中,根据cos∠AED=计算即可;本题考查矩形的判定和性质、等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握矩形的判定方法,属于中考常考题型.23.【答案】解:(1)∵点A(1,2)在反比例函数y2=kx的图象上,∴2=k1,∴k=1×2=2,∴反比例函数的解析式为y2=2x.∵点B(-2,m)在反比例函数y2=2x的图象上,∴m=2−2=-1,∴点B的坐标为(-2,-1).把A(1,2),B(-2,-1)代入y1=ax+b得:2=a+b−1=−2a+b,解得:a=1b=1,∴一次函数解析式为y1=x+1.(2)由函数图象可知:当-2≤x<0或x≥1时,y1≥y2.(3)由题意得:AD=2-(-1)=3,点D的坐标为(1,-1).在Rt△ADC中,tan∠DAC=CDAD,即CD3=33,解得:CD=3.当点C在点D的左侧时,点C的坐标为(1-3,-1);当点C在点D的右侧时,点C的坐标为(1+3,-1).∴当点C的坐标为(1-3,-1)或(1+3,-1).【解析】(1)由点A的坐标,利用反比例函数图象上点的坐标特征可求出k值,由点B 的横坐标利用反比例函数图象上点的坐标特征可求出m值,进而可得出点B 的坐标,根据点A,B的坐标,利用待定系数法即可求出一次函数解析式;(2)观察函数图象,由两函数图象的上下位置关系结合两交点的坐标,即可找出y1≥y2时x的取值范围;(3)由点A,B的纵坐标可得出AD的长度及点D的坐标,在Rt△ADC中,由∠DAC=30°可得出CD的长度,再结合点D的坐标即可求出点C的坐标.本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、函数图象以及特殊角的三角函数值,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)由两函数图象的上下位置关系,找出结论;(3)在Rt△ADC中,由特殊角的三角函数值求出CD的长.24.【答案】(1)证明:在矩形ABCD中,DC∥AB,∵BN∥MP,∴四边形PMBN是平行四边形,∵∠APB=90°,∴∠APM+∠BPM=90°,∠APD+∠BPC=90°,∵∠APM=∠APD,∴∠BPM=∠BPC,∵DC∥AB,∴∠BPC=∠PBM,∵∠BPM=∠PBM∴MP=MB,∴平行四边形PMBN是菱形;(2)证明:在矩形ABCD中,∠D=∠C=90°,∴∠APD+∠DAP=90°,∵∠APD+∠BPC=90°,∴∠DAP=∠BPC,∴△ADP∽△PCB,∴ADDP=PCCB,∴AD•BC=DP•PC;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,由(2)得AD•BC=DP•PC∴PC=4,∴AB=CD=5,在矩形ABCD中,DC∥AB,∴∠APD=∠PAM,∵∠APM=∠APD,∴∠PAM=∠APM,∴AM=MP,由(1)得MP=MB,∴AM=MB=52,∵DC∥AB,∴∠PCA=∠CAB,∵∠PFC=∠BFA,∴△PCF∽△BAF,∴CFAF=PCAB=45,∴CF=49AC,同理可得△PCE∽△MAE,∴CEAE=PCAM=452=85,∴AE=513AC,∴EF=AC-CF-AE=20117AC,∴EFAE=20117AC513AC=49.【解析】(1)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(2)根据余角的性质得到∠DAP=∠BPC,根据相似三角形的性质即可得到结论;(3)根据矩形的性质得到BC=AD=2,求得AB=CD=5,根据平行线的性质得到∠APD=∠PAM,推出AM=MP,得到AM=MB=,根据相似三角形的性质得到==,求得CF=AC,根据相似三角形的性质得到===,得到AE=AC,于是得到结论.本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.25.【答案】解:(1)由运动知,AP=3t,CR=4t,∴AR=8-4t,∴S△APR=12AP•AR=12×3t×(8-4t)=12t-6t2=4,解得t=3−33或t=3+33∴当t为3−33或3+33秒时,△APR的面积为4;(2)如图1,过点Q作QD⊥AC于D,在Rt△ABC中,AB=6,AC=8,根据勾股定理得,BC=10,∴sin C=ABBC=35,由运动知,BQ=5t,CR=4t,∴CQ=BC-BQ=10-5t,∴在Rt△CDQ中,QD=CQ•sin C=35(10-5t)=6-3t,∴S△CQR=12CR•QD=12×4t×(6-3t)=12t-6t2=-6(t-1)2+6,∵0≤t≤2,∴当t=1时,S△CQR最大=6;(3)存在,如图2,过点R作RE⊥BC于E,过点P作PF⊥BC于F,由运动知,CR=4t,BQ=5t,AP=3t,∴BP=6-3t,∵∠BFP=∠A=90°,∠B=∠B,∴△BFP∽△BAC,∴FPAC=BFAB=BPBC,∴FP8=BF6=6−3t10,∴FP=45(6-3t),BF=35(6-3t),∴FQ=BQ-BF=5t-35(6-3t)=34t−185同理:EQ=50−41t5,RE=12t5,∵∠REQ=∠QFP=90°,∴∠ERQ+∠EQR=90°,∵∠PQR=90°,∴∠EQR+∠PQF=90°,∴∠ERQ=∠PQF,∴△REQ∽△QFP.