必修三-算法与程序框图(优秀教案!).docx
人教a版必修3数学教学课件第1章算法初步第1节算法与程序框图

HONGNANJUJIAO
D典例透析
2.算法的特征
特征
有限性
确定性
可行性
有序性
说明
一个算法运行完有限个步骤后必须结束,而不能无限
地运行
算法的每一步计算,都必须有确定的结果,不能模棱
两可,即算法的每一步只有唯一的执行路径,对于相
同的输入只能得到相同的输出结果
算法中的每一步必须能用实现算法的工具精确表达,
并能在有限步内完成
算法从初始步骤开始,分为若干明确的步骤,每一个
步骤只能有一个确定的后续步骤,只有执行完前一步
才能执行后一步
IANLITOUXI
目标导航
特征
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
说明
算法一般要适用于不同形式的输入值,而不是局限于
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
1.算法的概念
12 世纪的算法 用阿拉伯数字进行算术运算的过程
按照一定规则解决某一类问题的明确和有限的步
数学中的算法
骤
通常可以编成计算机程序,让计算机执行并解决
现代算法
问题
名师点拨1.算法没有一个精确化的定义,可以理解为由基本运算
题型四
设计含有重复步骤的算法
【例4】 写出求1×2×3×4×5×6的算法.
分析:思路一:采取逐个相乘的方法;思路二:由于重复作乘法,故可
以设计作重复乘法运算的步骤.
解:算法1:第一步,计算1×2得到2.
人教课标版(B版)高中数学必修3第一章 算法初步算法与程序框图教案17

(四)算法案例 案例 1 辗转相除法与更相减损术 案例 2 秦九韶算法 案例 3 进位制 三.典型例题 例 1 写一个算法程序,计算 1+2+3+„+n 的值(要求可以输入任意大于 1 的正自然数) 思考: 在上述程序语句中我们使用了 WHILE 格式的循环语句, 能不能使用 UNTIL 循环? 例 2 把十进制数 53 转化为二进制数. (C 层)练习:将十进制数 2008 转化成二进制数 (AB 层)练习:用“除 k 取余法”将十进制数 53 转化成八进制数 例 3 利用辗转相除法求 3869 与 6497 的最大公约数与最小公倍数。 思考:上述计算方法能否设计为程序框图? 练习:P40 A(3) (4) 课 后 学 习 教 学 反 思 (ABC 层)P50 复习参考题 A 组 1(1) ,4 (AB 层)P50 复习参考题 A 组 3
三 维 教 学 目 标
过程与 方法
情感、 态度、 价值观
教 学 内 容 分 析 教 学
教学 重点 教学 难点 流 程 与
与算法对应的程序框图的设计及算法程序的编写
教
学
内
容
一.本章的知识结构
程 序 框 图 算法 算 法 语 句 排序 进位制 辗转相除法与更相减损术
秦九韶算法
二.知识梳理 (一)四种基本的程序框 (二)三种基本逻辑结构 (三)基本算法语句 1、输入语句 单个变量
INPUT “提示内容” ;变量
多个变量 2、输出语句 3 赋值语句
INPUT “提示内容 1,提示内容 2,提示内容 3,„” ;变量 1,变量 2, 变量 3,„ PRINT “提示内容” ;表达式 变量=表达式
4、条件语句 IF-THEN-ELSE 格式
人教B版高中数学必修三《第一章 算法初步 1.1 算法与程序框图 1.1.2 程序框图》_1

[教案]1.1.2程序框图预算法的基本逻辑结构——————顺序结构、条件结构教学目标:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构.掌握画程序框图的基本规则,能正确画出程序框图.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点、难点:重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.难点:教学综合运用框图知识正确地画出程序框图教学基本流程:复习回顾引出探求算法表达方法的必要性――程序框图―――算法的三种逻辑结构―――顺序结构―――条件结构――课堂小结教学情景设计一、新课引入从1.1.1的学习中,我们了解了算法的概念和特征,即知道了“什么是算法”这节课我们来学习算法的表达问题,即解决“怎样表达算法”问题。
我们已知道用自然语言可以表示算法,但太烦琐,我们有必要探求直观、准确表示方法。
(S通过预习解决下面四个问题)1.算法的含义是什么?2.算法的5个特征.3.算法有几种基本的结构?4.如下图所示的几个图形在流程图中,分别代表什么框?5、任意给定一个正实数,设计一个算法求以这个数为棱长的正方体的体积。
二、问题设计:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面5题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.④阅读教材P7的程序框图. →讨论:输入15后,框图的运行流程,讨论:输出的结果。
2. 教学算法的基本逻辑结构:①讨论:P7的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)②出示例1:已知一个三角形的三边分别为3,4,5,计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)T:点明顺序结构的定义与特征及其对应的程序框图。
高中数学人教版必修三(教案)1.1 算法与程序框图(3课时)

