全息照相实验报告
全息照相实验报告_实验报告_

全息照相实验报告如何做全息照相实验?实验报告又是如何写?那么,下面请参考公文站小编给大家分享的全息照相实验报告,希望对大家有帮助。
全息照相实验报告【实验目的】1.了解全息照相的基本原理。
2.掌握全息照相以及底片的冲洗方法。
3.观察物象再现。
【实验仪器】防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。
【实验原理】全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。
普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。
而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。
此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。
由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。
1.全息记录全息照相的光路图如下图所示:感光底板用激光光源照射物体,物体因漫反射发出物光波。
波场上没一点的振幅和相位都是空间坐标的函数。
我们用O表示物光波没一点的复振幅与相位。
用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。
这样在记录信息的底板上的总光场是物光与参考光的叠加。
叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为I=(O+R)(O*+R*)=OO*+RR*+OR*+O*R=IO+IR+OR*+O*R(式1)式子中,O*与R*分别是O和R的共轭量;I。
,IR分别为物光波和参考光波独立照射底版时的放光强度。
全息照相实验报告

一、实验目的1. 了解全息照相的基本原理及其应用领域。
2. 掌握全息照相的拍摄方法和实验技术。
3. 通过实验观察全息图的记录和再现过程,理解全息成像的原理。
4. 分析实验结果,探讨全息照相技术的优缺点及其在相关领域的应用前景。
二、实验仪器1. 防震光学平台2. 氦氖激光器3. 高频滤波器4. 扩束透镜(两个)5. 分束器6. 反射镜(两个)7. 全息型干版8. 显影液和定影液9. 暗房设备三、实验原理全息照相是一种利用光的干涉和衍射原理进行三维成像的技术。
其基本原理如下:1. 全息记录:将物体发出的光波(物光波)与参考光波进行干涉,在感光材料(全息干版)上记录下干涉条纹,这些条纹称为全息图。
2. 全息再现:将全息图置于适当的照明条件下,通过衍射原理,使全息图中的干涉条纹重新产生干涉,从而再现物体的三维图像。
四、实验步骤1. 搭建实验装置:按照实验原理图搭建全息照相实验装置,包括光源、分束器、反射镜、扩束透镜、全息干版等。
2. 拍摄全息图:将物体放置于全息干版前,调整光源和反射镜的位置,使物光波和参考光波进行干涉。
使用相机拍摄干涉条纹,得到全息图。
3. 冲洗全息图:将拍摄得到的全息图放入显影液中浸泡,待显影完成后,取出放入定影液中定影。
4. 观察全息再现:将冲洗好的全息图放置于适当的位置,调整光源和反射镜的位置,观察全息再现的物体图像。
五、实验结果与分析1. 全息图的记录:通过实验,成功记录了物体的全息图,观察到的干涉条纹清晰可见。
2. 全息图的再现:调整光源和反射镜的位置后,成功再现了物体的三维图像,观察到的图像具有立体感和真实感。
六、实验总结1. 全息照相技术具有记录物体三维信息的能力,能够再现物体的立体图像,具有广泛的应用前景。
2. 全息照相实验操作较为复杂,需要精确控制实验装置和光源,才能获得高质量的全息图。
3. 全息照相技术在光学、医学、生物、材料等领域具有广泛的应用,如全息存储、全息显示、全息测量等。
全息照相的实验报告

全息照相的实验报告全息照相的实验报告引言:在现代科技的快速发展中,全息照相作为一种新兴的图像记录技术,引起了广泛的关注和研究。