∴REQF=EQFP,∴RE×FP=QF×EQ,∴12t5×45(6-3t)=34t−185×50−41t5,解得,t=1或t=1825∴t的值为1秒或1825秒.【解析】(1)由运动得出AP=3t,AR=8-4t,最后用三角形面积公式建立方程求解即可得出结论;(2)先构造出直角三角形表示出QD,最后用三角形面积公式即可得出结论;(3)先判断出△BFP∽△BAC,得出FP=(6-3t),BF=(6-3t),进而FQ=BQ-BF=5t-(6-3t)=同理:EQ=,RE=,再判断出△REQ∽△QFP.得出,用RE×FP=QF×EQ建立方程求解即可得出结论.此题是三角形综合题,主要考查了勾股定理,相似三角形的判定和性质,三角形的面积公式,解(1)的关键是求出QD,QE,解(2)的关键是建立函数关系式.。
2021年广东省揭阳市普宁九年级上期末数学试卷

2021年广东省揭阳市普宁九年级上期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示的几何体,从上面看得到的图形是( )A .B .C .D .2.(3分)已知a 是一元二次方程x 2﹣3x ﹣5=0的较小的根,则下面对a 的估计正确的是( ) A .﹣2<a <﹣1B .2<a <3C .﹣3<a <﹣4D .4<a <53.(3分)一元二次方程x 2+4x +5=0的根的情况是( ) A .无实数根B .有一个实根C .有两个相等的实数根D .有两个不相等的实数根4.(3分)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( ) A .13B .49C .35D .235.(3分)在△ABC 中,∠C =90°,如果AC =8,BC =6,那么∠A 的正弦值为( ) A .35B .45C .34D .436.(3分)将二次函数y =x 2+4x +3化成顶点式,变形正确的是( ) A .y =(x ﹣2)2﹣1 B .y =(x +1)(x +3)C .y =(x ﹣2)2+1D .y =(x +2)2﹣17.(3分)下列判断错误的是( )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .两条对角线垂直且平分的四边形是正方形D .四条边都相等的四边形是菱形8.(3分)如图,已知在△ABC 中,P 为AB 上一点,连接CP ,以下条件中不能判定△ACP ∽△ABC 的是( )A.∠ACP=∠B B.∠APC=∠ACB C.ACAB =CPBCD.ACAP=ABAC9.(3分)小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,对角线AC=20cm,接着活动学具成为图2所示正方形,则图2中对角线AC的长为()A.20cm B.30cm C.40cm D.20√2cm10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()A.B.C.D.二.填空题(共7小题,满分28分,每小题4分)11.(4分)计算:sin30°•cot60°=.12.(4分)设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为.13.(4分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.14.(4分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B.①若OC=3,BD=2,则k=;②若OA2﹣AB2=18.则k=.15.(4分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.16.(4分)等腰三角形的腰长为10,底边为16,那么底角的余弦值为.17.(4分)如图,已知平行四边形ABCD,点E在DC上,DE:EC=2:1,连接AE交BD 于点F,连接BE,则S△EFD:S△ABE=.三.解答题(共3小题,满分18分,每小题6分)18.(6分)解方程:2x2+8x﹣1=0.19.