SystemView实验报告(全)
Systemview软件仿真实验

Systemview软件仿真实验Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。
SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。
Systemview动态系统仿真软件是为方便大家轻松的利用计算机作为工具,以实现设计和仿真工作。
它特别适合于无线电话(GSM,CDMA,FDMA,TDMA)和无绳电话,寻呼,机和调制解调器与卫星通信(GPS,DBS,LEOS)设计。
能够仿真(c,4x c等)DSP结3x构,进行各种时域和频域分析和谱分析。
对射频/模拟电路(混合器,放大器,RLC电路和运放电路)进行理论分析和失真分析。
它有大量可选择的库允许你可以有选择的增加通讯,逻辑,DSP和RF/模拟功能。
它可以使用熟悉的windows约定和工具与图符一起快速方便地分析复杂的动态系统。
下面大家可以清楚地了解systemview系统如何方便地辅助您的工作。
让我们首先来看一下它的各种窗口:—systemview系统窗systemview系统设计窗口如下:图表1系统窗1 第一行《菜单栏》有几个下拉式菜单,通过这些菜单可以访问重要的systemvie功能包括File, Edit, Preference, View, Notepads, Connections,Complier, System, Tokens, Help.用鼠标选中每个菜单都会下拉显示若干选项。
SystemView抽样定理验证实验

实验四、抽样定理验证实验
一、实验目的
1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。
2、通过实验进一步掌握低通抽样定理的原理。
二、实验内容
用System View建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理。
三、思考题
1、观察仿真电路中各个模块输出波形变化,理解低通抽样定理原理。
2、调节抽样速率的大小(f=80Hz、100Hz、200Hz),观察低通滤波器输出波形变化,理解变化原因。
观察模拟信号与抽样信号的功率谱密度,观察有何变化,说明原因。
四、电路构成
参数设置:
Token0:产生模拟信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率50HZ,相位0度)
Token1:Multiplier
Token2:产生抽样信号(参数设置:Source——Periodic——Pulse Train,幅度1V,频率100Hz,脉冲宽度0.000001,偏移0V,相位0度,抽样速率可调)
Token3:产生一个模拟低通滤波器,滤除高频信号,保留低频信号(参数设置:Operator——Filters/Systems——Linear Sys Filters,选择:Analog——Lowpass ——Butterworth,Lowcuttoff=50Hz,No of Poles=3,截止频率=模拟信号最高频率)。
(SystemView)实习总结

(SystemView)实习总结实习名称 SystemView动态系统仿真软件的学习实习时间专业班级学号姓名成绩教师评语:一、实习目的1.了解仿真技术、电路级设计与仿真、系统级设计与仿真2.学习并掌握SystemView的基本用法3.使用SystemView,进行系统级设计与仿真二、实习概述1.仿真的概述与类型1-1.仿真的基本思想是利用物理的或数学的模型来类比模仿现实过程,以寻求对真实过程的认识。
其遵循的原则是相似性原理。
物理仿真:在物理模型基础上进行的仿真,可分为半物理仿真和全物理仿真。
数学仿真:又称计算机仿真,即通过建立系统(或过程)的数学模型(仿真模型),据此编写仿真程序进行仿真试验,从而掌握实际系统(或过程)在各种内外因素变化下性能的变化规律。
1-2.计算机仿真计算机仿真的三要素:(1)系统:研究的对象(2)模型:系统的抽象(3)计算机:工具与手段计算机仿真的特点:以计算机为实验环境,依赖实际系统的抽象仿真模型;其仿真结果是实验解,而不是纯粹的数学解析或数值分析解;既能展示对实际系统的静态模拟,又能直观表现系统的动态特性。
计算机仿真的意义:替代许多难以或无法实施的实验;解决一般方法难以求解的大型系统问题;降低投资风险、节省研究开发费用;避免实际实验对生命、财产的危害;缩短实验时间、不受时空限制。
1-3.电路仿真电路仿真就是把电子器件和电路模块以数学模型表示,并配合数值分析和图形模拟显示的方法,实现电路的功能模拟和特性分析。
电路仿真的作用:电路性能的模拟测试;优化电路设计;验证电路设计方案的正确性。
电路仿真的意义:真实反映电路特性,方便、快捷、经济地实现电路结构的优化设计,可缩短电子产品的开发周期,降低电子产品的开发费用,提高电子产品的综合性能。
2.电路级设计与仿真电路设计技术是EDA技术的核心和基础。
电路设计可分为数字电路、模拟电路、常规电路和集成电路。
现代EDA与传统的电路CAD相比最主要的区别是比较多地依赖与电路描述语言。
北邮通信原理实验 基于SYSTEMVIEW通信原理实验报告-

