计算机视觉学习初识SIFT算法汇总
SIFT算法详解

SIFT算法详解Scale Invariant Feature Transform(SIFT)Just For Funzdd zddmail@对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。
1、SIFT综述尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由David Lowe在1999年所发表,2004年完善总结。
其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。
此算法有其专利,专利拥有者为英属哥伦比亚大学。
局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。
对于光线、噪声、些微视角改变的容忍度也相当高。
基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。
使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。
在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。
SIFT特征的信息量大,适合在海量数据库中快速准确匹配。
SIFT算法的特点有:1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;2. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;4. 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。
SIFT算法可以解决的问题:目标的自身状态、场景所处的环境和成像器材的成像特性等因素影响图像配准/目标识别跟踪的性能。
SIFT算法实现及代码详解

SIFT算法实现及代码详解SIFT(Scale-Invariant Feature Transform)是一种计算机视觉算法,用于在图像中寻找局部特征。
由于SIFT算法具有尺度不变性和旋转不变性等优点,因此广泛应用于目标检测、图像拼接、图像匹配等领域。
1.尺度空间构建:通过对原始图像进行多次高斯模糊,得到图像的尺度空间。
2.高斯差分金字塔构建:对尺度空间进行差分操作,得到高斯差分金字塔。
3.极值点检测:在高斯差分金字塔中检测局部极值点,用于确定关键点的位置。
4.关键点精确定位:通过对关键点进行插值,得到更精确的关键点位置。
5.方向分配:为每个关键点分配主方向,用于后续的旋转不变性。
6.关键点描述:对每个关键点周围的区域计算特征向量,用于描述关键点的特征。
7.特征匹配:通过比较特征向量的相似度,实现图像间的特征匹配。
下面是SIFT算法的Python实现(使用OpenCV库):```pythonimport cv2def SIFT(image):#尺度空间构建gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)sift = cv2.xfeatures2d.SIFT_create# keypoints为检测到的关键点列表,descriptors为关键点的特征描述向量return keypoints, descriptors#读取图像image1 = cv2.imread('image1.png')image2 = cv2.imread('image2.png')#提取图像特征keypoints1, descriptors1 = SIFT(image1)keypoints2, descriptors2 = SIFT(image2)#特征匹配bf = cv2.BFMatcher(cv2.NORM_L2)matches = bf.match(descriptors1, descriptors2)matches = sorted(matches, key = lambda x:x.distance)#绘制匹配结果result = cv2.drawMatches(image1, keypoints1, image2, keypoints2, matches, None, flags=2)cv2.imshow('Result', result)cv2.waitKey(0)cv2.destroyAllWindows```上述代码中,首先定义了一个`SIFT`函数用于提取图像的特征。
图像识别中的SIFT算法实现与优化

图像识别中的SIFT算法实现与优化一、SIFT算法介绍SIFT算法(Scale-Invariant Feature Transform)是一种用于图像对比和匹配的局部特征提取算法,由David Lowe于1999年开发提出并持续改良。
SIFT算法可以检测出具有旋转、缩放、光照变化等不变性的图像特征点,被广泛应用于计算机视觉领域,如图像匹配、图像检索、物体识别等。
SIFT算法主要分为四步:尺度空间极值检测、关键点定位、关键点方向确定和描述子生成。
尺度空间极值检测:SIFT算法通过构建高斯金字塔来检测尺度下的极值点。
在高斯金字塔中,首先对原始图像进行下采样,生成一组不同尺度的图像。
然后在每个尺度上利用高斯差分来检测极值点,满足以下条件的点即为极值点:周围像素点中的最大值或最小值与当前像素点的差值达到一定阈值,而且是在尺度空间上达到极值。
关键点定位:对于极值点的定位,SIFT算法采用了一种基于拟合精细的方法来定位真实的关键点。
SIFT算法通过在尺度空间中计算极值点的DoG(高斯差分)的Hessian矩阵,来估计关键点的尺度和位置。
如果Hessian矩阵的行列式和迹符号都满足一定的条件,则认为该点为关键点。
关键点方向确定:在确定关键点的位置和尺度之后,SIFT算法还需要确定关键点的主方向。
该方向是通过计算关键点周围像素点的梯度方向和大小,并在组合后的梯度图像上寻找最大梯度方向得到的。
这个方向是在许多方向中确定的,而描述符是相对于主方向定义的。
描述子生成:最后,SIFT算法采用一个高维向量来描述关键点,并且具有不变性。
该向量的计算是在相对于关键点的周围图像区域内,采集图像梯度方向的统计信息来完成的。
描述符向量包含了关键点的位置、主方向,以及相对于主方向的相对性质。
二、SIFT算法优化思路尽管SIFT算法已经被广泛使用,但是由于算法复杂度和内存消耗等问题,使得在大数据和实时应用场景下,SIFT算法的运行速度和效果表现都有巨大限制。
图像处理领域的SIFT算法研究