(6分)有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上放在桌面上,小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?20.(6分)有这样一个问题:探究函数y=1x2+x的图象与性质.小菲根据学习函数的经验,对函数y=1x2+x的图象与性质进行了探究.下面是小菲的探究过程,请补充完整:(1)函数y=1x2+x的自变量x的取值范围是.(2)如表是y与x的几组对应值.x…﹣3﹣2﹣1−23−122312123…y…−269−74m191272351292294289…表中m的值为.(3)如图,在平面直角坐标系xOy中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)根据画出的函数图象,写出:①x=1.5时,对应的函数值y约为(结果保留一位小数);②该函数的一条性质:.四.解答题(共3小题,满分24分,每小题8分)21.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A 处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)22.(8分)某花店用3600元按批发价购买了一批花卉.若将批发价降低10%,则可以多购买该花卉20盆.市场调查反映,该花卉每盆售价25元时,每天可卖出25盆.若调整价格,每盆花卉每涨价1元,每天要少卖出1盆.(1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时,且销量尽可能大,该花卉每盆售价是多少元?(3)为了让利给顾客,该花店决定每盆花卉涨价不超过5元,问该花卉一天最大的销售利润是多少元?23.(8分)如图,四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE =BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求EF的长.五.解答题(共2小题,满分20分,每小题10分)24.(10分)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>kx中x的取值范围;(3)在y轴上取点P,使PB﹣P A取得最大值时,求出点P的坐标.25.(10分)已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD.(1)若BC=AB,求出AD,CD,AB之间的数量关系;(2)若BC=AB,当BE⊥AD于E时,试证明:BE=AE+CD;(3)若mBC=AB,∠A=60°,BC=2,直接写出AD的长度(用含m的代数式表示).2021年广东省揭阳市普宁九年级上期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示的几何体,从上面看得到的图形是( )A .B .C .D .【解答】解:从上边看是一个六边形,中间为圆. 故选:D .2.(3分)已知a 是一元二次方程x 2﹣3x ﹣5=0的较小的根,则下面对a 的估计正确的是( ) A .﹣2<a <﹣1B .2<a <3C .﹣3<a <﹣4D .4<a <5【解答】解:一元二次方程x 2﹣3x ﹣5=0, ∵a =1,b =﹣3,c =﹣5, ∴△=9+20=29, ∴x =3±√292, 则较小的根a =3−√292,即﹣2<a <﹣1, 故选:A .3.(3分)一元二次方程x 2+4x +5=0的根的情况是( ) A .无实数根B .有一个实根C .有两个相等的实数根D .有两个不相等的实数根【解答】解:∵△=42﹣4×5=﹣4<0, ∴方程无实数根. 故选:A .4.(3分)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( ) A .13B .49C .35D .23【解答】解:用列表法表示所有可能出现的结果情况如下:共有9种可能出现的结果,其中“两球颜色相同”的有4种, ∴P (两球颜色相同)=49. 故选:B .5.(3分)在△ABC 中,∠C =90°,如果AC =8,BC =6,那么∠A 的正弦值为( ) A .35B .45C .34D .43【解答】解:在△ABC 中,∵∠C =90°,AC =8,BC =6, ∴AB =√AC 2+BC 2=√82+62=10, ∴sin A =BC AB =610=35, 故选:A .6.(3分)将二次函数y =x 2+4x +3化成顶点式,变形正确的是( ) A .y =(x ﹣2)2﹣1 B .y =(x +1)(x +3)C .y =(x ﹣2)2+1D .y =(x +2)2﹣1【解答】解:y =x 2+4x +3 =x 2+4x +4﹣1 =(x +2)2﹣1, 故选:D .7.