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告班级:2013211124专业:信息工程姓名:曹爽成绩:目录实验一:抽样定理 (3一、实验目的 (3二、实验要求 (3三、实验原理 (3四、实验步骤和结果 (3五、实验总结和讨论 (9实验二:验证奈奎斯特第一准则 (10一、实验目的 (10二、实验要求 (10三、实验原理 (10四、实验步骤和结果 (10五、实验总结和讨论 (19实验三:16QAM的调制与解调 (20一、实验目的 (20二、实验要求 (20三、实验原理 (20四、实验步骤和结果 (21五、实验总结和讨论 (33心得体会和实验建议 (34实验一:抽样定理一、实验目的1. 掌握抽样定理。
2. 通过时域频域波形分析系统性能。
二、实验要求改变抽样速率观察信号波形的变化。
三、实验原理一个频率限制在0f 的时间连续信号(m t ,如果以012S T f的间隔进行等间隔均匀抽样,则(m t 将被所得到的抽样值完全还原确定。
四、实验步骤和结果1. 按照图1.4.1所示连接电路,其中三个信号源设置频率值分别为10Hz 、15Hz 、20Hz ,如图1.4.2所示。
图1.4.1 连接框图图1.4.2 信号源设置,其余两个频率值设置分别为15和202.由于三个信号源最高频率为20Hz,根据奈奎斯特抽样定理,最低抽样频率应为40Hz,才能恢复出原信号,所以设置抽样脉冲为40Hz,如图1.4.3。
图1.4.3 抽样脉冲设置3.之后设置低通滤波器,设置数字低通滤波器为巴特沃斯滤波器(其他类型的低通滤波器也可以,影响不大,截止频率设置为信号源最高频率值20Hz,如图1.4.4。
图1.4.4 滤波器设置4.为了仿真效果明显,设置系统时间如图1.4.5所示。
图1.4.5 系统时间设置5.之后开始仿真,此时选择抽样速率恰好等于奈奎斯特抽样频率,仿真结果如图1.4.6所示,图中最上面的Sink4是相加后的输入信号波形,中间的Sink8是输入信号乘以抽样脉冲之后的波形,最下面的Sink9是低通滤波恢复后的波形。
SystemView实验报告(全)

昆明理工大学(SystemView)实验报告实验名称:SystemView实验时间:20013 年 9 月 8日专业:11电信指导教师:文斯姓名:张鉴学号:2 成绩:教师签名:文斯第一章SystemView的安装与操作一实验目的1、了解和熟悉Systemview 软件的基本使用;2、初步学习Systemview软件的图符库,能够构建简单系统。
二实验内容1、熟悉软件的工作界面;2、初步了解Systemview软件的图符库,并设定系统定时窗口;3、设计一些简单系统,观察信号频谱与输出信号波形。
三实验过程及结果1.1试用频率分别为f1=200HZ、f2=2000HZ的两个正弦信号源,合成一调制信号y(t)=5sin(2πf1t)*cos(2πf2t),观察其频谱与输出信号波形。
注意根据信号的频率选择适当的系统采样数率。
画图过程:(1)设置系统定时,单击按钮,设置采样率20000Hz,采样点数512;(2)定义两个幅度分别为1V,5V,频率分别为200Hz,2000Hz的正弦和余弦信号源;(3)拖出乘法器及接收图符;(4)连线;(5)运行并分析单击按钮和。
仿真电路图:波形图如下:频谱图如下:结果分析:频率为200HZ 的信号与频率为2000HZ的信号f2相乘,相当于在频域内卷积,卷积结果为两个频率想加减,实现频谱的搬移,形成1800HZ和2200HZ的信号,因信号最高频率为2000HZ所以采用5000HZ的采样数率。
1.2将一正弦信号与高斯噪声相加后观察输出波形及其频谱。
由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。
画图过程:(1)设置系统定时,单击按钮,设置采样率100Hz,采样点数128;(2)定义一个幅度为1V,频率为100Hz正弦信号源和一个高斯噪声;(3)拖出加法器及接收图符;(4)连线;(5)运行并分析单击按钮和;(6)在分析窗口下单击进入频谱分析窗口,再单击点OK分析频谱。
仿真电路图:波形图如下:频谱图如下:结果分析:原始信号的频率为1000HZ,在加入均值为0方差为1的高斯噪声后,其波形发生严重失真,输出信号的各频率分量上的功率发生不规则变化。
systemview仿真实验报告(云大版)

AM调制与解调仿真实验仿真原理图:
图1:调制信号波形:
图2:载波信号波形:
图3:已调波波形:
图4:解调出来波形:
原理图中符号解释:
这是波形发生器,载波和调制信号均由此产生;
这是功率放大器,放大信号;
这是相乘器,用于载波和调制信号相乘;
这是低通滤波器,用于最后滤除高频量;
这是示波器,显示各点波形
小结:
首先通过相乘器让调制信号(图1)与载波信号(图2)相乘,得到调制信号(图3),在解调端采用相干解调方式,让已调波乘上与载波信号同频同相的本振信号,再通过低通滤波器得到解调信号(图4)。
通过用systemview对AM调制与解调进行仿真,加深了我对于systemview的理解,与实验结果作对比,都是一致的。
SystemView实验报告(全)

昆明理工大学(SystemView)实验报告实验名称:SystemView实验时间:20013 年9 月8日专业:11电信指导教师:文斯姓名:张鉴学号:201111102210 成绩:教师签名:文斯第一章SystemView的安装与操作一实验目的1、了解和熟悉Systemview 软件的基本使用;2、初步学习Systemview软件的图符库,能够构建简单系统。
