光学教程习题解答

合集下载

光学教程答案(第一章)

光学教程答案(第一章)

1. 波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.解:(1)由公式λd r y 0=∆得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=m m122I I = 22122A A =12A A =()()122122/0.94270.94121/A A V A A ∴===≈++5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

《光学教程》姚启钧课后习题解答

《光学教程》姚启钧课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。

解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义: 由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。

《光学教程答案》word版

《光学教程答案》word版

第三章几何光学1.证明反射定律符合费马原理证明:设界面两边分布着两种均匀介质,折射率为山和勺(如图所示)。

光线通过笫一介质中指泄的A点后到达同一介质中指左的B点。

(1)反正法:如果反射点为位于处轴与A和3点所著称的平面之外,那么在ox轴线上找到它的垂足点C"点,.由于AC > AC ,BC >BC\故光线AC B所对应的光程总是大于光线AC B所对应的光程而非极小值,这就违背了费马原理。

故入射面和反射面在同一平面内。

(2)在图中建立坐xoy标系,则指定点A,B的坐标分别为(和yj和(w),反射点C的坐标为(圮0)所以AC3光线所对应的光程为:△=厲[JCv—xj' + y; + >](x-x2)2 + y;]根据费马原理,它应取极小值,所以有空=" 也-①利(sin_sinE = O心yjix-x^ + y- y](x-x2y+y;即:L = i22.根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等。

EF证:如图所示,有位于主光轴上的一个物点S 发出的光束经薄透镜折射后成一个 明亮的实象点S'。

设光线SC 为电光源S 发出的任意一条光线,其中球面AC 是由点光 源S 所发出光波的一个波面,而球面DB 是会聚于象点S'的球面波的一个波面,所以有关系式SC = SA, SD = SB •因为光程\CEFl)s =SC + CE + nEF + FD + DS △$ MS = SA + I1AB + BS根据费马原理,它们都应该取极值或恒定值,这些连续分布的实际光线,在近轴 条件下其光程都取极大值或极小值是不可能的,唯一的可能性是取恒定值,即它们的光程相等。

3. 睛E 和物体PQ 之间有一 块折射率为1.5的玻璃平板,平 板的厚度d 为30cmo 求物体PQ 的像P0与物体P0之间的距离妁为多少?解:根据例题3.1的结果 PP n1 PP = 30x(1 ———)=10cm1.5n =1.5题3图4.玻璃棱镜的折射棱角A为60。

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ= 7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为: 21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅= ⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=- ()15n d λ-= ()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

(完整版)《光学教程》(姚启钧)课后习题解答

(完整版)《光学教程》(姚启钧)课后习题解答
反射光线经玻璃板后也要平移 ,所成像的像距为
放入玻璃板后像移量为:
凹面镜向物移动 之后,物距为 ( )
相对 点距离
10、欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少?
解:
由球面折射成像公式:
解得:
11、有一折射率为 、半径为 的玻璃球,物体在距球表面 处,求:⑴物所成的像到球心之间的距离;⑵像的横向放大率。
则在玻璃片单位长度内看到的干涉条纹数目为:
即每 内10条。
10、在上题装置中,沿垂直于玻璃表面的方向看去,看到相邻两条暗纹间距为 。已知玻璃片长 ,纸厚 ,求光波的波长。
解:
当光垂直入射时,等厚干涉的光程差公式:
可得:相邻亮纹所对应的厚度差:
由几何关系: ,即
11、波长为 的可见光正射在一块厚度为 ,折射率为 的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强。

5、(略)
6、高 的物体距凹面镜顶点 ,凹面镜的焦距是 ,求像的位置及高度,(并作光路图)
解:
由球面成像公式:
代入数值
得:
由公式:
7、一个 高的物体放在球面镜前 处成 高的虚像。求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜?
解:⑴
, 虚像

得:
⑵由公式
(为凸面镜)
8、某观察者通过一块薄玻璃板去看在凸面镜中他自己的像。他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起。若凸面镜的焦距为 ,眼睛距凸面镜顶点的距离为 ,问玻璃板距观察者眼睛的距离为多少?
解:⑴
⑵由光程差公式
⑶中央点强度:
P点光强为:
3、把折射率为 的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。已知光波长为

