采油工程 §5酸化

合集下载

酸化技术 PPT课件

酸化技术 PPT课件

2
2 、油井结垢井数逐年增加:
新立油田由于近井地带温度、压力的变化,使油井的近
井地带产生结垢现象。从近年来已发现的检泵结垢井数据看,
从2000年开始截止到2005年底,累计出现结垢井为334口,
这些结垢井的存在,既堵塞油层、使得近井地带导流能力下
降、影响油井产量。
3 、压裂层渗透率下降:
油井压裂后,由于岩层的压实作用和压裂砂破 碎,以及压裂液的残留物使地层渗透率下降,使油 层压后导流能力下降,影响油井产量。
总矿化度 2390 2230
3810
PH 值 8.39
8.33
8.51
水型
NaHCO3 NaHCO3
NaHCO3
7
(1)无机垢来源
A、温度的影响 1000ml水源水在常压、不同温度 下放置24小时后垢的析出量。 B、压力的影响 模拟新立油田地层温度(67℃), 测定了不同压力下注入水中析出 的CaCO3量。 C、结论 随着温度、压力的变化油井结垢, 且大多都集中在近井地带。
14
3、酸化配方体系的选择:
(1) 主体酸液体系的选择 我们分别用浓度为3%、5%、7%、9%、11%、13%、
15%的盐酸对新立油田的三种不同的无机垢样进行溶解, 结果发现酸液浓度在9-13%的盐酸对以无机垢的溶解效果 较好。同时分别用不同类型的有机溶剂对有机垢为主的垢 样进行试验,结果表明以多琏为主的烃类对有机垢溶解效 果较好。
水质分析数据表
检测结果 泵出口 井口注入水 油井采出水
氢氧根 0.00
0.00
0.00
碳酸根 28.8
14.4
57.9
氯离子 588
559
1160
硫酸根 895

《油田酸化工艺》PPT课件_OK

《油田酸化工艺》PPT课件_OK
(22)
参数设计
• 酸液用量:在保证酸化效果的前提下尽量少的向 地层注入酸液:
(23)
酸化准备
配制酸液、循环均匀备用; 紧固酸化井采油树螺栓、电缆穿透器和毛细管死堵; 用地下水大排量洗井,直到有大量地下水返出为止; 停电泵并检测电泵机组绝缘情况; 倒通平台反替或者正替流程;
(24)
酸化准备
普通合采电潜管泵管柱柱
动力电缆 生产油管 套管 自平衡卸油阀 电潜泵总成 套管
(16)
电潜泵Y电型潜泵管“Y”柱管

生产油管

• 采用油管正挤的方

动力电缆

线
井下安全阀


电缆穿透器


电缆封隔器
堵塞器座
电潜泵总成 带孔管 定位密封 生产滑套 防砂管
座落接头 NO-GO
7”套管
(17)
导向器
地层防污染装置与酸化
(39)
酸化施工流程示意图
酸罐
酸罐
酸罐
耐酸泵
数据采集
采油树 泥浆池
低压管汇
三通阀 传感器
泥浆池
泥浆泵
(40)
结束语
本次讲课到此结束,请各位同 事多提宝贵意见,以便今后能 够不断加以完善!
谢谢!!
(41)
• 为防止地层污染,目前二期部分油井采 用地层防污染装置,以防止洗井液进入 地层,造成近井地带产生污染。同时, 也能达到提高洗井效率,缩短修井后正 常产油周期的目的。
(18)
地层防污染装置与酸化
• 地层防污染装置起到单流阀的作用。即地层 产液可通过防污染装置进入油套环形空间, 但环形空间液体不能进入地层。
• 酸化时,在一定压力下,防污染装置可以打 开,建立酸化通道。