二实验内容1、熟悉软件的工作界面;2、初步了解Systemview软件的图符库,并设定系统定时窗口;3、设计一些简单系统,观察信号频谱与输出信号波形。
三实验过程及结果1.1试用频率分别为f1=200HZ、f2=2000HZ的两个正弦信号源,合成一调制信号y(t)=5sin(2πf1t)*cos(2πf2t),观察其频谱与输出信号波形。
注意根据信号的频率选择适当的系统采样数率。
画图过程:(1)设置系统定时,单击按钮,设置采样率20000Hz,采样点数512;(2)定义两个幅度分别为1V,5V,频率分别为200Hz,2000Hz的正弦和余弦信号源;(3)拖出乘法器及接收图符;(4)连线;(5)运行并分析单击按钮和。
仿真电路图:波形图如下:频谱图如下:结果分析:频率为200HZ 的信号与频率为2000HZ的信号f2相乘,相当于在频域内卷积,卷积结果为两个频率想加减,实现频谱的搬移,形成1800HZ和2200HZ的信号,因信号最高频率为2000HZ所以采用5000HZ的采样数率。
1.2将一正弦信号与高斯噪声相加后观察输出波形及其频谱。
由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。
画图过程:(1)设置系统定时,单击按钮,设置采样率100Hz,采样点数128;(2)定义一个幅度为1V,频率为100Hz正弦信号源和一个高斯噪声;(3)拖出加法器及接收图符;(4)连线;(5)运行并分析单击按钮和;(6)在分析窗口下单击进入频谱分析窗口,再单击点OK分析频谱。
System View 实验报告

目录实验一模拟调制系统设计分析--振幅调制系统(常规AM) (2)1、实验目的 (2)2、实验原理 (2)3、实验内容和结果 (3)4、实验结果分析 (7)5、实验总结 (8)实验二模拟信号的数字传输系统设计分析 --脉冲振幅调制系统(PAM) (9)1、实验目的 (9)2、实验原理 (9)3、实验内容和结果 (10)4、实验结果分析 (16)5、实验总结 (16)实验三数字载波通信系统设计分析 --二进制频移键控系统(2FSK) (17)1、实验目的 (17)2、实验原理 (17)3、实验内容和结果 (18)4、实验结果分析 (31)5、实验总结 (31)参考书目 (31)实验一模拟调制系统设计分析--振幅调制系统(常规AM)1、实验目的1)回顾AM调制及解调的基本原理2)应用SystemView设计模拟调制仿真系统并分析系统性能3)观察各点波形并分析频谱特性, 改变参数研究其抗噪特性. 进一步了解AM调制的原理和性能2、实验原理1) 调制任意的AM调制信号可以表示为 S am=c(t)m(t),当m(t)= A0+f(t);c(t)=cos(ωc t+θ0),且A0不为0时, 称为常规调制, 其时域表达式是;S am=c(t)m(t)=[A0+f(t)]cos(ωc t+θ0)其中A0是外加的为外加的直流分量, m(t)为调制信号, 可以是确知信号, 也可以是随机信号ωc, θ0分别为载波的角频率、初始相位, 为简便起见, 通常设为0. 常规AM通常用下图所示的系统来实现:图1.12) 解调解调可以用相干解调也可以用包络检波(非相干). 对于相干解调,S am(t)cosωc t=[A0+f(t)]cos2ωc t=[A0+f(t)](1+cos2ωc t)/2 ,因此只需要用一个跟载波信号同频同相的正弦波跟接受信号相乘再通过低通滤波器滤波即可以将原信号解调出来. 而对于非相干解调, 从S am(t)的表达式可以看出只需要对它进行包络检波即可将原信号解调出来. 当然, 用非相干解调时不可过调制, 而相干解调则可以. 这两种方法相比而言, 非相干解调更经济, 设备简单, 而相干解调由于需要跟载波同频同相的信号, 因此设备比较复杂.3、实验内容和结果1) 实验连线图根据AM已调信号的公式S am=c(t)m(t)=A0cosωc t+f(t)cosωc t其中A0≥|f(t)| (采用相干解调不需要这个条件). 通过有噪声的信号后, 接收并利用相干解调方法进行解调, 这样就可以获得如下的原理图. 其中正弦信号源信号(图符7)幅度为1V, 频率为40Hz; 载波信号(图符0)幅度为1V, 频率为100Hz. 解调部分的本振源(图符14)与载波信号源的设置相同, 幅度为1V, 频率为100Hz. 低通滤波器(图符13)的截止频率为45Hz, 保留正弦信号源的频率40Hz, 并滤除了高频的分量, 这样得到的输出信号的幅值是输入信号的1/2.图1.22) 设置首先设置的总体的定时, 如下图所示. 采样的速率要相对高一点, 否则会出现错误. 首先设置高斯噪声为0.图1.33)实验波形图1.4 AM调制45Hz滤波左上和左下分别是正弦载波和输入待调制正弦信号. 右上为已调制信号, 右下为解调信号. 从上图可以看出, 该系统可以正常工作, 解调输出的幅值是输入信号的1/2.图1.5 AM调制45Hz滤波频谱频谱图位置与上面的信号波形图一致. 右上是已调制信号的频谱, 由于直流分量的存在,在信号的频谱中会出现三个尖顶. 分别对应载波频率, 载波频率与原始信号频率之差以及载波频率与原始信号频率之和. 