电磁波普与地物波普特征

合集下载

遥感概论ppt课件第二章--电磁辐射与地物光谱特征

遥感概论ppt课件第二章--电磁辐射与地物光谱特征
自然界的物体与绝对黑体作辐射比较,都有与石英晶体类似的性质,只不过吸收 系数不同而已(表2.3)。由基尔霍夫定律可以知道,绝对黑体不仅具有最大的吸 收率,也具有最大的发射率,却丝毫不存在反射。对于实际物体,都可以看作辐 射源,如果物体的吸收本领大,即吸收率越接近1,它的发射本领也大,即越接 近黑体辐射。这也是为什么吸收率又可叫作发射率的原因。
22
2.2 太阳辐射及大气对辐射的 影响
l太阳是被动遥感最主要的辐射源,太阳 辐射有时习惯称作太阳光,太阳光通过 地球大气照射到地而,经过地面物体反 射又返回,再经过大气到达传感器,这 时传感器探测到的辐射强度与太阳辐射 到达地球大气上空时的辐射强度相比, 已有了很大的变化,包括入射与反射后 二次经过大气的影响和地物反射的影响。 本节主要讨论大气的影响。
6
2.1.2 电磁辐射的度量
1. 辐射源 任何物体都是辐射源。不仅能够吸收其他物体对它的辐
射,也能够向外辐射。 因此对辐射源的认识不仅限于太阳、 炉子等发光发热的物体。能发出紫外辐射、 X射线、微波辐 射等的物体也是辐射源,只是辐射强度和波长不同而已。 电 磁波传递就是电磁能量的传递。因此遥感探测实际上是辐射 能量的测定。
一般辐射体和发射率
21
以石英的辐射为例,对不同波长测出对 应于该波长的光谱辐射出射度Mλ,这时
石英温度假定为250 K。分别作出250 K 时绝对黑体的辐射曲线和石英的辐射曲 线(图2.9),从图可以看出,石英的辐 射显然比黑体辐射弱,而且随波长不同 而不同,也就是说比辐射率(或吸收系 数)与波长有关。虚线各点的纵坐标是 石英对应于每一波长的光谱辐射出射度 .曲线下面积是整个电磁波谱的总辐 射出射度。
l 方向:由电 磁振荡向各个 不同方向传播 的.

第二章 电磁辐射与地物波谱特征

第二章 电磁辐射与地物波谱特征
29

§2.太阳辐射和地球辐射
太阳是太阳系唯一的恒星,它集中了太阳系 99.865%的质量。太阳是一个炽热的气体星球,没 有固体的星体或核心。太阳从中心到边缘可分为 核反应区、辐射区、对流区和大气层。其能量的 99%是由中心的核反应区的热核反应产生的。太阳 中心的密度和温度极高。太阳大气的主要成分是 氢(质量约占71%)与氦(质量约占27%)。
偏振面
E 电场,M 磁场,C 传播方向
4
电磁波特性
波动性
1860年麦克斯韦(C.Maxwell)提出光是电磁波的 理论。 光在传播时表现出波动性,如光的干涉、衍射、 偏振、反射、折射。
粒子性
1900年,普朗克(Max.Planck)提出了辐射的量子论, 1905年,爱因斯坦(Albert.Einstein)将量子论用于 光电效应之中,提出光子理论。光与物质作用时 表现出粒子性,如光的反射、吸收、散射。
太阳辐射接近于温度为6000K的黑体辐射,最大辐射的对应波长为 0.47µm,地球辐射接近于温度为300K的黑体辐射,最大辐射的对应波 长为9.66 µm,二者相差较远; 太阳辐射主要集中于波长较短的部分,从紫外、可见光到近红外区域, 即0.3-2.5 µm,在这一波段地球的辐射主要是反射太阳的辐射。 地球自身发出的辐射 主要集中在波长较长的 部分,即6 µm以上的热 红外区段。 在2.5-6 µm的中红外 波段,地球对太阳辐照 的反射和地表物体自身 的热辐射均不能忽略。 (重叠区)
12
二、电磁辐射的测量
Concept of Radiant Flux Density
Radiant flux, Φ
辐射通量密度 (radiant flux density)
Irradiance