(3分)下列判断错误的是( )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .两条对角线垂直且平分的四边形是正方形D .四条边都相等的四边形是菱形【解答】解:A 、两组对边分别相等的四边形是平行四边形,故本选项正确; B 、四个内角都相等的四边形是矩形,故本选项正确;C 、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;D 、四条边都相等的四边形是菱形,故本选项正确.故选:C.8.(3分)如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP ∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.ACAB =CPBCD.ACAP=ABAC【解答】解:A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵ACAB =CPBC,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵ACAP =ABAC,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选:C.9.(3分)小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,对角线AC=20cm,接着活动学具成为图2所示正方形,则图2中对角线AC的长为()A.20cm B.30cm C.40cm D.20√2cm【解答】解:如图1,图2中,连接AC.图1中,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=20cm,在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∴△ABC是等腰直角三角形,∴AC=√2AB=20√2cm;故选:D.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:∵二次函数的图象开口向上,对称轴在y轴的左侧,函数图象交于y轴的负半轴∴a>0,b>0,c<0,∴反比例函数y=cx的图象必在二、四象限;一次函数y=ax﹣2b一定经过一三四象限,∵对称轴为直线x=﹣1,且与x轴的交点为(﹣3,0),∴另一个交点为(1,0),∴−b2a=−1,∴b=2a,把(﹣3,0)代入y=ax2+2ax+c得,9a﹣6a+c=0,∴c=﹣3a,方程ax﹣2b=cx整理得ax2﹣2bx﹣c=0,即ax2﹣4a+3a=0,∴x2﹣4x+3=0,∵(﹣4)2﹣4×3=4>0,∴一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)的图象有两个交点,故选:D.二.填空题(共7小题,满分28分,每小题4分)11.(4分)计算:sin30°•cot60°=√36.【解答】解:原式=12×√33=√36. 故答案为:√36. 12.(4分)设m 、n 是方程x 2+x ﹣1001=0的两个实数根,则m 2+2m +n 的值为 1000 . 【解答】解:∵m 、n 是方程x 2+x ﹣1001=0的两个实数根, ∴m +n =﹣1, 并且m 2+m ﹣1001=0, ∴m 2+m =1001,∴m 2+2m +n =m 2+m +m +n =1001﹣1=1000. 故答案为:1000.13.(4分)如图,在△ABC 中,D 、E 分别为AB 、AC 边的中点,若DE =2,则BC 边的长为 4 .【解答】解:∵D 、E 分别为AB 、AC 边的中点, ∴DE 是△ABC 的中位线, ∴BC =2DE =4, 故答案为:4.14.(4分)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =kx在第一象限的图象经过点B . ①若OC =3,BD =2,则k = 5 ; ②若OA 2﹣AB 2=18.则k = 9 .【解答】解:①∵△OAC和△BAD都是等腰直角三角形,∴OC=AC=3,BD=AD=2,∴OC+BD=5,CD=3﹣2=1,即B(5,1),∵反比例函数y=kx在第一象限的图象经过点B,∴k=5×1=5.②设点B(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=√2AC,AB=√2AD,OC=AC,AD=BD,∵OA2﹣AB2=18,∴2AC2﹣2AD2=18即AC2﹣AD2=9∴(AC+AD)(AC﹣AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,故答案为:5,9.15.