从右下解调信号的频谱可知, 解调结果略有失真, 但是基本与原信号相同.图1.6 AM调制70Hz滤波上图为将低通滤波器(图符13)截止频率改为70Hz时所得的波形图. 可见波形略有失真.4) 抗噪性能分析加入噪声, 噪声电压设置为1V.上图是加入噪声源后的输入信号, 调制信号和解调信号的波形.上图是待调制信号的振幅改为10V后的波形图(相当于提高信噪比).图1.9 AM调制70Hz滤波加噪声上图为将低通滤波器(图符13)截止频率改为70Hz时所得的波形图, 噪声电压1V, 待调制信号振幅1V.图1.10 AM调制70Hz滤波加噪声信号10待调制信号振幅改为10V后的波形图.4、实验结果分析1)频谱分析理论上正弦信号的频谱为单一频率, 但是图中可见, 该正弦的频率是一个范围, 在特定的频率上有一个尖顶. 而已调信号的频谱如前面所说, 是由三个分量构成, 这可由公式推导出:即调制信号与本振信号相成之后会有三个分量. 而经过解调后得到频谱理论上也是单一的频率, 与输入信号的频率相同, 但实际上也只是一个尖顶. 下图是输入频谱与输出频谱的对比, 可见在高斯噪声为1V时, 输入与输出信号的频谱大致相同, 但是由于噪声较大, 输出信号受噪声的影响较大, 故而会出现一些较大的波动.图1.11 待调制信号与解调信号频谱对比2) 抗噪声性能分析图1.4与图1.4表明, 加噪声后解调信号有所失真.图1.4与图1.9表明, 低通滤波器的截止频率越小, 对噪声的抑制作用就越好, 解调信号的失真就越小.图1.7, 图1.8与图1.9, 图1.10表明, 信噪比越大, 解调信号的失真就越小.综上所述, 提高信噪比和合理设置低通滤波器的截止频率可以有效地减小失真现象. 5、实验总结本实验是常规的振幅调制, 较为简单, 实验原理也很熟悉, 按照教材可以很快建立起这个系统并进行波形观察和频谱分析.通过这个实验我熟悉了波形与信号频谱的观察方法与观察技巧, 进一步熟悉了systemview这个软件, 并且复习了AM调制与解调的原理.实验二模拟信号的数字传输系统设计分析 --脉冲振幅调制系统(PAM) 1、实验目的1)回顾PAM调制及解调的基本原理2)应用SystemView设计数字传输系统并分析系统性能3)观察各点波形并分析频谱特性. 进一步了解PAM调制的原理和性能2、实验原理1)脉冲振幅调制(PAM)是利用冲击函数对原始信号进行抽样, 它是一种最基本的模拟脉冲调制, 它往往是模拟信号数字化过程中的必经之路.2)设基带脉冲信号的波形为m(t), 其频谱为M(f); 用这一信号对一个脉冲载波s(t)调幅.s(t)的周期为T s, 其频谱为S(f); 脉冲宽度为τ, 幅度为A; 并设抽样信号m s(t)是m(t)和s(t)的乘积. 则抽样信号m s(t)的频谱就是二者频谱的卷积:其中.图2.1中示出PAM调制过程的波形与频谱.s(t)的频谱包络|S(f)|的包络与sinc函数类似, 并且PAM信号m s(t)的频谱M s(f)包络|M s(f)|的包络也与sinc函数类似. 若s(t)的周期T≤1/2f H, 则采用一个截止频率f H的低通滤波器仍可以分离原模拟信号.图2.1脉冲振幅调制3)实验总体的电路如下图所示, 把输入信号与脉冲信号通过相乘器相乘, 这样在频域就达到了卷积的效果. 这样频谱就会分开, 如图2.1所示, 通过信道传输后再通过低通滤波器, 只要低通滤波器的截止频率f c>f H就可以实现解调.图2.2 PAM原理3、实验内容和结果1) 实验连线图图2.3 PAM调制与解调如上图所示, 图中采用的是高斯信号源(图符12), 其幅值为1V. 两个低通滤波器(图符11与图符4)的截止频率均为150Hz, 而脉冲宽度1μs.增益(图符9)的大小为3. 信道噪声(图符14)先设置为0.1V. 经图符11滤波器输出的是原信号, 经图符2输出的是抽样调制信号, 经图符4输出的是解调信号.2) 观察波形和频谱◆波形: 首先设置脉冲(图符3)的频率为2000Hz.图2.42000Hz抽样波形图图2.4中, 上为高斯噪声经滤波后的输入波形. 中为抽样后的调制信号, 下为滤波解调后的输出波形.◆频谱图:图2.52000Hz抽样频谱图图2.5频谱图顺序与图2.4相同.◆波形和频谱对比图:图2.6 2000Hz采样输入输出波形对比图2.7 2000Hz采样输入输出频谱形对比从图2.6和图2.7可以看出, 输出波形和原波形相比形状基本相似, 只是略有延迟. 从频谱图也可以看出, 当频率小于150Hz(低通滤波器截止频率)时, 频谱图基本可以重合.3) 抽样频率与解调信号性能的关系首先将抽样频率改为500Hz.从图2.5的频谱图中可知, 输入信号的最大频率大约是500Hz(从低通滤波器截止频率150Hz来看, 输入信号的最大频率应该为150Hz, 但是因为滤波器并非理想, 事实上并不是这样, 不过读图可知, 500Hz频率之后的能量已经很小, 可以忽略), 这样抽样频率大于1000Hz时才能使抽样后的频谱信号无混叠.图2.8 500Hz输入输出波形对比图2.9 500Hz输入输出频谱对比图2.8和图2.9表明, 500Hz抽样时已经存在频域混叠. 从波形上来说已经有些失真, 但是大体形状还是符合的; 从频域观察, 这种失真表现的更加明显, 尤其是频率超过低通滤波器的截止频率150Hz之后的频谱图.◆其次将抽样频率改为5000Hz.