第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减)②初中解二元一次方程组的方法?(消元法)③高中二分法求方程近似解的步骤?(给定精度ε,二分法求方程根近似值步骤如下:A.确定区间,验证,给定精度ε;B. 求区间的中点;C. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);D. 判断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:①出示例:写出解二元一次方程组的具体步骤.先具体解方程组,学生说解答,教师写解法→针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y=0 ③;第二步:解③得y=0;第三步:将y=0代入①,得x=2.②理解算法:12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序.算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③练习:写出解方程组的算法.2. 教学几个典型的算法:①出示例1:任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数?→写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.②出示例2:用二分法设计一个求方程的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解→写出算法.③练习:举例更多的算法例子;→对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③程序框名称功能终端框表示一个算法的起始和结束(起止框)输入、输出框表示一个算法输入和输出的信息处理(执行)框赋值、计算判断框判断一个条件是否成立流程线连接程序框④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1. 说出下列程序框的名称和所实现功能.2.顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.。
程序框图(第1课时)教案

新课程人教A版数学必修(Ⅲ)教案§1.1.2 程序框图(第1课时)一、教学目标:1、知识与技能:理解程序框图的概念;学会用通用的图形符号表示算法,掌握算法的两个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。
2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3、情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的两种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
二、重点与难点:重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构,难点是能综合运用这些知识正确地画出程序框图。
三、学法与教学用具:1、通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题就得十分清晰和具体。
有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端。
2、我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。
例如“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面。
另外,在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。
3、教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:从 1.1.1节算法可以看出,算法步骤有明确的顺序性,而且有些步骤只有在一定条件下才会被执行,有些步骤在一定条件下被重复执行.因此,我们有必要探究使算法表法得更直观、准确的方法。
人教A版必修三 1.1.2 程序框图与算法的基本逻辑结构 教案

1.1.2 程序框图与算法的基本逻辑结构整体设计教学分析用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.程序框图用图形的方式表达算法,使算法的结构更清楚、步骤更直观也更精确.为了更好地学好程序框图,我们需要掌握程序框的功能和作用,需要熟练掌握三种基本逻辑结构.三维目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.课时安排4课时教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图. 推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8)总结如下表.图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分(9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:点评:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法. 变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯Λ的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式)算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法. 算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S.程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构.变式训练下图所示的是一个算法的流程图,已知a1=3,输出的b=7,求a2的值.解:根据题意221aa=7,∵a1=3,∴a2=11.即a2的值为11.