本实验旨在通过实际操作,了解全息照相的原理、方法和应用,并探讨其在科学研究和工程领域中的潜在应用价值。
一、实验目的本次实验的主要目的有以下几点:1. 了解全息照相的基本原理和技术;2. 掌握全息照相的实验操作方法;3. 分析全息照相的优点和局限性;4. 探讨全息照相在现实生活和科学研究中的应用前景。
二、实验装置和步骤1. 实验装置:本次实验所使用的全息照相装置包括激光器、分束镜、物镜、参考光源、全息板等。
2. 实验步骤:(1)调整激光器和参考光源的位置,使其尽可能稳定;(2)将待拍摄的物体放置在全息板前方适当位置,并固定;(3)调整物镜位置,使物体的全息图像清晰可见;(4)打开激光器,使其发出一束单色、相干的激光;(5)用分束镜将激光分为两束,一束为参考光,另一束为物光,分别照射到全息板上;(6)关闭激光器,取下全息板;(7)将全息板放置在光学显影液中显影;(8)用显影液洗净全息板,使其干燥。
三、实验结果与讨论通过实验操作,我们获得了一张全息照片,并对其进行了分析和讨论。
1. 全息照片的特点:全息照片具有以下几个显著特点:(1)全息照片能够记录物体的全息信息,包括形状、光学特性等;(2)全息照片具有立体感,观看时可以从不同角度获得不同的视角;(3)全息照片具有高分辨率和高信息密度,能够保留更多的细节;(4)全息照片可以长时间保存,不易损坏。
2. 全息照相的应用:全息照相在科学研究和工程领域中具有广泛的应用前景,例如:(1)全息显微镜:通过全息照相技术,可以获得具有高分辨率的三维显微图像,有助于生物学和医学研究;(2)全息光学元件:全息照相可以制作出各种光学元件,如全息光栅、全息透镜等,用于光学通信、光学计算和光学存储等领域;(3)全息显示技术:全息照相可以实现真实感和立体感更强的显示效果,有望应用于虚拟现实、增强现实等领域。
全息照相大学物理实验总结6篇

全息照相大学物理实验总结6篇第1篇示例:全息照相是一种利用光的干涉原理来记录和重现三维物体形态的技术。
在物理实验中,全息照相常常被用来展示光的波动性质、干涉现象以及光的衍射特性。
通过对全息照相的实验,我们可以更好地理解光的性质和物理规律。
在进行全息照相实验时,我们首先需要准备一块全息记录板和一个激光光源。
将三维物体放置在激光的光路上,并将全息记录板放置在物体后方适当的位置上。
然后打开激光光源,让光线照射到物体上,经过反射或透射后,光线通过全息记录板并记录下物体的三维信息。
实验中最重要的部分是照相过程,通过调整全息记录板和光源的位置,确保光线正确定位并记录下物体的干涉模式。
照相完成后,我们可以用激光光源再次照射全息记录板,这时会出现全息照相的重现效果,即我们可以看到物体的三维形态在全息图上精确还原。
通过全息照相实验,我们可以观察到光的波动性质。
根据干涉原理,当激光光线照射到物体表面时,光线会发生干涉现象,形成明暗交替的干涉条纹。
这些干涉条纹记录下了物体的表面形态信息,进而被全息记录板保存下来。
在重现过程中,光线再次照射到全息记录板上,干涉条纹会产生叠加效应,使得物体的立体形态得以重现。
全息照相还可以展示光的衍射特性。
当光线通过物体的边缘或孔隙时,会发生衍射现象,产生波纹状的光斑。
这些衍射图样也会被全息记录板记录下来,使得在全息图中可以清晰地看到物体的细微结构和表面特征。
全息照相是一种非常精密和高级的光学技术,通过实验可以更好地理解光的波动性质、干涉现象和衍射特性。
通过对全息照相的学习和实践,我们可以更深入地了解光的行为规律,为日后的光学研究和应用打下坚实的基础。
希望以上内容能对大家有所帮助,谢谢阅读!第2篇示例:全息照相大学物理实验总结全息照相是一种利用光的干涉原理来记录物体三维形状的技术,广泛应用于科学研究、医学成像、艺术创作等领域。
在物理学实验中,全息照相也是一个重要的实验项目,通过全息照相实验可以深入理解光的波动性和干涉原理,提高学生对光学现象的认识和理解。
大学全息摄影实验报告

一、实验名称全息摄影实验二、实验目的1. 了解全息摄影的基本原理及其特点。
2. 学习全息摄影的拍摄方法和实验技术。