(4分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是2.【解答】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),∴当y=0时,0=2x2+2(k﹣1)x﹣k,∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,故答案为:2.16.(4分)等腰三角形的腰长为10,底边为16,那么底角的余弦值为45.【解答】解:如图,在△ABC 中,AB =AC =10,BC =16, 过点A 作AD ⊥BC ,垂足为D , ∵AB =AC ,AD ⊥BC , ∴BD =DC =12BC =8, ∴cos ∠B =BDAB =810=45, 故答案为:45.17.(4分)如图,已知平行四边形ABCD ,点E 在DC 上,DE :EC =2:1,连接AE 交BD 于点F ,连接BE ,则S △EFD :S △ABE = 4:15 .【解答】解:过点F 作MN ⊥CD ,交CD 于点N ,交AB 于点M , ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD , ∴AB ⊥MN , ∴△ABF ∽△DFE , ∴AB DE=MF NF,∴DE :EC =2:1, ∴DE :DC =2:3, ∴DE :AB =2:3, ∴AB DE =MF NF =32,∴NF MN=25,∴S △EFD :S △ABE =DE⋅NF 2:AB⋅MN2=DE⋅NF AB⋅MN =415, 故答案为:4:15.三.解答题(共3小题,满分18分,每小题6分) 18.(6分)解方程:2x 2+8x ﹣1=0. 【解答】解:2x 2+8x ﹣1=0, x 2+4x =12, x 2+4x +4=12+4,即(x +2)2=92, ∴x +2=±3√22, 则x 1=﹣2+3√22,x 2=﹣2−3√22. 19.(6分)有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上放在桌面上,小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?【解答】解:列表如下:20 15 10 5 20 35 30 25 15 35 25 20 10 30 25 15 5252015由表格知,共有12种等可能结果,其中两次所获奖品总值不低于30元的有4种结果, ∴小明两次所获奖品总值不低于30元的概率为412=13.20.(6分)有这样一个问题:探究函数y=1x2+x的图象与性质.小菲根据学习函数的经验,对函数y=1x2+x的图象与性质进行了探究.下面是小菲的探究过程,请补充完整:(1)函数y=1x2+x的自变量x的取值范围是x≠0.(2)如表是y与x的几组对应值.x…﹣3﹣2﹣1−23−122312123…y…−269−74m191272351292294289…表中m的值为0.(3)如图,在平面直角坐标系xOy中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)根据画出的函数图象,写出:①x=1.5时,对应的函数值y约为 1.9(结果保留一位小数);②该函数的一条性质:当x<0时,y随x的增大而增大.【解答】解:(1)函数y=1x2+x的自变量x的取值范围是x≠0.故答案为:x≠0;(2)令x=﹣1,∴y=11−1=0,∴m=0,故答案为0;(3)如图(4)①根据函数图象,①x=1.5时,对应的函数值y约为1.9,故答案为1.9;②该函数的性质:当x<0时,y随x的增大而增大;故答案为当x<0时,y随x的增大而增大.四.解答题(共3小题,满分24分,每小题8分)21.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A 处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【解答】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=DH tan37°,在Rt△DBH中,∠DBH=45°,∴BH=DH tan45°,∵BC=CH﹣BH,∴DHtan37°−DHtan45°=6,解得DH≈18km,在Rt△DAH中,∠ADH=26°,∴AD=DHcos26°≈20km.答:轮船航行的距离AD约为20km.22.(8分)某花店用3600元按批发价购买了一批花卉.