例3 写出通过尺轨作图确定线段AB的一个5等分点的程序框图.解:利用我们学过的顺序结构得程序框图如下:点评:这个算法步骤具有一般性,对于任意自然数n,都可以按照这个算法的思想,设计出确定线段的n 等分点的步骤,解决问题,通过本题学习可以巩固顺序结构的应用. 知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.解:用P 表示钢琴的价格,不难看出如下算法步骤: 2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609; 2007年P=10 609×(1+3%)=10 927.27; 2008年P=10 927.27×(1+3%)=11 255.09; 因此,价格的变化情况表为:年份 2004 2005 2006 2007 2008 钢琴的价格 10 00010 30010 60910 927.2711 255.09程序框图如下:点评:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如下给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法.作业习题1.1A 1.设计感想首先,本节的引入新颖独特,旅游图的故事阐明了学习程序框图的意义.通过丰富有趣的事例让学生了解了什么是程序框图,进而激发学生学习程序框图的兴趣.本节设计题目难度适中,逐步把学生带入知识的殿堂,是一节好的课例.第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.推进新课新知探究提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:点评:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.例2 设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图表示.算法分析:我们知道,若判别式Δ=b 2-4ac>0,则原方程有两个不相等的实数根 x 1=a b 2∆+-,x 2=ab 2∆--; 若Δ=0,则原方程有两个相等的实数根x 1=x 2=ab2-; 若Δ<0,则原方程没有实数根.也就是说,在求解方程之前,可以先判断判别式的符号,根据判断的结果执行不同的步骤,这个过程可以用条件结构实现.又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算x 1和x 2之前,先计算p=ab2-,q=a 2∆.解决这一问题的算法步骤如下:第一步,输入3个系数a ,b ,c.第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则计算p=ab2-,q=a 2∆;否则,输出“方程没有实数根”,结束算法.第四步,判断Δ=0是否成立.若是,则输出x 1=x 2=p ;否则,计算x 1=p+q ,x 2=p-q ,并输出x 1,x 2.程序框图如下:例3 设计算法判断一元二次方程ax 2+bx+c=0是否有实数根,并画出相应的程序框图. 解:算法步骤如下:第一步,输入3个系数:a ,b ,c.第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根”.结束算法.相应的程序框图如右:点评:根据一元二次方程的意义,需要计算判别式Δ=b 2-4ac 的值.再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构. 例4 (1)设计算法,求ax+b=0的解,并画出流程图. 解:对于方程ax+b=0来讲,应该分情况讨论方程的解.我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下:(1)当a≠0时,方程有唯一的实数解是ab -; (2)当a=0,b=0时,全体实数都是方程的解; (3)当a=0,b≠0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤: 第一步,判断a≠0是否成立.若成立,输出结果“解为ab-”. 第二步,判断a=0,b=0是否同时成立.若成立,输出结果“解集为R ”.第三步,判断a=0,b≠0是否同时成立.若成立,输出结果“方程无解”,结束算法. 程序框图如下:点评:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作. 知能训练设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图. 解:算法步骤:第一步,输入a ,b ,c 的值.第二步,判断a>b 是否成立,若成立,则执行第三步;否则执行第四步.第三步,判断a>c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束. 第四步,判断b>c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束. 程序框图如下:点评:条件结构嵌套与条件结构叠加的区别: (1)条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作.(2)条件结构的嵌套中,“条件2”是“条件1”的一个分支,“条件3”是“条件2”的一个分支……依此类推,这些条件中很多在算法执行过程中根据所处的分支位置不同可能不被执行. (3)条件结构嵌套所涉及的“条件2”“条件3”……是在前面的所有条件依次一个一个的满足“分支条件成立”的情况下才能执行的此操作,是多个条件同时成立的叠加和复合. 例5 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算: f=⎩⎨⎧>⨯-+⨯≤).50(,85.0)50(53.050),50(,53.0ωωωω其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克). 