3. 了解全息摄影再现物像的性质、观察方法。
三、实验时间2023年10月27日四、实验地点物理与光电工程学院实验室五、实验仪器1. 全息摄影系统2. 全息干版3. 激光器4. 全息图底片5. 物体模型6. 记录仪7. 照相机六、实验原理全息摄影是一种利用光的干涉和衍射原理进行成像的摄影技术。
它将物体光波波前记录在感光材料(全息干版)上,形成全息图。
当用激光照射全息图时,由于衍射原理,全息图上的干涉条纹会重新激发出物体光波的波前,形成与原物体完全相同的三维像。
七、实验步骤1. 将全息干版固定在支架上,确保其平整。
2. 将物体模型放置在激光器前,调整激光器角度,使激光垂直照射物体模型。
3. 打开激光器,观察物体模型在激光照射下的反射光。
4. 将全息干版放在物体模型与激光器之间,调整距离,使激光在干版上形成干涉条纹。
5. 记录干涉条纹的形状和间距。
6. 关闭激光器,将干版放入显影液中,显影。
7. 显影完成后,将干版取出,进行定影处理。
8. 使用照相机拍摄全息图,记录全息图。
9. 将全息图放入激光器后,观察再现的三维像。
八、实验结果与分析1. 干版上形成的干涉条纹清晰,间距均匀,符合全息摄影的要求。
2. 显影和定影过程中,干版上的干涉条纹没有明显变形,表明实验操作规范。
3. 拍摄的全息图清晰,再现的三维像与物体模型基本一致。
4. 在观察再现的三维像时,发现图像存在一定的畸变,可能是由于拍摄距离和角度的影响。
九、实验心得1. 全息摄影实验让我对全息摄影的基本原理有了更深入的了解。
2. 在实验过程中,我掌握了全息摄影的拍摄方法和实验技术。
3. 通过实验,我认识到全息摄影在光学、物理等领域具有广泛的应用前景。
4. 在实验过程中,我注意到了一些细节问题,如激光器角度的调整、干版与物体模型的距离等,这些对实验结果有重要影响。
光全息照相实验实验报告(3篇)

第1篇一、实验目的1. 理解全息照相的基本原理和过程。
2. 掌握全息照相的实验操作技术,包括光源的选择、光路的搭建、全息图的记录与再现。
3. 通过实验观察全息图的特性,如三维立体感、干涉条纹等。
4. 分析实验中可能遇到的问题及其解决方法。
二、实验原理全息照相是一种记录和再现光波波前信息的技术。
它通过将物体反射或散射的光波(物光)与参考光发生干涉,将物光波前的振幅和相位信息以干涉条纹的形式记录在全息干板上。
当用适当的光照射全息图时,可以再现出物体的三维立体像。
全息照相的基本原理如下:1. 干涉原理:当两束相干光波相遇时,它们会相互干涉,形成明暗相间的干涉条纹。
这些条纹包含了光波的振幅和相位信息。
2. 记录原理:将物光和参考光干涉产生的干涉条纹记录在全息干板上,形成全息图。
3. 再现原理:用与参考光相干的光照射全息图,通过衍射和干涉作用,再现出物体的三维立体像。
三、实验仪器与材料1. 全息实验台2. 半导体激光器3. 分束镜(7:3)4. 反射镜5. 扩束镜6. 载物台7. 底片夹8. 被摄物体9. 全息干板10. 曝光定时器11. 显影及定影器材四、实验步骤1. 搭建光路:将激光器、分束镜、反射镜、扩束镜等仪器按照实验要求搭建好光路。
2. 选择被摄物体:将被摄物体放置在载物台上,确保其稳定。
3. 曝光:将全息干板放置在底片夹上,调整其位置,使物光和参考光在干板上形成干涉条纹。
使用曝光定时器控制曝光时间,确保干涉条纹清晰。
4. 显影与定影:将曝光后的全息干板放入显影液和定影液中处理,使干涉条纹固定。
5. 观察与记录:观察全息图上的干涉条纹,记录其特性,如条纹间距、形状等。
五、实验结果与分析1. 干涉条纹:实验中观察到的干涉条纹清晰,表明实验操作正确。
2. 再现效果:用激光照射全息图,可以看到物体的三维立体像,说明全息照相成功。
3. 影响因素:实验中发现,光路稳定性、曝光时间、显影与定影时间等因素都会影响实验结果。
全息照相物理实验报告