采油工程压裂酸化ppt课件

采油工程压裂酸化ppt课件
二、高能气体压裂(High Energy Gas Fracturing) 1.增产(注)机理 造缝作用 热力作用 物理化学作用
增产(注)措施——压裂
二、高能气体压裂(High Energy Gas Fracturing)
1.增产(注)机理
1)造缝作用
井筒附近地层产生多条、多方位随机的径向裂 缝,在地层岩石应力作用下产生剪切错位,使缝 面凹凸处相错,同时裂缝面处岩石产生少量碎屑 也能支撑裂缝,改善了地层的渗流能力。
增产(注)措施——压裂
一、水力压裂(Hydraulic Fracturing)
5.压裂液
2)压裂液的性能要求 滤失少;悬砂能力强;摩阻低;稳定性好
(热稳定性和抗机械剪切);配伍性好;低 残渣;易返排;货源广、便于配制、价格便 宜
增产(注)措施——压裂
一、水力压裂(Hydraulic Fracturing) 5.压裂液
增产(注)措施——酸化
1.酸化的分类
按作用原理分:解堵酸化和深穿透酸化
按施工压力分:基质酸化和压裂酸化
按施工所用酸液体系分:常规酸化、降 阻酸酸化、胶凝酸酸化、胶联酸酸化、泡 沫酸酸化和乳化酸酸化
增产(注)措施盐酸,有时也用醋酸、 甲酸、混合酸和氨基磺酸等,为了满足酸化缓速、提高 酸处理效果的需要,有时还采用胶化酸、乳化酸和泡沫 酸等。
增产(注)措施——压裂
一、水力压裂(Hydraulic Fracturing) 4. 地应力状态对造缝的影响
增产(注)措施——压裂
一、水力压裂(Hydraulic Fracturing)
5.压裂液
影响压裂施工的各种因素中,压裂液的性 能是其中的主要因素之一。 1)压裂液的任务
压裂液是一个总称,根据其在施工过程中 不同阶段的任务不同,可分为前置液、携砂 液和顶替液三种。

采油厂酸化压裂讲义-hyj

采油厂酸化压裂讲义-hyj

较大的有效酸化处理范围。
乳化酸
乳化酸即为油包酸型乳状液,其外相为原油,或在原油中混

合柴油、煤油、汽油等石油馏分,或 为 柴油、煤油等轻馏分
。其内相一般为15~31%浓度的盐酸,或有机酸、土酸等。

油酸乳化液的粘度较高,用油酸乳化液压裂时,能形成较宽
的裂缝,减少了裂缝的面容比,有利于延缓酸岩的反应速度。
铁离子稳定剂
当一定量铁质呈三价铁离子状态(Fe3+)溶于酸时,酸化 后就会发生沉淀,使渗透率降低。铁质来源为(1)管壁锈蚀物, (2)管垢,(3)地层矿物含铁。从作业的观点出发,注水井 中这类问题最常见。 长期以来国内采用的铁离子稳定剂为醋酸、柠檬酸、NTA、 NTS、JCS。90年代初辽河油田钻采工艺研究院开发成功了氨基 三乙酸铁离子稳定剂, 1993年四川石油管理局天然气研究院开 发出由还原剂、糖及其发酵产物在常温下混合而成的铁离子稳 定剂CT1-7,在酸中具有很好的铁离子稳定作用。
第4章、酸




1.储层改造思
路和对策


储层的分析和认识 储层构造、物性,孔、洞缝及断层分布 储层分布(小层、隔层,油、气、水层) 岩性及矿物组成、分布 储层条件(温度、压力) 钻、完井分析 井身结构、完井方式 钻、完井参数 钻、完井液性能 测试和试采情况 生产历史 试采情况(油、水、气产出情况) 储层伤害分析
有 机 酸
2)甲酸和乙酸