试画出计算费用f 的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f 的计算公式随物品重量ω的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图:拓展提升有一城市,市区为半径为15 km 的圆形区域,近郊区为距中心15—25 km 的范围内的环形地带,距中心25 km 以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x ,y),求其与市中心的距离r=22y x +,确定是市区、近郊区,还是远郊区,进而确定地价p .由题意知,p=⎪⎩⎪⎨⎧>≤<≤<.25,20,2515,60,150,100r r r解:程序框图如下:课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题.作业习题1.1A 组3.设计感想本节采用引人入胜的方法引入正课,选用的例题难度适中,有的经典实用,有的新颖独特,每个例题都是很好的素材.条件结构是逻辑结构的核心,是培养学生逻辑推理的好素材,本节设计符合新课标精神,难度设计略高于教材.第3课时循环结构导入新课思路1(情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.推进新课新知探究提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A 框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.算法分析:通常,我们按照下列过程计算1+2+……+100的值.第1步,0+1=1.第2步,1+2=3.第3步,3+3=6.第4步,6+4=10.……第100步,4 950+100=5 050.显然,这个过程中包含重复操作的步骤,可以用循环结构表示.分析上述计算过程,可以发现每一步都可以表示为第(i-1)步的结果+i=第i步的结果.为了方便、有效地表示上述过程,我们用一个累加变量S来表示第一步的计算结果,即把S+i的结果仍记为S,从而把第i步表示为S=S+i,其中S的初始值为0,i依次取1,2,…,100,由于i同时记录了循环的次数,所以也称为计数变量.解决这一问题的算法是:第一步,令i=1,S=0.第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.第三步,S=S+i.第四步,i=i+1,返回第二步.程序框图如右:上述程序框图用的是当型循环结构,如果用直到型循环结构表示,则程序框图如下:点评:这是一个典型的用循环结构解决求和的问题,有典型的代表意义,可把它作为一个范例,仔细体会三种逻辑结构在程序框图中的作用,学会画程序框图.变式训练已知有一列数1,,43,32,21+n n Λ,设计框图实现求该列数前20项的和. 分析:该列数中每一项的分母是分子数加1,单独观察分子,恰好是1,2,3,4,…,n ,因此可用循环结构实现,设计数器i ,用i=i+1实现分子,设累加器S ,用S=1++i i S ,可实现累加,注意i 只能加到20.解:程序框图如下:方法一: 方法二:点评:在数学计算中,i=i+1不成立,S=S+i 只有在i=0时才能成立.在计算机程序中,它们被赋予了其他的功能,不再是数学中的“相等”关系,而是赋值关系.变量i 用来作计数器,i=i+1的含义是:将变量i 的值加1,然后把计算结果再存贮到变量i 中,即计数器i 在原值的基础上又增加了1.变量S 作为累加器,来计算所求数据之和.如累加器的初值为0,当第一个数据送到变量i中时,累加的动作为S=S+i,即把S的值与变量i的值相加,结果再送到累加器S中,如此循环,则可实现数的累加求和.例2 某厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%,设计一个程序框图,输出预计年生产总值超过300万元的最早年份.算法分析:先写出解决本例的算法步骤:第一步,输入2005年的年生产总值.第二步,计算下一年的年生产总值.第三步,判断所得的结果是否大于300,若是,则输出该年的年份,算法结束;否则,返回第二步.由于“第二步”是重复操作的步骤,所以本例可以用循环结构来实现.我们按照“确定循环体”“初始化变量”“设定循环控制条件”的顺序来构造循环结构.(1)确定循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则循环体为t=0.05a,a=a+t,n=n+1.(2)初始化变量:若将2005年的年生产总值看成计算的起始点,则n的初始值为2005,a 的初始值为200.(3)设定循环控制条件:当“年生产总值超过300万元”时终止循环,所以可通过判断“a>300”是否成立来控制循环.程序框图如下:思路2例1 设计框图实现1+3+5+7+…+131的算法.分析:由于需加的数较多,所以要引入循环结构来实现累加.观察所加的数是一组有规律的数(每相临两数相差2),那么可考虑在循环过程中,设一个变量i,用i=i+2来实现这些有规律的数,设一个累加器sum,用来实现数的累加,在执行时,每循环一次,就产生一个需加的数,然后加到累加器sum中.解:算法如下:第一步,赋初值i=1,sum=0.第二步,sum=sum+i,i=i+2.第三步,如果i≤131,则反复执第二步;否则,执行下一步.第四步,输出sum.第五步,结束.程序框图如右图.点评:(1)设计流程图要分步进行,把一个大的流程图分割成几个小的部分,按照三个基本结构即顺序、条件、循环结构来局部安排,然后把流程图进行整合.(2)框图画完后,要进行验证,按设计的流程分析是否能实现所求的数的累加,分析条件是否加到131就结束循环,所以我们要注意初始值的设置、循环条件的确定以及循环体内语句的先后顺序,三者要有机地结合起来.