全息照相物理实验报告目录1. 实验目的1.1 研究对象2. 实验原理2.1 全息照相的基本原理2.2 全息照相的工作流程3. 实验材料3.1 全息照相设备3.2 感光胶片4. 实验步骤4.1 准备工作4.2 曝光4.3 显影5. 实验结果5.1 观察结果5.2 实验数据分析6. 实验讨论6.1 误差分析6.2 实验改进7. 实验结论实验目的研究对象本实验旨在通过全息照相物理实验,探究全息照相技术的基本原理和工作流程,加深对全息照相的理解。
实验原理全息照相的基本原理全息照相是一种基于干涉原理的照相技术,通过记录物体的全息图像来实现物体的三维再现。
全息照相的工作流程全息照相的工作流程包括记录全息图、显影、复原等步骤,其中记录全息图是实现全息照相的关键步骤。
实验材料全息照相设备本实验所使用的全息照相设备主要包括激光器、分束器、衍射镜、感光胶片等。
感光胶片感光胶片是记录全息图像的重要介质,其特性将直接影响全息照相的效果。
实验步骤准备工作1. 搭建好全息照相设备,并调试好各个部件。
2. 将要拍摄的物体放置在适当位置。
曝光1. 将激光器照射到物体上,产生干涉效应。
2. 记录全息图像,使感光胶片曝光。
显影1. 将感光胶片进行显影处理,使全息图像显现出来。
实验结果观察结果经过显影处理后,可以清晰地观察到记录的全息图像,其中包含了物体的三维信息。
实验数据分析通过分析全息图像的内容和质量,可以评估实验的效果,并获取有关被拍摄物体的信息。
实验讨论误差分析在全息照相过程中,可能会受到环境光干扰、器材问题等因素影响,导致全息图像质量下降。
实验改进为了提高全息照相效果,可以对设备进行优化,增加环境控制等措施,减小误差的影响。
实验结论通过全息照相物理实验,我们深入了解了全息照相技术的基本原理和实际应用,为今后的研究和应用奠定了基础。
全息技术实验报告心得(3篇)

第1篇一、前言全息技术作为一种独特的成像技术,近年来在各个领域得到了广泛的应用。
我有幸参与了全息技术实验,通过亲身体验,我对全息技术的原理、应用和发展有了更深入的了解。
以下是我对全息技术实验的心得体会。
二、实验目的与原理1. 实验目的本次实验旨在让我们掌握全息照相的基本原理,了解全息技术的拍摄方法,观察物像再现现象,提高我们对光学成像技术的认识。
2. 实验原理全息技术是一种利用干涉和衍射原理记录并再现物体光波波前的一种技术。
其基本原理如下:(1)利用参考光和物光干涉,将物体光波波前的振幅和相位信息记录在感光材料上,形成全息图。
(2)再现时,利用全息图上记录的干涉条纹,通过衍射原理再现物体的三维立体像。
三、实验过程1. 实验准备实验前,我们学习了全息照相的基本原理和实验步骤,熟悉了实验仪器和设备。
2. 实验步骤(1)搭建实验装置:包括激光器、分束器、反射镜、扩束镜、载物台、底片夹、被摄物体、全息干板等。
(2)调整光路:使激光束分成两束,一束作为参考光,另一束照射物体,反射后形成物光。
(3)拍摄全息图:将全息干板放置在物光和参考光的路径上,调整曝光时间,记录干涉条纹。
(4)显影和定影:将全息干板放入显影液和定影液中处理,得到全息图。
(5)观察再现像:用激光照射全息图,观察再现的物体三维立体像。
四、实验心得1. 全息技术的原理独特,涉及光学、数学、物理等多个学科,是一门综合性很强的技术。
2. 实验过程中,光路调整是关键。
我们需要掌握调整光路的方法,确保参考光和物光满足干涉条件。
3. 全息图的制作过程较为复杂,包括拍摄、显影、定影等多个步骤。
每一个步骤都要求我们认真操作,以确保实验成功。
4. 全息再现像具有三维立体感,能够直观地展示物体的形态。
这与普通照相有本质区别,是全息技术的独特之处。
5. 全息技术在各个领域具有广泛的应用,如防伪、艺术展示、3D显示等。
通过本次实验,我对全息技术的应用前景充满信心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全息照相实验【目的要求】1.了解全息照相记录和再现的基本原理;2.掌握漫反射全息照片的摄制方法及加深对全息照片特点的理解。
【仪器用具】JQX-1型激光全息实验台,He-Ne激光器,分束镜(50%)一个,扩束镜(40倍)两个,全反射镜两个,被摄物体(如:小瓷猪,小瓷马等)及放置物体的底座,全息干版及底架,暗室技术使用的设备。