此时可以认为没有频率混叠.图2.10 5000Hz输入输出波形对比图2.11 5000Hz输入输出频谱对比4) 观察噪声对信道传输的影响将噪声电压改为1V, 抽样频率仍为5000Hz, 观察波形和频谱图对比.图2.12 5000Hz加噪输入输出波形对比图2.13 5000Hz加噪输入输出频谱对比从图2.12可以看出来,噪声加大10倍对解调输出信号的影响很大, 波形失真较为严重. 图2.13频谱图也可以表明这个现象.4、实验结果分析1)当抽样频率是信号频率的两倍或以上的话, 所得的解调信号没有失真. 当抽样频率小于信号频率时, 解调信号有所失真.2)抽样频率较高时, 从频谱图可以看出, 其频率谱线更加贴近原信号的频率谱线, 表明失真较小.3)信噪比较低时噪声对信号的失真程度有很大影响.5、实验总结这次实验相比于上个实验略显复杂, 因此花费的功夫相对多一些. 主要的原因是遗忘了好多实验的原理. 仔细参考教材后, 做起来就简单多了.通过这个实验我更加熟悉了波形与信号频谱的观察方法与观察技巧, 进一步熟悉了systemview这个软件, 并且复习了PAM调制与解调的原理, 对于抽样定理, 那奎斯特频率等也有了深刻的认识.实验三数字载波通信系统设计分析 --二进制频移键控系统(2FSK) 1、实验目的1)回顾2FSK调制及解调的基本原理.2)应用SystemView设计数字载波通信系统并分析系统性能.3)观察各点波形并分析频谱特性, 眼图等, 改变参数研究其抗噪特性, 分析BER曲线.进一步了解2FSK调制与解调的原理和性能.2、实验原理1) 简介数字调频又称移频键控, 简记为FSK, 它是载波频率随数字信号而变化的一种调制方式.利用基带数字信号离散取值特点去键控载波频率以传递信息的一种数字调制技术. 除具有两个符号的二进制频移键控之外, 尚有代表多个符号的多进制频移键控, 简称多频调制. 是一种用多个载波频率承载数字信息的调制类型.2)调制原理最常见的是用两个频率承载二进制1和0的双频FSK系统, 常用模拟调频法和键控法产生2FSK信号. 本实验采用2FSK调制, 利用键控法产生2FSK信号. 其实验原理图如下图图3.1(b)所示, 即通过二进制数据的0值与1值控制开关与哪一路频率信号接通, 这样0值与1值对应不同的频率, 达到调制的目的.图3.1 2FSK信号产生原理图3) 解调原理FSK信号的解调方法有相干解调, 非相干解调等. 在高斯白噪声信道环境下FSK滤波非相干解调性能较相干FSK的性能要差, 但在无线衰落环境下,FSK滤波非相干解调却表现出较好的稳健性. 在这个实验里我们采用的是高斯信道, 故采用相干解调方法.FSK相干解调要求恢复出传号频率与空号频率, 恢复出的载波信号分别与接收的FSK调制信号相乘, 然后通过低通滤波器滤除相乘后得到的高频分量, 保留低频分量. 相干FSK 解调框图如图2所示.图3.2 FSK相干解调原理图本实验采用键控法产生FSK信号, 用相干解调法解调FSK信号.3、实验内容和结果1)实验连线图图3.3 FSK调制与解调原理图中添加了高斯信源(初始噪声电压设为0V), 其中低频正弦信号为10Hz, 高频正弦信号为20Hz, 随机码为2Hz. 上支路带通滤波器为8Hz到12Hz, 下支路带通滤波器为18Hz 到22Hz, 上下支路的低通滤波器分别为10Hz和20Hz. 上下之路相加后经抽样判决得到解调信号.2) 波形与频谱◆波形图图3.4 各点波形观察图3.4中, 左上为输入随机码信号, 左中为2FSK调频信号, 左下为经抽样判决后的解调输出波形. 右侧的波形分别为上边路滤波输出(图符12), 下边路滤波输出(图符13)和上下之路相加输出(图符14). 从此图可见, 抽样判决输出的波形在没有噪声的情况下与原信号基本一致, 只是有一定的延时.◆频谱图图3.5 各点频谱观察图3.6 输入信号和解调信号频谱对比图3.5中, 左上是2FSK原信号频谱, 左下是抽样判决解调输出频谱, 右上是调制输出频谱, 右下是双路相加输出频谱. 从图3.6的频谱对比可知, 无噪声情况下, 解调信号与原信号的频谱基本相似.3)眼图的观察◆原理图图3.7 眼图观察图3.7中, 从图符26经简单设置可以观察到眼图.◆设置图图3.8 时间切片设置在低通滤波器之后, 接收器图符之前加了一个抽样器图符, 用来调整采样率以配合SystemView接收计算器的时间切片绘图功能来观察眼图. 时间切片功能可以把接收计算器在多个时间段内记录到的数据重叠起来显示. 时间段的起始位置和长度都可以由计算器窗口设置. 为满足时间切片周期和码元同步并且能完整地观察到一个眼图的要求,一般将时间切片的长度设置为当前采样率下采样周期的两倍长. 这里将采样频率设置为2Hz, 采样周期为0.5s, 则时间切片应设为1s. 时间切片的设置如图3.8所示, 在接受计算器窗口下选择“Style”项, 再输入“Time Slice”的参数. 确定退出后即可看到眼图.◆眼图和简单分析图3.9 眼图与噪声图3.9中, 上为无噪声情况下的眼图,中为大信噪比情况下的眼图, 下为小信噪比情况下的眼图.上图中, 在没有高斯噪声时, 眼图是清晰简洁的眼形状, 而随着噪声的加大, 可以观察到眼图线条开始变得凌乱, 而且眼图的“眼睛”张开的幅度变小, 即噪声容限下降, 对应输出波形, 就是信号受噪声的影响加大, 愈加不容易分辨.4) 抗噪声性能◆大信噪比图3.10 大信噪比情况下波形图3.10中, 上为输入随机码, 中为解调输出输出波形, 下为双路相加输出(图符14).]