2电磁波谱与地物波谱特征

2电磁波谱与地物波谱特征

大气窗口
电磁波通过大气层时较少被反射、 吸收和散射的,透过率较高的波段
辐射传输
辐射传输是电磁辐射与不同介质相 互作用的复杂过程
地球辐射
地球表面和大气电磁辐射的总称
地球辐射的分段特性
0.3-2.5微米波段(主要在可见光与近红 外波段),地表以反射太阳辐射为主, 地球自身的辐射可以忽略 2.5-6.0微米波段(主要在中红外波段), 地表反射太阳辐射和地球自身的热辐射 均为被动遥感的辐射源 6.0微米以上的热红外波段,地球自身的 热辐射为主,地表反射太阳辐射可以忽 略不计
电磁波的度量
遥感信息是从遥感器定量记录的地表物 体电磁辐射数据中提取的
–辐射测量(radiometry) –光度测量(photometry) –比辐射率 –亮温
太阳辐射
太阳发出的电磁波辐射 太阳辐射在从近紫外到中红外这一波段内能量最 集中而且相对来说最稳定,太阳强度变化最小
Irradiance (W m-2 µm-1)
200 0 150 0 100 0 500 0 0
Exoatmospheric solar irradiance F0(λ) Solar irradiance reaching the surface F(λ)
Wavelength (µm)
1
2
3
太阳辐照度分布曲线
大气成分
大气成分主要有:
–气体分子(氮气\氧气\二氧化碳) –其它微粒(水汽\气溶胶\其他粒子等)
地物的反射
镜 面 反 射 漫反射 实 际 地 物反射
常见的几种地物类型波谱特征
植被 水体 土壤 岩石
植被的波谱特征
可见光波段:在0.45微米附近区间(兰色波段)有一个 吸收谷,在0.55微米附近区间(绿色波段)有一个反射 峰,在0.67微米附近区间(红色波段)有一个吸收谷 近红外波段:从0.76μm处反射率迅速增大,形成一个 爬升的的“陡坡”,至1.1μm附近有一峰值,反射率最 大可达50%,形成植被的独有特征 中 红 外 波 段 : 1.5-1.9 微 米 光 谱 区 反 射 率 增 大 , 在 1.45μm , 1.95μm 和 2.7μm 为中心的附近区间受到绿色 植物含水量的影响,反射率下降,形成低谷

第二章 电磁波谱与地物波谱特征

第二章  电磁波谱与地物波谱特征

❖ 可见光:波长范围:0.38~0.76μm,人眼对可见光有 敏锐的感觉,是遥感技术应用中的重要波段。
❖ 红外线:波长范围为0.76~1000μm,根据性质分为 近红外、中红外、远红外和超远红外。
❖ 微波:波长范围为1 mm~1 m,穿透性好,不受云雾
的影响。
本节结束
返回 下一节
§2 太阳辐射
• 太阳辐射:太阳是遥感主要的辐射源,又叫太阳光,在大气 上界和海平面测得的太阳辐射曲线如图所示。
• 从太太阳阳辐光射谱的曲能线量可主以要看集出中(…在)可:见光,其中0.38 ~ 0.76 µm的可见光能量占太阳辐射总能量的46%,最大辐射强 度位于波长0.47 µm左右;
太阳光谱相当于6000 K的黑体辐射;
到达地面的太阳辐射主要集中在0.3 ~ 3.0 µm波段,包 括近紫外、可见光、近红外和中红外;
的热辐射,其峰值波长为9.66 μm,主要集中返回在长波下,一即节 6μm以上的热红外区段。
§5 地物的热辐射
温度一定时,物体的热辐射遵循基尔霍夫定律。
地物的发射率随波长变化的曲线叫发射光谱曲线。
地物的发射率与地表的粗糙度、颜色和温度有关。
表面粗糙、颜色暗,发射率高,反之发射率低。
地物的辐射能量与温度的四次方成正比,比热、热惯性大的地物,发 射率大。如水体夜晚发射率大,白天就小。
§6 微波与地物的作用
与微波的作用机理。 §7 各典型地物的光谱曲线
§1 遥感的电磁波原理
• 电磁波 交互变化的电磁场在空间的传播。
• 描述电磁波特性的指标 波长、频率、振幅、位相等。
• 电磁波的特性 电磁波是横波,传播速度为3×108 m/s,不需要 媒质也能传播,与物质发生作用时会有反射、吸收、 透射、散射等,并遵循同一规律。To be continued…