最关键的是循环条件,它决定循环次数,可以想一想,为什么条件不是“i<131”或“i=131”,如果是“i<131”,那么会少执行一次循环,131就加不上了.例2 高中某班一共有40名学生,设计算法流程图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.分析:用循环结构实现40个成绩的输入,每循环一次就输入一个成绩s,然后对s的值进行判断.设两个计数器m,n,如果s>90,则m=m+1,如果80<s≤90,则n=n+1.设计数器i,用来控制40个成绩的输入,注意循环条件的确定.解:程序框图如下图:知能训练由相应的程序框图如右图,补充完整一个计算1+2+3+…+100的值的算法.(用循环结构)第一步,设i的值为_____________.第二步,设sum的值为_____________.第三步,如果i≤100执行第_____________步,否则,转去执行第_____________步.第四步,计算sum+i并将结果代替_____________.第五步,计算_____________并将结果代替i.第六步,转去执行第三步.第七步,输出sum的值并结束算法.分析:流程图各图框的内容(语言和符号)要与算法步骤相对应,在流程图中算法执行的顺序应按箭头方向进行.解:第一步,设i的值为1.第二步,设sum的值为0.第三步,如果i≤100,执行第四步,否则,转去执行第七步.第四步,计算sum+i并将结果代替sum.第五步,计算i+1并将结果代替i.第六步,转去执行第三步.第七步,输出sum的值并结束算法.拓展提升设计一个算法,求1+2+4+…+249的值,并画出程序框图.解:算法步骤:第一步,sum=0.第二步,i=0.第三步,sum=sum+2i.第四步,i=i+1.第五步,判断i是否大于49,若成立,则输出sum,结束.否则,返回第三步重新执行.程序框图如右图:。
人教A版高中数学必修3第一章.2算法与程序框图优秀课件

流程线 连接 程序框
连接点 连接程序框图的两部分
新课 1、程序框图基本概念: (1)程序框图的概念:
程序框图又称流程图,是一种用规定 的图形、指向线及文字说明来准确、 直观地表示算法的图形。 (2)程序框图的组成: 一个程序框图包括以下几部分: 表示相应操作的程序框; 带箭头的流程线; 程序框内必要文字说明。
(3)基本程序框的符号及其功能
程序框
名称
功能
终端框(起止 表示一个算法的起始和结束 框)
输入、输出框 表示算法的输入和输出的信 息
处理框(执行 框) 判断框
流程线
赋值、计算
判断一个条件是否成立,用 “是”、“否”或“Y”、 “N”标明 表示从某一框到另一框的流
一、对程序框图的认识和理解 例 2. (1)下列关于程序框图的说法正确的是( ) A.程序框图是描述算法的语言 B.程序框图中可以没有输出框,但必须要有输入框给 变量赋值 C.在程序框图中,一个判断框可能同时产生两种结果 D.程序框图与流程图不是同一个概念 【解】由于算法设计时要求返回执行的结果,故必须要有输 出框,对于变量的赋值可通过处理框完成,故算法设计时不 一定要有输入框,因此 B 错;一个判断框产生的结果是唯一 的,故 C 错;程序框图就是流程图,所以 D 错.故选 A. 【答案】 A
1.1.2算法的基本结构和 程序框图(1)
复习回顾
1.算法的概念:算法实际上是解决问题的一种程序
性方法,它通常解决某一个或一类问题,在用算法解决
问题时,显然体现了特殊与一般的数学思想. 2.算法的性质有:①有限性,②确定性,③有序性,
④不唯一性,⑤可行性.解答有关算法的概念判断题应
根据算法的这五大特点.
2、简单程序框图的画法:
必修三算法与程序框图优秀教案

算法与程序框图教学目的:明确算法的含义,熟识算法的三种根本构造。
教学重点:算法的根本学问与算法对应的程序框图的设计.教学难点:与算法对应的程序框图的设计及算法程序的编写.教学过程:1.算法的定义:广义的算法是指完成某项工作的方法和步骤,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必需是明确和有效的,而且可以在有限步之内完成.2.流程图的概念:流程图是用一些规定的图形、指向线及简洁的文字说明来表示算法几程序构造的一种图形程序.它直观、清晰,便于检查和修改.其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,带箭头的流程线(指向线)表示操作的先后次序.构成流程图的图形符号及其作用3.标准流程图的表示:①运用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要标准;③除推断框外,大多数框图符号只有一个进入点和一个退出点.④在图形符号内描绘的语言要特别简练、清晰.4、算法的三种根本逻辑构造:课本中例题的讲解得出三种根本逻辑构造:依次构造、条件构造、循环构造(1)依次构造:依次构造描绘的是是最简洁的算法构造,语句与语句之间,框与框之间是按从上到下的依次进展的。
例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
算法分析:这是一个简洁的问题,只需先算出p的值,再将它代入公式,最终输出结果,只用依次构造就可以表达出算法。
解:程序框图:点评:依次构造是由若干个依次执行的步骤组成的,是任何一个算法都离不开的根本构造。
(2)条件构造:依据条件选择执行不同指令的限制构造。
例2:随意给定3个正实数,设计一个算法,推断分别以这3个数为三边边长的三角形是否存在,画出这个算法的程序框图。
算法分析:推断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中随意两个数的和是否大于第3个数,这就需要用到条件构造。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法与程序框图
教学目标:明确算法的含义,熟悉算法的三种基本结构。
教学重点:算法的基本知识与算法对应的程序框图的设计.