图3.11 大信噪比调制信号波形图3.11为调制信号的波形(图符4), 由图中可见, 由于噪声的影响, 调制信号的波形已经很难分辨, 但是经过滤波等操作后还是可以分辨并解调出来的.◆小信噪比图3.12 信噪比调制信号波形图3.12的顺序同图3.10.可见, 信噪比减小时, 信号失真变得明显, 解调信号中有一些无关谱线.◆大信噪比情况下加大低通滤波器的截止频率图3.13 低通截止加倍波形图上图表明, 低通截止频率加倍后, 波形失真更加明显, 解调信号的无关谱线也有很多.5) BER曲线◆实验连线图图3.14 原理图BER分析的原理图如上图所示, 由图可见, 实验在2FSK原理图基础上增加了一些模块,如延迟模块,比特误码率延迟BER模块, 停止接收计算器等, 以下就实验步骤和各部分模块进行分析(此时各个信号的频率和滤波器的参数等也有改动, 但是这与观察BER曲线无关, 故不再详细说明).◆设置-1-设置高斯噪声constant parameter项选择density in 1 ohm, density(W/Hz)选择500e-6, 如下图示.图3.15 高斯噪声设置图-2-设置BER计算器No.Trials为对比试验的比特数, 通常这个取值具有一定的要求. 如果希望测出1e-4的BER, 则至少进行1e+5的对比试验, 这样经过统计得到的BER才比较可信. 同时也必须将系统定时中每个仿真循环的采样数设得足够大. 在这个仿真实验中, 我们设“No.Trials”为10000, 系统定时中的每个循环采样点数为40000, 循环次数设置为10次. 注意, 系统定时中的采样点数必须大于No.Trials的值. 图中“Threshold”值为参考信号与解调信号差异的门限值, 这里设为0.5, 当二者之差大于该值判为错, BER计数器累计1, 小于该值时则判为正确. “Offset”为时间偏移量, 该值决定系统从什么时候开始进行比较试验. 通常无延时置为0, 但是对某些具有滤波器、寄存器延时的系统则需要对原始信号进行精确延时后才能与解调信号进行比较, 因此必须在延时结束后才能进行对照比较. 设置如下.图3.16 BER计算器设置图-3-设置停止计数器连接BER计数器的输出到接收计算器图符时, 必须选择三种输出之一, 其中选择0: BER 为实时BER值, 选择1: Cummulative Avg为BER的累计均值, 选择2: Total Errors为错误总数. 图符25为停止接收计数器图符. 它的功能是当输入超过设定的门限值时, 停止本次仿真, 如果系统设置为多循环则进入下一循环的仿真运算. 这里设置为多次循环,并将系统定时中的No.of System loops设置为10. 在BER仿真原理图中, 还有一个终值接收计算器(图符24), 它与BER计数器的累计均值输出端(输出1)连接, 当仿真进行时, 每一个循环结束时会显示本次循环的BER均值, 该值也是用于计算BER/SNR曲线的基础, 只有利用该计算器的数据才能绘出所需的BER曲线. 设置如下.图3.17 停止计数器设置图-4-输入延迟信号设置由实验的观测图以及上面的理论可知, 输出信号和输入信号相比有一定的延迟, 这个延时可以用以下的方法求得.图3.18 输入延迟时间的计算用输入信号与输出信号之间交叉相关运算来求出其系统群延时. 进入System View的分析窗口, 按分析按钮, 选择分析运算的交叉相关(cross-correlation)功能, 如图3.18左上图所示, 其右边的两栏选择相应的计算器(图符4和图符18). 点击OK即出现左下方的相关计算图形.按工具条上的统计按钮, 出现图3.18右侧的统计窗口, 图中的W7即为所得, 观察可知,最大值出现在1.4e-3, 为相应的时延. 在BER分析原理图中将延时器(图符28)的延时时间修改为1.4e-3.-5-全局变量设置通过上述设置, 一个简单的高斯噪声信道的BER测试模型就基本设置完毕. 但此时并不能绘出完整正确的BER/SNR曲线, 还必须将噪声增益控制与系统循环次数进行全局变量关联, 使信道的信噪比(SNR)由0dB开始逐步加大, 即噪声逐步减小. 每次减小的步长与循环次数有关. 设置全局变量的方法是, 单击主菜单的“Tools”选项, 选择“Global Parameter Links”. 点击All Tokens出现所有选项, 选择增益(Gain), 设置每次信噪比递增1dB, 即噪声减小1dB, 则在相应的定义栏将F[Gi,Vi]的值置为-cl. 这里的cl为系统变量“current system loop”系统循环次数.◆观察BER曲线点击Analysis window, 点击按钮, 出现sink calculator面板, 选择“Style”功能中的“BER Plot”. 设置起始信噪比为1dB, 增量“Increment”值为1(必须与预先设置的增益关联一致). 在选择计算窗口“Select one window”中, 选择刚刚获得的系统累计误码率均值相对时间的关系曲线的窗口, 点击OK, 即可获得所需的BER/SNR曲线如下图.图3.19 BER曲线与标准2FSK的BER曲线对比, 设置图和对比图如下.