图像处理领域的SIFT算法研究一、引言随着数字图像处理技术的不断发展,图像处理已经成为计算机科学和数学领域中的热门研究领域。
其中,视觉特征提取技术是图像处理中的重要一环。
在图像处理领域中,SIFT算法是一种非常重要的特征提取算法,它能够有效地进行图像匹配和目标识别等工作,并且在计算机视觉和机器学习等领域有着广泛的应用。
二、SIFT算法概述SIFT算法是由David Lowe在1999年提出的,是一种用来检测局部不变特征的算法。
它能够在不受旋转、尺度和亮度变化的影响下,从原始图像中提取出具有局部性、尺度性和方向性等特征的关键点,从而表示图像特征。
SIFT算法在图像匹配、目标识别、三维重建等领域中有着广泛的应用。
SIFT算法主要由两个步骤组成:关键点检测和特征描述。
1. 关键点检测:关键点检测是指从图像中提取具有局部不变性、尺度不变性和方向性的关键点。
SIFT算法使用高斯差分金字塔来检测尺度不变的关键点。
首先,图像被缩放到不同的尺度,然后在每个尺度上使用高斯差分滤波器来检测关键点,最后使用非极大值抑制来排除冗余点。
这样,SIFT算法就可以检测到不同尺度下的关键点。
2. 特征描述:特征描述是指对关键点进行描述,生成具有方向性的特征向量。
SIFT算法使用方向直方图来描述关键点的方向特征。
首先,计算每个关键点周围的梯度方向和梯度幅值,然后根据梯度方向将关键点周围的像素划分到8个方向的区间中,最后生成128维的特征向量。
这样,SIFT算法就可以对图像提取出具有局部性、尺度性和方向性等特征的关键点进行描述。
三、SIFT算法的实现SIFT算法的实现主要包括图像金字塔的构建、高斯差分算法的实现、关键点检测、方向直方图的计算和特征向量的描述等步骤。
1. 图像金字塔的构建SIFT算法使用图像金字塔对图像进行多尺度处理。
图像金字塔是一种常用的图像分析方法,它通过对图像进行不同程度的缩放来实现多尺度分析。
SIFT算法使用高斯滤波器来对原始图像进行多次下采样,构建成一系列由不同尺度空间幅度调整的高斯模糊图像,从而建立起尺度空间范围内的金字塔结构,用于检测尺度不变的关键点。
(完整word版)SIFT算法分析

SIFT算法分析1 SIFT主要思想SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。
2 SIFT算法的主要特点:a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。
b)独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配.c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。
d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。
e) 可扩展性,可以很方便的与其他形式的特征向量进行联合.3 SIFT算法流程图:4 SIFT 算法详细1)尺度空间的生成尺度空间理论目的是模拟图像数据的多尺度特征。
高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为: ),(),,(),,(y x I y x G y x L *=σσ 其中 ),,(σy x G 是尺度可变高斯函数,2)(22/21),,(22σπσσy xe y x G +-=(x,y )是空间坐标,σ是尺度坐标。
σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。
大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。
为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale —space )。
利用不同尺度的高斯差分核与图像卷积生成。
),,(),,(),()),,(),,((),,(σσσσσy x L k y x L y x I y x G k y x G y x D -=*-= DOG 算子计算简单,是尺度归一化的LoG 算子的近似。
图像金字塔的构建:图像金字塔共O 组,每组有S 层,下一组的图像由上一组图像降采样得到。
图1由两组高斯尺度空间图像示例金字塔的构建, 第二组的第一副图像由第一组的第一副到最后一副图像由一个因子2降采样得到.图2 DoG算子的构建:图1 Two octaves of a Gaussian scale-space image pyramid with s =2 intervals. The first image in the second octave is created by down sampling to last image in the previous图2 The difference of two adjacent intervals in the Gaussian scale—space pyramid create an interval in the difference—of—Gaussian pyramid (shown in green)。
SIFT算法原理:SIFT算法详细介绍