教学难点:与算法对应的程序框图的设计及算法程序的编写.
教学过程:
1.算法的定义:广义的算法是指完成某项工作的方法和步骤,现代意义的算法是指可以用计
算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成 .
2.流程图的概念:流程图是用一些规定的图形、指向线及简单的文字说明来表示算法几程序
结构的一种图形程序.它直观、清晰,便于检查和修改. 其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,带箭头的流程线(指向线)表示操作的先后次序.
构成流程图的图形符号及其作用
程序框名称功能
表示一个算法的起始和结束,是任何算法
起止框
程序框图不可缺少的。
表示一个算法输入和输出的信息,可用在
输入、输出框
算法中任何需要输入、输出的位置。
赋值、计算。
算法中处理数据需要的算式、
处理框公式等,它们分别写在不同的用以处理数
据的处理框内。
判断某一条件是否成立,成立时在出口处
判断框标明“是”或“ Y”;不成立时在出口处标
明则标明“否”或“ N”。
流程线算法进行的前进方向以及先后顺序
循环框用来表达算法中重复操作以及运算
连结点连接另一页或另一部分的框图
注释框帮助编者或阅读者理解框图
3.规范流程图的表示:
①使用标准的框图符号;
②框图一般按从上到下、从左到右的方向画,流程线要规范;
③除判断框外,大多数框图符号只有一个进入点和一个退出点.
④在图形符号内描述的语言要非常简练、清楚.
4、算法的三种基本逻辑结构:
课本中例题的讲解得出三种基本逻辑结构:顺序结构、条件结构、循环结构
(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是
按从上到下的顺序进行的。
例 1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,
并画出算法的程序框图。
算法分析:这是一个简单的问题,只需先算出 p 的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。
解:程序框图:
开始
p=(2+3+4)/22
s=√p(p-2)(p-3)(p-4)
输出 s
结束
点评:顺序结构是由若干个依次执行的步骤组成的,是任何一个算法都离不开的基本结构。
(2)条件结构:根据条件选择执行不同指令的控制结构。
例 2:任意给定 3 个正实数,设计一个算法,判断分别以这 3 个数为三边边长的三角形是否
存在,画出这个算法的程序框图。
算法分析:判断分别以这 3 个数为三边边长的三角形是否存在,只需要验收这 3 个数当中任意两个数的和是否大于第 3 个数,这就需要用到条件结构。
程序框图:
开始
输入 a,b,c
a+b>c , a+c>b, b+c>a是否
否同时成立?
是
存在这样的三角形不存在这样的三角形
结束
(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处
理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构分为两类:
( 1)一类是当型循环结构,如图(1)所示,它的功能是当给定的条件P1 成立时,执行 A 框, A 框执行完毕后,再判断条件P1是否成立,如果仍然成立,再执行 A 框,如此反复执行 A 框,直到某一次条件P1不成立为止,此时不再执行 A 框,从 b 离开循环结构。
( 2)另一类是直到型循环结构,如图( 2 所示,它的功能是先执行,然后判断给定的
条件 P2是否成立,如果P2仍然不成立,则继续执行 A 框,直到某一次给定的条件P2成立为止,此时不再执行 A 框,从 b 点离开循环结构。
A A
P1?
P
2?不成立
不成立
成立
b b
当型循环结构直到型循环结构
两种循环结构有什么差别?
当型:先判断后执行
先判断指定的条件是否为真,若条件为真,执行循环条件,条件为假时退出循环。
直到型 ; 先执行后判断
先执行循环体,然后再检查条件是否成立,如果不成立就重复执行循环体,直到条件
成立退出循。
注意:
1. 于算法的理解不能局限于解决数学的方法,解决任何的方法和步都
是算法 . 算法具有概括性、抽象性、正确性等特点,要通具体的程和步的分析
去体会算法的思想,了解算法的含.