图3.20 对比观察设置图图3.21由上图可见, 实际所测得的BER曲线呈单调递减趋势, 这与实际理论相符, 但是波形有所失真, 尤其是在信噪比越来越高的情况下.4、实验结果分析1)频谱, 眼图: 加大噪声后波形失真更加严重. 抽样判决输出线条有些地方变粗, 出现无关谱线.2)信噪比下降, 截止频率增加导致波形失真. 抽样判决解调信号中中出现一些额外的谱线.3)BER曲线: 随着信噪比的提高, 误码率单调下降, 但是与理论值有一定的差异. 而随着信噪比的越来越高, 差异似乎更大, 这个是因为在实际的系统中滤波器不是理想的, 像带通滤波器和低通滤波器是巴特沃斯滤波器, 并非理想的矩形, 有一定的波纹和缓冲带,这会附加一些频带外噪声. 同时, 之前获得的延时时间也不是完全准确的, 也会导致一定的附加噪声.5、实验总结本实验与前两个相比难度加大不少, 尤其是考虑到还要观察眼图和BER曲线. 至于观察波形, 频谱和进行误差分析, 因为有前面的经验, 进行起来比较顺利. 对于眼图, 主要的还是设置好参数, 设置好参数后就没有什么难度了. 而BER曲线则复杂得多, 尝试了很多次, 得到的曲线总是随机的而不是单调递减的. 在借鉴了同学的经验之后对原图做了很多改动, 比如进行延时时间的测量, 改小噪声, 更换若干元件等, 最后终于得到一条单调递减的曲线.此次实验使我更加熟悉systemview的使用, 而且复习了2FSK的调制与借条原理, 更重要的是掌握了观察眼图和获得BER曲线的方法, 受益匪浅.参考书目樊昌信.通信原理(第6版).北京:国防工业出版社,2008.李东生,左洪浩. SystemView系统设计及仿真入门与应用[M].北京:电子工业出版社,2002.31。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明理工大学(SystemView)实验报告实验名称:SystemView实验时间:20013 年 9 月 8日专业:11电信指导教师:文斯姓名:张鉴学号:2210 成绩:教师签名:文斯第一章SystemView的安装与操作一实验目的1、!2、了解和熟悉Systemview 软件的基本使用;3、初步学习Systemview软件的图符库,能够构建简单系统。
二实验内容1、熟悉软件的工作界面;2、初步了解Systemview软件的图符库,并设定系统定时窗口;3、设计一些简单系统,观察信号频谱与输出信号波形。
三实验过程及结果1.1试用频率分别为f1=200HZ、f2=2000HZ的两个正弦信号源,合成一调制信号y(t)=5sin(2πf1t)*cos(2πf2t),观察其频谱与输出信号波形。
注意根据信号的频率选择适当的系统采样数率。
画图过程:(1)设置系统定时,单击按钮,设置采样率20000Hz,采样点数512;(2)定义两个幅度分别为1V,5V,频率分别为200Hz,2000Hz的正弦和余弦信号源;((3)拖出乘法器及接收图符;(4)连线;(5)运行并分析单击按钮和。
仿真电路图:波形图如下:频谱图如下:结果分析:频率为200HZ 的信号与频率为2000HZ的信号f2相乘,相当于在频域内卷积,卷积结果为两个频率想加减,实现频谱的搬移,形成1800HZ和2200HZ的信号,因信号最高频率为2000HZ所以采用5000HZ的采样数率。
\将一正弦信号与高斯噪声相加后观察输出波形及其频谱。
由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。
画图过程:(1)设置系统定时,单击按钮,设置采样率100Hz,采样点数128;(2)定义一个幅度为1V,频率为100Hz正弦信号源和一个高斯噪声;(3)拖出加法器及接收图符;(4)连线;(5)运行并分析单击按钮和;(6)在分析窗口下单击进入频谱分析窗口,再单击点OK分析频谱。
仿真电路图:《波形图如下:频谱图如下:结果分析:原始信号的频率为1000HZ,在加入均值为0方差为1的高斯噪声后,其波形发生严重失真,输出信号的各频率分量上的功率发生不规则变化。
第二章System View的图符库、一实验目的1、进一步掌握和学习Systemview 软件的使用;2、通过本章练习熟练掌握软件的图符库,并能够构建简单系统。
二实验内容3、熟悉软件的图符库,并设定系统定时窗口;4、2、设计一些简单系统,观察信号频谱与输出信号波形。
三实验过程及结果在设计区放置两个信号源图符,将其中一个定义为周期正弦波,频率为20KHZ,幅度为5V,相位为π/4;另一个定义为高斯噪声,标准方差为1,均值为0。
将两者通过一个加法器图符连接,同时放置一个实时接收计算器图符,并连接到加法器图符的输出,观察输出波形。
画图过程:(1)设置系统定时,单击按钮,设置采样率20000HZ,采样点数256;(2)定义一个幅度为5V,频率为20000Hz,相位为π/4 的正弦信号源和一个标准方差为1,均值为0的高斯噪声;\(3)拖出加法器及接收图符;(4)连线;(5)运行并分析单击按钮和。
仿真电路图:波形图如下:频谱图如下:结果分析:`频率为20KHZ的原始信号在加入高斯噪声之后,其波形图与频谱图都发生了变化,具体结果如上图所示,由图可得出加噪后的信号各频率分量上的功率发生了变化。
试定义一个线性系统算子,将其设置为一个“Analog”类型的5极点“Butterworth”低通滤波器,截止频率为3000HZ。