光学教程答案(第二章)

光学教程答案(第二章)

1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:2022rr k k +=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。

解:(1)根据上题结论ρρ0kr k =将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2)P 点最亮时,小孔的直径为 cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。

解:根据题意m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以 42/211200=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a a a a I I p4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光学教程第二版习题答案(一至七章)

光学教程第二版习题答案(一至七章)

∴ d1
=
h1 − h2 tan u1′
= 1.5 −1 0.015
= 33.33mm
tan u2 ′ = tan u2
+
h2 f 2′
= 0.015 +
1 = 0.011
− 250
∴d2
=
h2 − h3 tan u2 ′
1 − 0.9 =
0.011
= 9.091mm
2-13 一球形透镜,直径为 40mm,折射率为 1.5,求其焦距和主点位置。
= −200mm
lH
= dϕ2 ϕ
= 50 × 5 = −100mm − 2.5
2-11
有三个透镜,
f1′
= 100mm,
f2′
= 50mm,
f

3
=
−50mm,其间隔 d1
= 10mm,
d 2 = 10mm ,设该系统处于空气中,求组合系统的像方焦距。
解:设 h1 = 100mm, u1 = 0 ,则:
tan u3′
= tan u3 +
h3 f3′
= 2.8 +
62 − 50
= 1.56
∴组合系统的像方焦距为:
f
′=
h1 tan u3′
100 =
1.56
= 64.1mm
2-12
一个三 片型望远镜 系统,已知
f

1
= 100mm,
f

2
=
−250mm ,
f

3
= 800mm,入
射平行光在三个透镜上的高度分别为: h1 = 1.5mm, h2 = 1mm , h3 = 0.9mm ,试求合成

《光学教程》姚启钧课后习题解答

《光学教程》姚启钧课后习题解答

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500/nn的绿光投射在间距d为0.022cm的双缝上,在距离180cm处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700M?的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:人=5 00mn改用人=7Q0nm两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640〃加,两狭缝间距为0.4mm ,光屏离狭缝的距离为50⑷,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P点离中央亮纹为0.1〃曲问两束光在P点的相位差是多少?(3)求P点的光强度和中央点的强度之比。

»•50解:⑴ Ay = -2-/1 = .^x 640x 10-7 = 0.08™d0.04⑵由光程差公式⑶中央点强度:I o = 4A2P点光强为:/ = 2力彳1 +心兰、I4丿3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为6X10-7/H解:” = 1.5,设玻璃片的厚度为d由玻璃片引起的附加光程差为:F = l)d4、波长为500/nn的单邑平行光射在间距为0.2加加的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50。

加的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

r 50解:Av = 4^ = — x500xl0'7 = 0.125C/H’ d 0.02由干涉条纹可见度定义:由题意,设A;=2A;,即% = ©代入上式得5、 波长为700/?/n 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离厶为 180c/n ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角0。

解:2 = 700伽,r = 20C /77, L = \ SOcm, Ay = 1mm由菲涅耳双镜干涉条纹间距公式6、 在题1.6图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5叫 到劳埃德镜面 的垂直距离为2〃"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm 。

劳埃德镜长40cm ,置于光源和屏之间的中央。

⑴若光波波长500nm λ=,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域P 1P 2可由图中的几何关系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在观察屏上可以看见条纹的区域为P 1P 2间即21 3.45 1.16 2.29P P mm =-=,离屏中央1.16mm 上方的2.29mm 范围内可看见条纹。

P 2P 1 P 0题1.6图7、试求能产生红光(700nm λ=)的二级反射干涉条纹的肥皂膜厚度。

已知肥皂膜折射率为1.33,且平行光与法向成300角入射。

解:2700, 1.33nm n λ==由等倾干涉的光程差公式:22λδ=8、透镜表面通常镀一层如MgF 2( 1.38n =)一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射。

为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚?解: 1.38n =物质薄膜厚度使膜上下表面反射光产生干涉相消,光在介质上下表面反射时均存在半波损失。