第二章 电磁波谱与地物波谱特征ppt课件

第二章  电磁波谱与地物波谱特征ppt课件
部分占总能量的份额称为吸收率,其值在0-1之间。黑颜 色的物体吸收能力大于白颜色的物体,吸收系数也比较大。 如黑色的煤烟,其吸收系数接近99%,被认为是最接近绝对 黑体的自然物质。恒星和太阳的辐射也被看做是接近黑体 辐射的辐射源。但实际上自然界并不存在绝对黑体。
-
16
2.2 太阳辐射及大气对辐射的影响
ቤተ መጻሕፍቲ ባይዱ
在2008春节期间我国南方地区的冰雪灾害过程中,在历 次洪涝灾害过程中,在我国南方地区农作物生长的关键 时刻,经常是阴云密布,或大雨滂沱,只有SAR能够工作 得到遥感图像。
-
15
2.1.4 黑体辐射
绝对黑体(black body) 如果一个物体对于任何波长的电磁辐射都全部吸收,即吸收
率α=1,则这种物体称为绝对黑体,或简称黑体。 一般物体收到辐射时,对辐射能量总是有吸收、反射。吸收
-
9
2.1.3 遥感应用电磁波段
-
10
2.1.3 遥感应用电磁波段
可见光 波长范围从0.38-0.76μm。它由红、橙、黄、绿、青、
蓝、紫色光组成。人眼对可见光有敏锐的感觉,不仅对可 见光的全色光,而且对不同波段的单色光,也都具有敏锐 的分辨能力,其中对0.55 μm最敏感,所以可见光是作为 鉴别物质特征的主要波段。
2.2.1 太阳辐射 2.2.2 大气吸收 2.2.3 大气散射 2.2.4 大气窗口
-
17
2.2.1 太阳辐射 太阳是被动遥感最主要的辐射源。
0 太阳光谱曲线
-
18
2.2.1 太阳辐射
从太阳光谱曲线可看出: 到达地面的太阳辐射包括近紫外、可见光和红外; 太阳辐射的光谱是连续光谱; 太阳辐射的能量主要集中在可见光; 最大辐射强度位于波长0.47µm左右; 经过大气层的太阳辐射有很大的衰减; 各波段的衰减是不均衡的。

第二章电磁辐射和地物波普特征

第二章电磁辐射和地物波普特征

第二章 电磁辐射和地物波普特征电磁波普:是按电磁波在真空中的波长递增或频率递减而排列的,它包括γ射线、X 射线、紫外线、可见光、红外线、无线电波等。

大气窗口:指电磁波通过大气层时较少被反射、散射和吸收的,透过率较高的波段。

反射波谱:指地物反射率随波长的变化规律,通常用平面坐标曲线表示,横坐标表示波长,纵坐标表示反射率,同一物体的波谱曲线反映出不同波段的不同反射率,将此与遥感传感器的对应波段接收的辐射数据相对照,可以得到遥感数据与对应地物的识别规律。

瑞利散射:大气粒子的直径比辐射的波长小得多时发生的散射,通常是由大气分子和原子引起的,对可见光波段影响非常明显。

米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射,这种散射主要由大气中的微粒引起,例如气溶胶、小水滴。