甲酸和乙酸都是有机弱酸,反应速度比同浓度的盐酸 要慢几倍到十几倍。
甲酸或乙酸与碳酸盐作用生成的盐类,在水中的溶解

度较小。一般甲酸液的浓度不超过10%;乙酸液的浓 度不超过15%。

油气井增产技术-酸化

油气井增产技术-酸化
25
二、碳酸盐岩储层酸化增产的基本原理
酸压效果:
裂缝有效长度
酸液的滤失特性 酸岩反应速度 裂缝内的流速控制
导流能力 取决于酸液对地层岩石矿物的溶解 量以及不均匀刻蚀的程度
26
二、碳酸盐岩储层酸化增产的基本原理
酸压与水力压裂比较: 相同点:基本原理和目的相同,产生具有一定几何尺
寸和导流能力的裂缝。
粘度 降滤剂
酸浓度 酸类型 岩石类型 酸液流速 酸液用量 闭合应力
28
碳酸盐岩储层酸压改造技术
研究 焦点
寻求 技术
如何提高酸液有效作用距离 如何提高酸蚀裂缝导流能力 降低滤失的物质和技术 延缓反应速度的物质和技术 获得非均匀刻蚀的物质和技术
29
碳酸盐岩储层酸压改造技术
完井方式不同
酸 压 技 ❖常规酸压技术 术
38
碳酸盐岩储层酸压改造技术
(2) 高导流酸压技术
B.闭合酸压技术 • 针对软储层(如白垩岩)以及均质程度较高的储层发展的一种技
术。在实施酸压处理的储层或已经处理的储层中闭合的或部分 闭合的裂缝中注入酸液。 • 特点:降低压力使之大于破裂压力,而又小于闭合压力。 • 优点:注入速度低、排量小、窄缝易形成湍流,溶蚀裂缝壁面, 产生非均匀溶蚀并形成勾槽,有助于提高由于大面积刻蚀后, 因闭合应力而损失的导流能力。
34
释放出盐酸浓度(%)
碳酸盐岩储层酸压改造技术
20
15
17.1
18.9
10
5 0
0
2.9 2.7
10.8 4.5
20 40 60 80 100 120 140 160 温度(℃)
延迟酸体系对岩石刻蚀型态
35
碳酸盐岩储层酸压改造技术 (1)深度酸压技术

采油工培训课件-油水井酸化

采油工培训课件-油水井酸化
缓速剂
1、胶凝剂 2、乳化剂
稳定剂
1、粘土稳定剂 2、ห้องสมุดไป่ตู้离子稳定剂
缓蚀剂
1、多胺缩合物缓蚀剂 2、胺衍生物缓蚀剂 3、复合缓蚀剂 4、苯烯铜缓蚀剂
国外酸液添加剂
表面活性剂
降低表、界面张力,使地层水湿加速返排。
破乳剂
使原油不产生乳化
暂堵剂
酸化时用以桥堵地层孔隙,使酸液转向。 有美国TLC-80、J-2227等
• 油气从地层径向流入井底,越靠近井底,流通面 积越小,流速不断增大,流体所受的阻力也越大, 压力损耗也就越大。 • 一般距井轴10m以内,油井的压力消耗要占全部压 力降的80-90%。
• 因此,通过酸化解除井底污染和堵塞,提高井底 附近的孔渗性,减少压力消耗,在生产压差不变 的情况下,能显著增加油气井产量。
系 列 缓 速 酸
蚀。
氟硼酸水解速度较慢,水解能生 成HF,处理砂岩地层有以下优点: 缓速土酸 1、活性酸可进入较深部位。 HF是由(NH4)2TiOF4缓慢水 2、能稳定粘土微粒防止运移伤害。 解而生成的。适用于粘土含量 1、氟硼酸 3、能抑制粘土的水敏性膨胀。 高的地层,可用于65-120℃甚
低伤害酸酸化工艺技术
主要技术指标和性能特点 基本原理 使用范围
① 可以解除多种有机物、无机物对地层的堵塞,可以 低伤害酸是由强弱酸结合的多组分酸和多功 解除泥浆对地层的污染,疏通油流通道。 ① 用于新井投产解堵酸化。 ② 能酸化添加剂所组成。其中的前置酸可以有效解 反应速度缓慢,活性酸穿透距离可以达到1-1.5米。 除碳酸盐、有机物等伤害,又可以避免氟硅酸钾、 ③ 减少 CaF2、K2SiF6难溶氢氧化物生成,不破坏油层 ② 用于水井解堵增注。 骨架,是钙质含量高、酸敏、水敏性油层解堵的优 鈉的形成。主体酸是磷酸 /氢氟酸体系,可在硅 良酸液。 ③ 用于解除修井、补孔等作业造成的泥 酸盐表面形成覆盖膜从而避免 CaF2的生成。整个 ④ 表面张力33mN/m、界面张力0.5mN/m,有利于残酸的 浆污染。 酸液体系在地层条件下 PH值不大于2,可以有效 返排。 ⑤ 地预防氢氧化物沉淀,多功能添加剂则可以防乳 酸液与油层流体配伍性好,具有防乳化、防酸渣形 ④ 特别适用于碳酸盐、泥质均较高的地 成的性能。 化,防粘土膨胀、助排等作用,所以是一种理想 层解堵酸化。 ⑥ 的油水井增产增注的低伤害酸化液。 酸液具有较好的抑制粘土膨胀的作用。 ⑦ 酸液腐蚀性小,施工运输安全可靠。