定义过程:(1)拖出;(2)双击,再双击到参数设置窗口;(3)点击,进入后点中设并置为;点击OK即可。
定义结果如下:将练习题中定义的高斯噪声通过练习题定义的低通滤波器滤波后与练习题中定义的正弦波相乘,观察输出波形。
画图过程:^(1)设置系统定时,单击按钮,设置采样率200000HZ,采样点数1024;(2)定义一个幅度为5V,频率为20000Hz,相位为45度的正弦信号源和一个标准方差为1,均值为0的高斯噪声;(3)将定义的滤波器再定义一遍拖到设计窗口;(4)拖出加法器及接收图符;(5)连线;(6)运行并分析单击按钮和。
仿真电路图:波形图如下:%频谱图如下:结果分析:高斯噪声信号在经过一个低通滤波器后,输出频率最高位3000HZ的信号,与频率为20KHZ的信号相乘,在频域进行频谱的搬移,输出信号的频率近似为17KHZ~23KHZ。
第三章滤波器与线性系统一实验目的1、掌握滤波器的各种设计方法;2、掌握各种滤波器的参数设计;¥3、掌握系统的根轨迹图和波特图。
二实验内容1、学习线性系统的参数设计;2、学习FIR滤波器和模拟滤波器的设计;3、观察系统的根轨迹图和波特图;4、分别用2种方法设计2个滤波器系统,观察仿真结果。
三实验过程及结果练习:设计一带通滤波器,带宽为180Hz、中心频率为2100Hz,用巴特沃斯和切比契夫两种方式完成。
用练习题的信号作为输入,分别观察其频谱。
本题设置采样率20000HZ,采样点数512。
巴特沃斯带通滤波器仿真原理图:<结果如下:未经巴特沃斯和切比契夫带通滤波器滤波的信号波形未经巴特沃斯切比契夫带通滤波器滤波的信号频谱巴特沃斯带通滤波器滤波后输出信号的波形巴特沃斯带通滤波器滤波后输出信号的频谱结果分析:由频谱图可知,经过巴特沃斯带通滤波器滤波后,频率为1800Hz的信号被滤掉,频率为2100Hz的信号通过。
`切比契夫带通滤波器仿真原理图:结果如下:切比契夫带通滤波器滤波后输出信号的波形切比契夫带通滤波器滤波后输出信号的频谱结果分析:由频谱图可知,经过切比契夫带通滤波器滤波后,频率为1800Hz的信号被滤掉,频率为2100Hz的信号通过。
用用户自定义滤波器图符设计一个对440Hz拨号音产生抑止的带通滤波器,要求在300—500Hz频带内有-52dB的衰减。
通频带为500—2000Hz。
仿真原理图:'结果如下:结果分析:由频谱图可知,经用户自定义滤波器滤波后,在440Hz处的信号被抑止了,通频带为500~2000Hz设计一线性系统滤波器(类型自选),能从100Hz的方波中取出其3倍频的正弦波信号,而对其它分量有抑制作用。
本题设置采样率10000HZ,采样点数256。
仿真电路图:结果如下:结果分析: 提取300Hz正弦波信号时,开始时并不稳定,在稳定以后基本还是符合正弦波波形,由于夹杂着其他频率分量,有一定的误差。
其频谱可以看出,对其他频率的信号有一定的抑制作用。
[综合实验一实验目的1、进一步学习和实使用Systemview软件;2、通过本实验学习用Systemview构建和分析一些简单系统;二实验内容1、完成以下的作业题及课堂练习;2、对作业题及课堂练习进行分析与总结;三实验过程及结果作业题: 1.设计一个能产生正弦波信号,并对其进行平方运算的系统。
仿真电路图:`2.信号运算:实现一正弦信号和一余弦信号的平方和。
3.定义占空比分别为1/2,1/4,1/8的矩形信号,观察波形。
4.脉冲调制:将一个幅度为1V,起始时间为0sec的阶跃信号(Step Fct)与另一个幅度为-1V,起始时间为1sec的阶跃信号相加,观察波形;并将此求和后的信号与另一个幅度为1V,频率为10Hz的正弦信号相乘后观察波形。
5.三角信号:将一个幅度为1V,频率为5Hz,脉宽为,偏置为的矩形信号分别进行延时,积分和微分后观察其波形。
6.正弦信号:将一幅度为1V,频率为10Hz的正弦信号的幅度变为原来的两倍,观察波形。
;7.有一个标准方差为1,均值为0的高斯噪声通过一个5极点,截止频率为3000Hz的Butterworth低通滤波器后与一个幅度为5V,频率为20KHz,相位为45度的正弦信号相乘,用一实时接收器观察其输出。
比较没有经过滤波器的情况。
8.信号的采样与恢复:被采样的模拟信号源是幅度为1V,频率为100Hz的正弦波,抽样脉冲为窄脉宽矩形脉冲(幅度为1V,频率为500Hz,脉宽为1us),抽样器用乘法器代替。
V1uF 课堂练习:1、如图所示电路,已知电压V=100cos1000t,求电容电流。
设电压和电流的参考方向相同。
本题设置采样率10000HZ,采样点数512。
仿真电路图:结果如下:结果分析:先通过微分模块求出电容的电流,再利用电路分析知识求解。
2、用与门﹑或门和非门实现异或门。
本题设置采样率1000HZ,采样点数1024。
仿真电路图:结果如下:结果分析:本题是用逻辑图符进行数字逻辑电路进行仿真。
通过给定信号的1和0,通过一定的逻辑运算实现逻辑门的输出结果。
四实验总结经过几个星期的学习与实践,我SystemView仿真软件的使用有了基本的了解,已掌握最基本的调幅发射与接收系统的工作原理与系统仿真设计,基本能够解决仿真过程中出现的问题,对通信系统中的调制与解调有了更加深入的了解。
另外,通过本次试验我也深深地认识到自身电路方面的知识非常薄弱,所以,从现在起不仅要学好当前的知识,还必须对以前学过的知识查漏补缺,只有这样才能为今后的学习和工作打下坚实的基础。