若将批发价降低10%,则可以多购买该花卉20盆.市场调查反映,该花卉每盆售价25元时,每天可卖出25盆.若调整价格,每盆花卉每涨价1元,每天要少卖出1盆.(1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时,且销量尽可能大,该花卉每盆售价是多少元?(3)为了让利给顾客,该花店决定每盆花卉涨价不超过5元,问该花卉一天最大的销售利润是多少元?【解答】解:(1)设该花卉每盆批发价是x元,由题意得:3600 x =3600(1−10%)x−20,解得:x=20,经检验x=20是原方程的解.答:该花卉每盆批发价是20元.(2)设该花卉每盆售价是x 元,由题意得: (x ﹣20)[25﹣(x ﹣25)]=200, 化简得:x 2﹣70x +1200=0, 解得:x 1=30,x 2=40, ∵销量尽可能大, ∴x =30.答:该花卉每盆售价是30元.(3)设该花卉一天的利润是w 元,每盆售价是x 元,由题意得: w =(x ﹣20)[25﹣(x ﹣25)] =﹣x 2+70x ﹣1000 =﹣(x ﹣35)2+225. ∵每盆花卉涨价不超过5元, 25≤x ≤30.∵x ≤35时,w 随x 的增大而增大, ∴当x =30时,w 有最大值为200. 答:该花卉一天最大的销售利润是200元.23.(8分)如图,四边形ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且DE =BF ,连结AE ,AF ,EF . (1)求证:△ADE ≌△ABF ; (2)若BC =8,DE =6,求EF 的长.【解答】(1)证明:∵四边形ABCD 是正方形, ∴∠ADE =∠ABC =90°=∠ABF , 在△ADE 和△ABF 中, {AD =AB∠D =∠ABF DE =BF, ∴△ADE ≌△ABF (SAS );(2)解:∵△ADE ≌△ABF ,DE =6, ∴BF =DE =6, ∵BC =DC =8,∴CE =8﹣6=2,CF =8+6=14,在Rt △FCE 中,EF =√CF 2+CE 2=√142+22=10√2. 五.解答题(共2小题,满分20分,每小题10分)24.(10分)如图所示,一次函数y =mx +n (m ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于第二、四象限的点A (﹣2,a )和点B (b ,﹣1),过A 点作x 轴的垂线,垂足为点C ,△AOC 的面积为4. (1)分别求出a 和b 的值;(2)结合图象直接写出mx +n >kx中x 的取值范围;(3)在y 轴上取点P ,使PB ﹣P A 取得最大值时,求出点P 的坐标.【解答】解:(1)∵△AOC 的面积为4, ∴12|k |=4,解得,k =﹣8,或k =8(不符合题意舍去), ∴反比例函数的关系式为y =−8x ,把点A (﹣2,a )和点B (b ,﹣1)代入y =−8x 得, a =4,b =8; 答:a =4,b =8;(2)根据一次函数与反比例函数的图象可知,不等式mx +n >kx 的解集为x <﹣2或0<x <8;(3)∵点A (﹣2,4)关于y 轴的对称点A ′(2,4),又B (8,﹣1),则直线A ′B 与y 轴的交点即为所求的点P ,设直线A ′B 的关系式为y =cx +d ,则有{2c +d =48c +d =−1, 解得,{c =−56d =173, ∴直线A ′B 的关系式为y =−56x +173,∴直线y =−56x +173与y 轴的交点坐标为(0,173), 即点P 的坐标为(0,173).25.(10分)已知:如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD .(1)若BC =AB ,求出AD ,CD ,AB 之间的数量关系;(2)若BC =AB ,当BE ⊥AD 于E 时,试证明:BE =AE +CD ;(3)若mBC =AB ,∠A =60°,BC =2,直接写出AD 的长度(用含m 的代数式表示).【解答】解:(1)2AB 2=AD 2+CD 2.证明:连接AC .∵∠ABC =90°,∴AB 2+BC 2=AC 2.∵BC =AB ,∴AB 2+BC 2=2AB 2,∴AC 2=2AB 2,∵CD ⊥AD ,∴AD 2+CD 2=AC 2.∴AD 2+CD 2=2AB 2;(2)过C 作CF ⊥BE 于F .∵BE ⊥AD ,CF ⊥BE ,CD ⊥AD ,∴∠FED =∠CFE =∠D =90°,∴四边形CDEF 是矩形.∴CD =EF .∵∠ABE +∠BAE =90°,∠ABE +∠CBF =90°, ∴∠BAE =∠CBF ,∴在△BAE 与△CBF 中,{∠AEB =∠BFC∠BAE =∠CBF AB =BC,∴△BAE ≌△CBF (AAS ),∴AE =BF .∴BE =BF +EF =AE +CD .(3)m +√3.延长DC ,AB 交于点E ,∵∠D=90°,∠A=60°,∴∠E=30°,∵∠ABC=90°BC=2,∴∠CBE=90°,∴CE=4,∴BE=√CE2−CB2=√42−22=2√3,∵AB=mBC,∴AB=2m,∴AE=AB+BE=2m+2√3,∴AD=12AE=m+√3.。