2.在学程序框要掌握各程序框的作用,准确用三种基本构,即序构、
条件分支构、循构来画程序框,准确表达算法. 画程序框是用基本句来程的前提 .
例 3:一个算1+2+⋯ +100 的的算法,并画出程序框。
算法分析:只需要一个累加量和一个数量,将累加量的初始0,数量的可以从 1 到 100。
解:程序框:
开始
i=1
Sum=0
i=i+1
Sum=sum+i
i ≤ 100?
否是
输出 sum
结束
堂:
1:入矩形的求它的面,画出程序框。
2:求 x 的,画出程序框。
3:画出求 21+22+23+⋯2100的的程序框。
后:
1.下列关于算法的描述正确的是()
A.算法与求解一个的方法相同B.算法只能解决一个,不能重复使用
C.算法程要一步一步行D.有的算法行完以后,可能没有果
2.算下列各式中的S ,能算法求解的是()
①= 1+ 2+ 3+⋯+ 100;② = 1+2+ 3+⋯+ 100+⋯;③= 1+2+ 3+⋯+( ≥1,∈
S S S n nn
N)
A.①②B.①③
C.②③D.①②③
3. 下列关于算法的法正确的是()
A.一个算法的步是可逆的
B.描述算法可以有不同的方式
C.算法可以看成按照要求好的有限的确切的算序列并且的步能解决当前
D.算法只能用一种方式示
4. 下列各式中T的不能用算法求解的是()
2222+⋯+ 100211111
A.=1+ 2+3+ 4B.=++++⋯+
2
34550
C.T= 1+ 2+ 3+ 4+5+⋯D. T=1-2+3-4+5-6+⋯+99-100 5.下列四种叙述能称算法的是()
A.在家里一般是做B.做米需要刷、淘米、添水、加些步C.在野外做叫野炊D.做必要有米
6. 关于一元二次方程x2-5x+6=0的求根,下列法正确的是()
A.只能一种算法B.可以两种算法
C.不能算法D.不能根据解程算法
2
7.于解方程x -2x-3=0的下列步:
2
① f ( x)= x -2x-3
2
② 算方程的判式= 2 + 4×3= 16>0
③作 f ( x)的象
④将 a=1, b=-2, c=-3代入求根公式
- b±
,得 x1=3, x2=-1.
x=
2a
其中可作解方程的算法的有效步()
A.①②B.②③
C.②④D.③④
8.解决某个的算法如下:
第一步,定一个数n( n≥2).
第二步,判断n 是否是2,若n= 2,n足条件;若n>2,行第三步.
第三步,依次从 2 到- 1 能不能整除,若都不能整除,
n足条件.
n n n
足上述条件的数n 是()
A.数B.奇数
C.偶数D.数
9. 如下所示的程序框,其功能是()
A.入a,b的,按从小到大的序出它的
B.入a,b的,按从大到小的序出它的
C.求a,b的最大
D.求a,b的最小
10.出如的程序框,那么出的S等于()
A. 2450B.2550C.5050D.4900
第9第10
11. 已知数字序列:2,5,7,8,15,32,18,12,52,8.写出从序列中搜索18 的一个算法.
第一步,入数a.
第二步, ________.
第三步,出a=18.
12.求 1× 3× 5× 7×9× 11 的的一个算法是:
第一步:求1× 3 得到果 3.
第二步:将第一步所得果 3 乘 5,得到果15.
第三步: ________________________________________________________________.
第四步:再将105 乘 9 得到 945.
第五步:再将945×11,得到 10395,即最后果.
11.入 3 个数按从大到小的次序排序。
12. 出 50 个数, 1, 2,4, 7, 11,⋯,其律是:第 1 个数是 1,第 2 个数比第 1 个数大
1,第 3 个数比第 2 个数大 2,第 4 个数比第 3 个数大 3,⋯,以此推 . 要求算 50 个数的和 . 将上面出的程序框充完整 .
(1) _____________________
(2) _____________________
开始
i = 1
P = 1
S= 0
否
( 1)
是
S= s + p
(2)
i= i +1
出s
束
(第 12 )。