由光程差公式:9、在两块玻璃片之间一边放一条厚纸,另一边相互压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行观察,问在玻璃片单位长度内看到的干涉条纹数目是多少?设单色光源波长为500nm解:02cos602on hδ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干涉条纹数目为: 即每cm 内10条。

10、在上题装置中,沿垂直于玻璃表面的方向看去,看到相邻两条暗纹间距为1.4mm 。

已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长。

解:当光垂直入射时,等厚干涉的光程差公式: 可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何关系:h H l l ∆=∆,即l h H l∆∆= 11、波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强。

解:61.210, 1.5h m n -=⨯=由光正入射的等倾干涉光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=12、迈克耳逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长。

解:光垂直入射情况下的等厚干涉的光程差公式:22nh h δ== 移动一级厚度的改变量为:2h λ∆=13、迈克耳逊干涉仪的平面镜的面积为244cm ⨯,观察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为多少?解:由光垂直入射情况下的等厚干涉的光程差公式: 22nh h δ==相邻级亮条纹的高度差:2h λ∆=由1M 和2M '构成的空气尖劈的两边高度差为:14、调节一台迈克耳逊干涉仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹。

若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的M 1M2距离?若中心是亮的,试计算第一暗环的角半径。

(提示:圆环是等倾干涉图样,计算第一暗环角半径时可利用21sin ,cos 12θθθθ≈≈-的关系。

)解:500nm λ=出现同心圆环条纹,即干涉为等倾干涉 对中心2h δ=15、用单色光观察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长。

解:由牛顿环的亮环的半径公式:r = 以上两式相减得:16、在反射光中观察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离。

解:牛顿环的反射光中所见亮环的半径为:即:2r =则:)2019320.160.40.4r r r r r mm ∆=-==-==第2章 光的衍射1、单色平面光照射到一小圆孔上,将其波面分成半波带。

求第k 个带的半径。

若极点到观察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:由公式对平面平行光照射时,波面为平面,即:R →∞2、平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:⑴小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4m 的P 点的光强分别得到极大值和极小值;⑵P 点最亮时,小孔直径应为多大?设此光的波长为500nm 。

解:⑴04400r m cm == 当k 为奇数时,P 点为极大值 当C 数时,P 点为极小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k =,即仅露出一个半波带时,P 点最亮。

10.141,(1)H R cm k ==,0.282D cm =3、波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强0I 之比。

解:即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ==== 没有光阑时光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4、波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中心的P 点是亮点还是暗点?⑵要使P 点变成与⑴相反的情况,至少要把屏分别向前或向后移动多少?解:由公式对平面平行光照射时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点。

则 0113k r R ⎛⎫=⨯+ ⎪⎝⎭, 注:0,r R 取m 作单位向右移,使得2k =,031.5, 1.510.52r m r m '==∆=-= 向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5、一波带片由五个半波带组成。

第一半波带为半径1r的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无穷大的不透明区域。

已知1234:::r r r r =用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出现在哪些位置上。

解: ⑴由1234:::r r r r =波带片具有透镜成像的作用,2HkR f k λ'=⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度。

⑶由于波带片还有11,35f f ''…等多个焦点存在,即光强极大值在轴上11,35m m … 6、波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带(1,3,5,…,199)。

另外100个不透明偶数半波带。

比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I 。

解:由波带片成像时,像点的强度为: 由透镜成像时,像点的强度为: 即014I I = 7、平面光的波长为480nm ,垂直照射到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm 。

分别计算当缝的两边到P 点的相位差为/2π和/6π时,P 点离焦点的距离。

解:对沿θ方向的衍射光,缝的两边光的光程差为:sin b δθ= 相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点对使6πϕ∆=的P `点8、白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长。

解:对θ方位,600nm λ=的第二个次最大位 对 λ'的第三个次最大位 即:5722b bλλ'⨯=⨯ 9、波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分别为多少?解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅⑵第一最大值的方位角1θ'为: ⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅10、钠光通过宽0.2mm 的狭缝后,投射到与缝相距300cm 的照相底片上。

相关文档
最新文档