前面们介绍了Harris和Shi-Tomasi角检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角,但图像被放后,在使用同样的窗口,就检测不到角了。
所以,们来介绍一种计算机视觉的算法,尺度不变特征转换即SIFT(Scale-invariantfeaturetransform)。
它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值,并提取出其位置、尺度、旋转不变量,此算法由DavidLowe在1999年所发表,2004年完善总结。
应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等领域。
SIFT算法的实质在不同的尺度空间上查找关键(特征),并计算出关键的方向。
SIFT 所查找到的关键一些十分突出,不会因光照,仿变换和噪音等因素而变化的,如角、边缘、暗区的亮及亮区的暗等。
1.1基本流程Lowe将SIFT算法分解为如下四步:尺度空间极值检测:搜索所有尺度上的图像位置。
通过高斯差分函数来识别潜在的对于尺度和旋转不变的关键。
关键定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。
关键的选择依据于它们的稳定程度。
关键方向确定:基于图像局部的梯度方向,分配给每个关键位置一个或多个方向。
所有后面的对图像数据的操作都相对于关键的方向、尺度和位置进行变换,从而保证了对于这些变换的不变性。
关键描述:在每个关键周围的邻域内,在选定的尺度上测量图像局部的梯度。
这些梯度作为关键的描述符,它允许比较的局部形状的变形或光照变化。
们就沿着Lowe的步骤,对SIFT算法的实现过程进行介绍:1.2尺度空间极值检测在不同的尺度空间不能使用相同的窗口检测极值,对小的关键使用小的窗口,对的关键使用的窗口,为了达到上述目的,们使用尺度空间滤波器。
高斯核可以产生多尺度空间的核函数。
-《Scale-spacetheory:Abasictoolforanalysingstructuresatdifferentscales》。
SIFT算法实现理解及注释详解(基于RobHess源码)

Rob Hess的SIFT算法实现理解及注释SIFT算法不用我多解释了,这是一个很强大的算法,主要用于图像配准和物体识别等领域,但是其计算量相比也比较大,性价比比较高的算法包括PCA-SIFT 和SURF其中OpenCV提供了SURF算法,但是为了方便理解。
这里给出了Rob Hess 所实现的SIFT算法的实现以及注释,结合我自己的理解,如果,您有关于SIFT算法不理解的地方咱们可以一起交流一下。
或者您认为不详细的地方提出来。
SIFT算法的主要实现在sift.c这个文件,其主要流程为:(1)首先创建初始图像,即通过将图像转换为32位的灰度图,然后将图像使用三次插值来方大,之后通过高斯模糊处理(2)在此基础上进行高斯金字塔的构建以及高斯差分金字塔的构建(3)对图像进行极值点检测(4)计算特征向量的尺度(5)调整图像大小(6)计算特征的方向(7)计算描述子,其中包括计算二维方向直方图并转换直方图为特征描述子首先给出sift算法的整体框架代码:输入参数:img为输入图像;feat为所要提取的特征指针;intvl指的是高斯金字塔和差分金字塔的层数;sigma指的是图像初始化过程中高斯模糊所使用的参数;contr_thr是归一化之后的去除不稳定特征的阈值;curv_thr指的是去除边缘的特征的主曲率阈值;img_dbl是是否将图像放大为之前的两倍;descr_with用来计算特征描述子的方向直方图的宽度;descr_hist_bi ns 是直方图中的条数⑴初始化图像输入参数:这里不需要解释了该函数主要用来初始化图像,转换图像为32位灰度图以及进行高斯模糊。
(2)构建高斯金字塔输入参数:octvs是高斯金字塔的组invls是高斯金字塔的层数sigma是初始的高斯模糊参数,后续也通过它计算每一层所使用的sigma7.gauss. _pyr = static_cast vlpllmage ***>( calloc( octvs, sizeof (lpllmage** )));8.9. for (i = 0; i < octvs; i++ )10. gauss_pyr[i] = static_cast vlpllmage **>( calloc( intvls + 3, sizeof ( lpllmage* )));11./*12.13. precompute Gaussian sigmas using the following formula:14. 预计算每次高斯模糊的sigma15.16. \sigma_{total}A2 = \sigma_{i}A2 + \sigma_{i-1}A217. */18. sig[0] =sigma;19. k = pow( 2.0, 1.0 / intvls );20. for (i = 1; i < intvls + 3; i++ )21. {22. sig_prev = pow( k, i - 1 ) * sigma;23. sig_ total = sig_prev * k;24. sig[i] = sqrt( sig_total * sig_total - sig_prev * sig_prev );25. }26.27.28. for (o = 0; o < octvs; o++ )29. for ( i = 0; i < intvls + 3; i++ )30. {31. //对每一层进行降采样,形成高斯金字塔的每一层32. if ( o == 0 && i == 0 )33. gauss_pyr[o][i] = cvClonelmage(base);34.35. /* base of new octvave is halved image from end of previous octave */36. //每一组的第一层都是通过对前面一组的最上面一层的降采样实现的37. else if ( i == 0 )38. gauss_pyr[o][i] = downsample( gauss_pyr[o-1][intvls]);39.40. /* blur the current octave's last image to create the next one */41. //每一组的其他层则使通过使用不同sigma的高斯模糊来进行处理42. else43. {44. gauss_pyr[o][i] = cvCreatelmage( cvGetSize(gauss_pyr[o][i-1]),45. IPL_DEPTH_32F, 1 );46. cvSmooth( gauss_pyr[o][i-1], gauss_pyr[o][i],47. CV_GAUSSIAN, 0, 0, sig[i], sig[i]);48. }降采样处理输入参数:不解释这就是降采样,其实就是将图像通过最近邻算法缩小为原来的一半(3)构建高斯差分金字塔输入参数:不解释了参见上面的说明即可实际上差分金字塔的构成是通过对相邻层的图像进行相减获得的(4)极值点检测输入参数:contr_thr是去除对比度低的点所采用的阈值curv_thr是去除边缘特征的阈值SIFT_IMG_BORDE是预定义的图像边缘;通过和对比度阈值比较去掉低对比度的点;而通过is_extremum来判断是否为极值点,如果是则通过极值点插值的方式获取亚像素的极值点的位置。
sift算法详解