散射强度与波长的二次方成反比,并且向前散射强度大于向后散射强度,具有明显的方向性。

无选择性散射:当大气中粒子的直径比辐射的波长大得多时发生的散射,散射的特点是散射强度与波长无关。

辐射亮度:假设有一辐射源是面状的,向外辐射的强度随辐射的方向不同而不同,则辐射亮度L 定义为辐射源在某一方向上,单位投影表面,单位立体角的辐射通量。

太阳天顶角:太阳入射光线与地面垂线方向构成的夹角,与太阳高度角之和为90°。

后向散射:在两个均匀介质的分界面上,当电磁波从一个介质中入射时,会在分界面上产生散射,这种散射叫做表面散射。

在表面散射中,散射面的粗糙度是非常重要的,所以在不是镜面的情况下必须使用能够计算的量来衡量。

通常散射截面积是入射方向和散射方向的函数,而在合成孔径雷达及散射计等遥感器中,所观测的散射波的方向是入射方向,这个方向上的散射就称作后向散射。

绝对黑体:如果有一种物体对任何波长的辐射能量都全部吸收,这个物体叫绝对黑体。

维恩位移定律:在一定温度下,绝对黑体的与辐射本领最大值相对应的波长λ和绝对温度T 的乘积为一常数,即λT=b 。

上述结论称为维恩位移定律,式中,b=0.002897m ·K ,称为维恩常量。

最新二章电磁辐射与地物光谱特征

最新二章电磁辐射与地物光谱特征
热红外采用的是热感应方式,其主要传 感器是辐射计。
4)微波
无线电波的一种,常用波段为3cm、5cm、 10cm,为主动式遥感。
(二)电磁辐射
任何物体都是辐射源,不仅能够吸收其 它物体对它的辐射,也能够向外辐射。 因此对辐射源的认识不仅限于太阳、炉 子等发热发光的物体,能发出紫外线、x 射线、γ射线、微波等的物体也是辐射源, 只是辐射强度和波长不同而已。
大气层中的气体分子、水滴和尘埃等粒 子,除了对太阳光产生反射作用外,还 有选择性的吸收作用。各种气体分子和 粒子对太阳辐射波长的吸收特性不同, 因此有些波段范围能透过大气层到达地 球表面,有些则全部被吸收,不能到达 地球表面,因此了解这些知识对我们研 制传感器有重要意义(为什么)。
具体吸收情况见P28页。
1、0.3—1.3 μm(紫外、可见光、近红外) 这一波段是摄影成像的最佳波段,也是 许多卫星传感器扫描成像的常用波段。 如Landsat1-4波段
TM1(0.45—0.52) 蓝M3(0.63—0.69) 红光波段
TM4(0.76—0.90) 近红外波段
电磁波传递就是电磁能量的传递,遥感 对电磁波的探测实际上是对物体辐射能 量的测定。
二、太阳辐射与大气窗口
(一)太阳辐射
太阳辐射的电磁波到达地球表面大概需要8分 钟,地球周围存在着很厚的大气层,太阳光照 射到地球表面之前,必须穿过大气层。这样太 阳光在大气层中遇到各种气体分子、水滴和尘 埃时会受到干扰,一部分光被反射回宇宙空间, 一部分光被吸收,一部分光被散射,因此到达 地球表面的太阳辐射仅占31%,再除掉被植物 光合作用消耗的能量,遥感接受和记录的就是 剩下的这部分能量。
3、大气层的散射作用
散射作用不像质点的吸收作用那样把太 阳能转换为自身内能,而是只改变太阳 辐射的方向,使其围绕质点向四周传射, 因此这部分散射光和地物的反射光一起 进入传感器,对影象造成影响。

2 第二章 电磁辐射与地物光谱特征

2 第二章  电磁辐射与地物光谱特征
遥感导论
第二章 电磁辐射与地物
光谱特征
文 管理学院 力 地理科学系
第二章 电磁辐射与地物光谱特征
本章主要内容
电磁波与电磁波谱 地物的光谱特性 大气和环境对遥感的影响
§2.1 电磁波谱与电磁辐射
电磁波
– 波:振动的传播称为波。
纵波:如果质点的振动方向与波的传播方向相同,称纵波。 横波:若质点的振动方向与波的传播方向垂直,称横波。
§2.1 电磁波谱与电磁辐射
辐射源:能够向外辐射电磁波的物体。任何物体都能够吸收
其他物体对它的辐射,也能向外辐射电磁波。
太阳辐射——可见光及红外遥感的重要辐射源 自然辐射源 地球电磁辐射——远红外遥感的辐射源
人工辐射源——人为发射,如雷达(微波雷达辐射源,激光雷达辐射源)
§2.1 电磁波谱与电磁辐射