【原理】普通照相底片上所记录的图象只反映了物体上各点发光(辐射光或反射光)的强弱变化,也就是只记录了物光的振幅信息,于是,在照相纸上显示的只是物体的二维平面像,丧失了物体的三维特征。
全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。
这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。
全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。
目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。
伽伯也因此而获得了1971年度的诺贝尔物理学奖。
(一)、全息照相与全息照相术在介绍全息照相的基本原理之前,首先看一下全息照相和普通照相有什么区别。
总的来说,全息照相和普通照相的原理完全不同。
普通照相通常是通过照相机物镜成像,在感光底片平面上将物体发出的或它散射的光波(通常称为物光)的强度分布(即振幅分布)记录下来,由于底片上的感光物质只对光的强度有响应,对相位分布不起作用,所以在照相过程中把光波的位相分布这个重要的信息丢失了。
因而,在所得到的照片中,物体的三维特征消失,不再存在视差,改变观察角度时,并不能看到像的不同侧面。
图1 波前干涉实物光路图全息技术则完全不同,由全息术所产生的像是完全逼真的立体像(因为同时记录下了物光的强度分布和位相分布,即全部信息),当以不同的角度观察时,就象观察一个真实的物体一样,能够看到像的不同侧面,也能在不同的距离聚焦。
全息照相在记录物光的相位和强度分布时,利用了光的干涉。
从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。
在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。
具体来说,全息照相包括以下两个过程:1、波前的全息记录利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。
通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。
典型的全息记录装置如图2所示:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。
由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。
干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。
所以全息图不是别的,正是参考光波和物光波干涉图样的记录。
显然,全息照片本身和原来物体没有任何相似之处。
图2 漫反射全息光路图镜分束镜2、衍射再现物光波前的再现利用了光波的衍射,如图3所示。
用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。
这是一个虚像,它具有原始物体的一切特征。
此外还有一个实像,称为共轭像。
应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。
图3 衍射再现图示(二)、全息照相的主要特点和应用全息照片具有许多有趣的特点:1、片上的花纹与被摄物体无任何相似之处,在相干光束的照射下,物体图像却能如实重现。
2、立体感很明显(三维再现性),如某些隐藏在物体背后的东西,只要把头偏移一下,也可以看到。
视差效应很明显。
3、全息图打碎后,只要任取一小片,照样可以用来重现物光波。
犹如通过小窗口观察物体那样,仍能看到物体的全貌。
这是因为全息图上的每一个小的局部都完整地记录了整个物体的信息(每个物点发出的球面光波都照亮整个感光底片,并与参考光波在整个底片上发生干涉,因而整个底片上都留下了这个物点的信息)。