广东省普宁市九年级数学上学期期末学生素质监测试题(扫描版)北师大版(new)

参考答案一、选择题(每小题3分)1、D;2、A;3、C ;4、B;5、A;6、B ;7、B;8、C;9、D ; 10、C 。
二、填空题(每小题4分)11、3; 12、40; 13、-4; 14、35; 15、k ≤1且k ≠0; 16、1221-n 或(n 42)。
三、解答题(一)(每小题6分) 17、解:0122=-+x x 122=+x x sss2122=++x x2)1(2=+x …………………3分21±=+x …………………4分21=+x 或21-=+x …………………5分12,1221--=-=∴x x …………………6分注:用“公式法”可相应给分。
18、解:(1)41…………1分(2)列表如下:(列表正确得3分)第一辆第二辆ABCDA (A ,A ) (B ,A) (C ,A ) (D,A ) B (A,B )(B ,B ) (C ,B) (D ,B )C (A ,C ) (B ,C ) (C ,C) (D ,C) D(A ,D) (B ,D ) (C ,D ) (D ,D )共有16种可能的结果,其中选择不同通道通过的有12种结果, ∴选择不同通道通过的概率431612==P 。
…………6分 19、解:(1)如图所示:△ABC 即为所求;………… 3分(2)如图所示:△A 1B 1C 1即为所求.……… 6分四、解答题(二)(每小题7分) 20、解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE ⊥x 轴于点E ,tan ∠ABO=21==BE CE OB OA , ∴OA=2,CE=3.∴点A 的坐标为(0,2)、点B 的坐标为(4,0)、 点C 的坐标为(﹣2,3). …………………2分 ∵一次函数y=ax +b 的图象与x ,y 轴交于B ,A 两点,∴{ba b+==402,解得⎩⎨⎧-==212a b .故直线AB 的解析式为221+-=x y .…………………3分 ∵反比例函数xk y =的图象过C , ∴23-=k, ∴k =﹣6.∴该反比例函数的解析式为xy 6-=;…………………4分(2)联立反比例函数的解析式和直线AB 的解析式可得⎩⎨⎧+-==2216x y xy ,解得{{61232211,=-=-==x y x y∵交点C 的坐标为(﹣2,3)-1 1 2 12 34 3∴交点D 的坐标为(6,﹣1),…………………5分由图象得,一次函数的值大于反比例函数的值时x 的取值范围:x <﹣2或0<x <6.…………………7分21、解:(1)依题意得∠PAB=30°,∠ABP=90°+30°=120°∴∠APB=180°—∠PAB —∠ABP=30° ………2分 (2)过点P 作PH ⊥AB 于H ……………3分∵∠PAB=∠APB=30°,∴BA=BP=50×1=50海里,……………4分 在Rt △PBH 中,∠PBH=90°—30°=60°∵PBPHPBH =∠sin ∴PH=PB •sin60°=2350⨯=325>25 ………6分∴海监船继续向正东方向航行是安全的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题
18.解方程
19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD= ,求sinC的值.
20.已知 是 的反比例函数,下表给出了 与 的一些值.
A.对称轴为直线
B.当 时, 随 的增大而减小
C.与 轴没有交点
D.与 轴交于点
9.如图,点A在反比例函数y= (x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )
A.3B.2C. D.1
10.如图,在正方形 中,点 是对角线 的交点,过点 作射线分别交 于点 ,且 ,交 于点 .给出下列结论: ; C; 四边形 的面积为正方形 面积的 ; .其中正确的是( )
…
-4
-2
-1
1
3
4
…
…
-2
6
3
…
(1)求出这个反比例函数的表达式;
(2)根据函数表达式完成上表;
(3)根据上表,在下图的平面直角坐标系中作出这个反比例函数的图象.