§2.1.3 黑体辐射 2.黑体辐射规律
(2)玻耳兹曼定律
Stefan-Boltzmann‘s law :即黑体总 辐射通量随温度的增加而迅速增加,它与温度的四次方成 正比。因此,温度的微小变化,就会引起辐射通量密度很 大的变化。是红外装臵测定温度的理论基础。
M=σT4
σ为玻尔兹曼常数,σ=5.67×10-8W·-2· -4 m K
电磁波谱
–将各种电磁波在真空中的波长按其长短,依次排列制 成的图表。
–按照波长递增频率递减的顺序可以划分为:γ射线、 χ射线、紫外线、可见光、红外线、微波和无线电波。
–遥感中多使用可见光、红外和微波波段。
§2.1 电磁波谱与电磁辐射
紫外线 波长:0.01~0.38μm 特征:1.对紫外线吸收较强。 2.能使溴化银底片感光。 应用:1.用于测定碳酸岩的分布。 2.用于油污检测。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章电磁波普与地物波普特征
第一节电磁波与电磁波谱
2.1.1 电磁波与电磁波谱
1.电磁波
一个简单的偶极振子的电路,电流在导线中往复震荡,两端出现正负交替的等量异种电荷,类似电视台的天线,不断向外辐射能量,同时在电路中不断的补充能量,以维持偶极振子的稳定振荡。

当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。

2.电磁辐射
电磁场在空间的直接传播称为电磁辐射。

1887年德国物理学家赫兹由两个带电小球的火花放电实验,证实了电磁场在空间的直接传播,验证了电磁辐射的存在。

装载在遥感平台上的遥感器系统,接收来自地表、地球大气物质的电磁辐射,经过成像仪器,形成遥感影象。

3.电磁波谱
γ射线、X射线、紫外线、可见光、红外线和无线电波(微波、短波、中波、长波和超长波等)在真空中按照波长或频率递增或递减顺序排列,构成了电磁波谱。

目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。

可见光区间辐射源于原子、分子中的外层电子跃迁。

红外辐射则产生于分子的振动和转动能级跃迁。

无线电波是由电容、电感组成的振荡回路产生电磁辐射,通过偶极子天线向空间发射。

微波由于振荡频率较高,用谐振腔及波导管激励与传输,通过微波天线向空间发射。

由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。

可见光、红外和微波遥感,就是利用不同电磁波的特性。

电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。

4.电磁辐射的性质
电磁辐射在传播过程中具有波动性和量子性两重特性。

2.1.2 电磁辐射的传播
电磁辐射通过不同的介质时,其强度、波长、相位、传播方向和偏振面等将发生变化,这些变化可能是单一的,也可能是复合的。

电磁波可以采用频率、相位、能量、极化
等物理参数来描述。

电磁波在传播中遵循波的反射,折射,衍射,干涉,吸收,散射等传播规律。

2.1.3 电磁辐射的测量与度量单位
遥感信息是从遥感器定量记录的地表物体电磁辐射数据中提取的。

为了测量从目标地物反射或辐射的电磁波的能量,这里介绍两种电磁辐射的测量方式和度量单位: 1.辐射测量(radiometry),以伽玛射线到电磁波的整个波段范围为对象的物理辐射量的测定,其度量单位见下表。

2.光度测量(photometry),由人眼的视觉特性(标准光度观察)评价的物理辐射量的测定,其度量单位见下表。

第二节大气对电磁辐射的影响
2.2.1 大气的吸收与散射
太阳辐射有时习惯称作太阳光,太阳光通过地球大气照射到地面,经过地面物体反射又返回,再经过大气到达航空或航天遥感平台,被安装在平台上的传感器接收。