2、高斯模糊
SIFT 算法是在不同的尺度空间上查找关键点,而尺度空间的获取需要使用高斯模糊来 实现,Lindeberg 等人已证明高斯卷积核是实现尺度变换的唯一变换核,并且是唯一的线性 核。本节先介绍高斯模糊算法。
2.1 二维高斯函数
高斯模糊是一种图像滤波器,它使用正态分布(高斯函数)计算模糊模板,并使用该模板 与原图像做卷积运算,达到模糊图像的目的。 N 维空间正态分布方程为:
G (r ) =
1 2πσ
2
N
e −r
2
/(2 σ 2 )
(1-1)
其中, σ 是正态分布的标准差, σ 值越大,图像越模糊(平滑)。r 为模糊半径,模糊半 径是指模板元素到模板中心的距离。如二维模板大小为 m*n,则模板上的元素(x,y)对应的高 斯计算公式为:
G ( x, y ) =
1
2πσ 2
3.1 尺度空间理论
尺度空间(scale space)思想最早是由 Iijima 于 1962 年提出的,后经 witkin 和 Koenderink 等人的推广逐渐得到关注,在计算机视觉领域使用广泛。 尺度空间理论的基本思想是: 在图像信息处理模型中引入一个被视为尺度的参数, 通过 连续变化尺度参数获得多尺度下的尺度空间表示序列, 对这些序列进行尺度空间主轮廓的提 取,并以该主轮廓作为一种特征向量,实现边缘、角点检测和不同分辨率上的特征提取等。 尺度空间方法将传统的单尺度图像信息处理技术纳入尺度不断变化的动态分析框架中, 更容易获取图像的本质特征。 尺度空间中各尺度图像的模糊程度逐渐变大, 能够模拟人在距 离目标由近到远时目标在视网膜上的形成过程。 尺度空间满足视觉不变性。该不变性的视觉解释如下:当我们用眼睛观察物体时,一方 面当物体所处背景的光照条件变化时, 视网膜感知图像的亮度水平和对比度是不同的, 因此 要求尺度空间算子对图像的分析不受图像的灰度水平和对比度变化的影响, 即满足灰度不变 性和对比度不变性。另一方面,相对于某一固定坐标系,当观察者和物体之间的相对位置变 化时,视网膜所感知的图像的位置、大小、角度和形状是不同的,因此要求尺度空间算子对 图像的分析和图像的位置、 大小、 角度以及仿射变换无关, 即满足平移不变性、 尺度不变性、 欧几里德不变性以及仿射不变性。