当然,由于受光面积减少,成像光束的强度要相应地减弱;而且由于全息图变小,边缘的衍射效应增强而必然会导致像质的下降。
4、在同一张照片上,可以重叠数个不同的全息图。
在记录时或改变物光与参考光之间的夹角,或改变物体的位置,或改变被摄的物体等等,一一曝光之后再进行显影与定影,再现时能一一重现各个不同的图像。
由于具有这些特点,全息照相术现在已经得到了广泛的应用。
如前面提到的全息信息存储和全息干涉分析就是分别应用了所述的第三和第四个特点。
四、实验条件为了实现全息照相,实验装置必须具备下述的三个基本条件:1、一个好的相干光源。
全息原理在1948年就已提出,但由于没有合适的光源而难以实现。
激光的出现为全息照相提供了一个理想的光源,这是因为激光具有很好的空间相干性和时间相干性。
本实验用多纵模He-Ne 激光器,其波长为632.8 nm ,其相干长度约为20 cm 。
为了保证物光和参考光之间良好的相干性,应尽可能使两光束的光程接近,一般要求光程差不超过4cm ,以使光程差在激光的相干长度内。
2、 一个稳定性较好的防震台。
由于全息底片上所记录的干涉条纹很细,相 当于波长量级,在照相过程中极小的干扰都会引起干涉条纹的模糊,不能形成全息图,因此要求整个光学系统的稳定性良好。
从布拉格法则可知:条纹宽度2sin 2d λθ=⎛⎫ ⎪⎝⎭,由此公式可以估计一下条纹的宽度。
当物光与参考光之间的夹角︒=60θ时,nm 8.632=λ,则m d μ6328.0=。
可见,在记录时条纹或底片移动1 μm ,将不能成功地得到全息图。
因此在记录过程中,光路中各个光学元件(包括光源和被摄物体)都必须牢牢固定在防震台上。
从公式可知,当θ角减小时,d 增加,抗干扰性增强。
但考虑到再现时使衍射光和零级衍射光能分得开一些,θ角要大于300,一般取450左右。
还有适当缩短曝光时间,保持环境安静都是有利于记录的。
3、高分辨率的感光底片。
普通感光底片由于银化合物的颗粒较粗,每毫米只能记录几十至几百条,不能用来记录全息照相的细密干涉条纹,必须采用高分辨率的感光底片(一般采用条纹宽度d 的倒数表示空间频率或感光材料的分辨率)。
我们采用的是天津感光胶片厂出品的GS-I 型红光干版。
其极限分辨率为3000条每毫米。
其实,要获得最终的全息图,充分了解和学习感光底片的显影、定影、冲洗等有关摄影的暗室技术知识也是不可缺少的。
【实验步骤】(一)全息记录1. 调节防震台。
分别对三个低压囊式空气弹簧充气,注意三个气囊充其量要大致相同,然后成等腰三角形放置,气嘴应向外。
然后再把钢板压上。
用水平仪测量钢板的水平度,如果不平,可稍稍放掉一些某个气囊中的空气,直到调平为止。
2. 打开激光器,参照图1、2摆好光路,使光路系统满足下列要求:(1)物光和参考光的光程大致相等;(2)经扩束镜扩展后的参考光应均匀照在整个底片上,被摄物体各部分也应得到较均匀照明。
(3)使两光束在底片处重叠时之间的夹角小于30度为宜。
(4)在底片处物光和参考光的光强比约为1:2 ~ 1:6,具体要视情况而定。
3. 关上照明灯(可开暗绿灯),确定曝光时间,调好定时曝光器。
可以先练习一下快门的使用。
4. 关闭快门挡住激光,将底片从暗室中取出装在底片架上,应注意使乳胶面对着光的入射方向。
静置三分钟后进行曝光。
曝光过程中绝对不准触及防震台,并保持室内安静。
5. 显影及定影。
显影液采用D -19,定影液采用F -5。
它们由实验室提供。
如室温较高,显影后底片应放在5%冰醋酸溶液中停显后再定影。
显影定影温度以20摄氏度最为适宜。
显影时间2~3分钟,定影时间5~10分钟。
定影后的底片应放在清水中冲洗5~10分钟(长期保存的底片定影后要冲洗20分钟以上),晾干。
(二)物像再现将全息照片放回原处,遮住物光,用参考光束照亮全息片,可观察到:1、物的虚像-正1级衍射光,在全息片后,用眼睛直接观察,在原物处有物的虚像。
改变观察角度,看到虚像有何不同?通过有小孔的纸片观察,在不同的部位看到的虚像有无不同?改变参考光束的强弱与远近,看到的情况有何不同?2.物的共轭像-负1级衍射光(在0级光的另一侧),用毛玻璃屏接收物体的共轭像。