21.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,4.
(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.
【详解】
解:由 得,3a=2b,
A、由等式性质可得:3a=2b,正确;
B、由等式性质可得2a=3b,错误;
C、由等式性质可得:3a=2b,正确;
D、由等式性质可得:3a=2b,正确;
故选B.
【点睛】
本题考查了比例的性质,主要利用了两内项之积等于两外项之积.
4.A
【分析】
根据方程有两个相等的实数根结合根的判别式即可得出关于 的一元一次方程,解方程即可得出结论.
25.如图1,在矩形 中, , , 是 边上一点,连接 ,将矩形 沿 折叠,顶点 恰好落在 边上点 处,延长 交 的延长线于点 .
(1)求线段 的长;
(2)如图2, , 分别是线段 , 上的动点(与端点不重合),且 .
①求证: ∽ ;
②是否存在这样的点 ,使 是等腰三角形?若存在,请求出 的长;若正确;
B.对角线垂直的平行四边形是菱形;正确;
C.菱形的对角线互相垂直且相等;不正确;
D.菱形的邻边相等;正确;
故选C.
【点睛】
本题考查了菱形的判定与性质以及平行四边形的性质;熟记菱形的性质和判定方法是解题的关键.
3.B
【分析】
根据两内项之积等于两外项之积对各选项分析判断即可得解.
(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.
22.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2021年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(2)四边形OCFD是矩形.
24.如图,在平面直角坐标系中,抛物线 与 轴交于 , 两点,与 轴交于点 ,直线 经过 , 两点,抛物线的顶点为 ,对称轴与 轴交于点 .
(1)求此抛物线的解析式;
(2)求 的面积;
(3)在抛物线上是否存在一点 ,使它到 轴的距离为4,若存在,请求出点 的坐标,若不存在,则说明理由.
(1)计划到2021年底,全省5G基站的数量是多少万座?;
(2)按照计划,求2021年底到2022年底,全省5G基站数量的年平均增长率.
23.如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF//BD交OE的延长线于点F,连接DF.
求证:(1)△ODE≌△FCE;
C.菱形的对角线互相垂直且相等D.菱形的邻边相等
3.已知 (a≠0,b≠0),下列变形错误的是( )
A. B.2a=3bC. D.3a=2b
4.已知关于 的一元二次方程 有两个相等的实数根,则 ( )
A.4B.2C.1D.﹣4
5.若点 , , 在反比例函数 的图象上,则y1,y2,y3的大小关系是( )
广东省揭阳市普宁市2020-2021学年九年级上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图所示几何体的俯视图是()
A. B. C. D.
2.下列说法中不正确的是()
A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形
参考答案
1.B
【解析】
【分析】
注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.再对选项进行分析即可得到答案.
【详解】
根据俯视图的特征,应选B.故选:B.
【点睛】
本题考查了几何体的三视图,正确理解主视图与左视图以及俯视图的特征是解题的关键.
2.C
【分析】
根据菱形的判定与性质即可得出结论.
A. B. C. D.
6.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()
A.m<2B.m>2C.0<m≤2D.m<﹣2
7.如图,下列条件不能判定△ADB∽△ABC的是()
A.∠ABD=∠ACBB.∠ADB=∠ABC
C.AB2=AD•ACD.
8.关于抛物线 ,下列结论中正确的是()
15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).
16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.
A. B. C. D.
二、填空题
11.计算: __________.
12.若一元二次方程 的两根为 , ,则 __________.
13.如图,在 中, , , ,则 的长为__________.
14.在平面直角坐标系中, 与 位似,位似中心为原点 ,点 与点 是对应顶点,且点A,点 的坐标分别是 , ,那么 与 的相似比为__________.