这时传感器探测到的地表辐射强度与太阳辐射到达地球大气上空时的辐射强度相比,已有了很大的变化,这种变化主要受到大气主要成分影响。

大气主要成分可分为二类:气体分子和其它微粒。

它们对电磁辐射具有吸收与散射作用。

1 大气吸收作用
太阳辐射穿过大气层时,大气分子对电磁波的某些波段有吸收作用,吸收作用使辐射能量变成分子的内能,引起这些波段的太阳辐射强度衰减。

2 大气散射作用。

大气中的粒子与细小微粒如烟、尘埃、雾霾、小水滴及气溶胶等对大气具有散射作用。

散射的作用使在原传播方向上的辐射强度减弱,增加了向其他各个方向的辐射。

我们把辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开的物理现象,称为散射。

散射现象的实质是电磁波传输中遇到大气微粒产生的一种衍射现象,大气散射有以下三种情况:
(1)瑞利散射。

当大气中粒子的直径小于波长1/10或更小时发生的散射。

(2)米氏散射。

当大气中粒子的直径大于波长1/10到与辐射的波长相当时发生的散射。

(3)无选择性散射。

当大气中粒子的直径大于波长时发生的散射。

这种散射的特点是散射强度与波长无关,任何波长的散射强度相同,因此称为无选择性散射。

大气折射现象电磁波穿过大气层时,除了吸收和散射两种影响以外,还会产生传播方向的改变,产生折射现象。

大气的折射率与大气圈层的大气密度直接相关。

大气透射现象太阳电磁辐射经过大气到达地面时,可见光和近红外波段电磁辐射被云层或其它粒子反射的比例约占30%,散射约占22%,大气吸收约占17%,透过大气到达地面的能量仅占入射总能量的31%。

反射、散射和吸收作用共同衰减了辐射强度,剩余部分即为透过的部分。

剩余强度越高,透过率越高。

对遥感传感器而言,透过率高的波段,才对遥感有意义。

辐射传输是电磁辐射与不同介质相互作用的复杂过程。

遥感器,无论是航空器或航天器所载,所接收的电磁辐射都包括来自地面的辐射和来自大气的辐射。

在可见光与近红外波段,遥感器观测方向的目标反射辐射经大气散射和吸收之后进入遥感器视场,这一部分经过大气衰减的能量中含有目标信息。

但由于太阳入射辐射中,有一部分能量在未到达地面之前就被大气散射和吸收了,其中有一部分散射能量进入了遥感器视场,这一部分能量(通常称之为程辐射)中不含有任何目标信息。

另外,由于周围环境的存在,入射到环境表面的辐射被其反射后有一部分经过大气散射后而进入遥感器视场,另一部分又被大气反射到目标表面,再被目标表面反射和大气透过进入遥感器视场。

这样,遥感器对地观测获取的信息中,既包括了目标地物信息,也包括了部分大气信息和地物周围环境的信息,这直接影响到遥感图象解译和定量分析。

为此,多年来研究者一直对辐射传输过程进行研究,建立了辐射传输理论。

辐射传输理论是描述电磁辐射传播通过介质时与介质发生相互作用(如吸收、散射、发射等)而使辐射能按照一定规律传输的规律性知识。

这一规律集中体现在辐射传输方程(表征电磁辐射在介质中传播过程的方程)上。

电磁辐射在地--气系统中传输的过程受到多种因素影响,因此辐射传输方程的求解非常复杂。

为了求得方程解,一般需要对辐射传输方程进行简化。

第三节地物波谱特征
地物的电磁波响应特性随电磁波长改变而变化的规律,称为地物波谱。

地物波谱是电磁辐射与地物相互作用的结果。

不同的物质反射、透射、吸收、散射和发射电磁波的能量是不同的,它们都具有本身特有的变化规律,表现为地物波谱随波长而变的特性,这些特性叫做地物波谱特性。

地物的波谱特征是遥感识别地物的基础。

2.3.1 太阳辐射与地物反射波谱。

相关文档
最新文档