油田酸化工艺简介

油田酸化工艺简介
因此砂岩油气藏的酸化处理是通过酸液溶解砂粒之间 的胶结物和部分砂粒,或孔隙中泥质堵塞物,或其它酸 溶性堵塞物,以恢复提高井底附近地层的渗透率。一般 采用盐酸与氢氟酸的混合液(土酸)或其他能够生成氢 氟酸的酸液。
一、酸化工 艺
单击此处可添加副标题
砂岩油藏酸化常用酸液体系 1、根据主体酸液特点分为: (1)常规土酸体系 (2)氟硼酸缓速体系 (3)硝酸粉末体系 (4)磷酸缓速酸体系(低伤害酸) (5)自生土酸体系(缓速酸体系) (6)新氢氟酸体系 (7)泥酸体系 2、根据酸液分散形态的不同又可分为: (1)常规酸液体系 (2)稠化酸体系 (3)乳化酸体系 (4)胶束酸体系 (5)泡沫酸体系
三、酸化施工步骤
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效 果,请言简意赅地阐述您的观点.您的正文已经经简明扼要字字珠 玑,但信息却千丝万缕
三、酸化施工步骤
酸化施工是一项工序繁多的系统工程,每一工序的施工质量将直接影响 到酸化施工的效果。
1、施工准备 (1)井场必须具备摆放酸化施工所需车辆和正常施工的条件。 (2)井场要有容积足够的废液池。废液池必须满足残酸返排量和施工
内径:50mm; 耐温能力:≥150℃; 用途:分层酸化。
二、酸化工艺管柱
2、Y221/K344封隔器组合的任一 层段酸化管柱
优点:可对上下封隔器进行验封及 一趟管柱实现验窜酸化施工。
缺点:酸后无法气举排液和洗井。 适用于不排液酸化施工。
二、酸化工艺管 柱
3、细分酸化管柱
应用范围:
油层细分酸化改造工艺技术 用于厚油层层内分层酸化, 尤其适合于层间差异较大多 层细分酸化。利用该技术解 决了河南油田开发后期,大 厚层内动用程度差的中低渗 透层段的挖潜改造问题。

采油工程压裂酸化

采油工程压裂酸化

第六章——水力压裂( )
2.压裂工艺发展简况 3.裂缝形态
垂直裂缝:裂缝面垂直于水平面 水平裂缝:裂缝面平行于水平面
第六章——水力压裂( )
4.目的 (1)增产增注 (2)封堵大厚层底水 (3)提高油气田工业开采价值(勘 探阶段)
第六章——水力压裂( )
5.增产增注原理 1)改变了地层中流体渗流方式
4. 地应力状态对造缝的影响
增产(注)措施——压 裂
一、水力压裂( )
5.压裂液
影响压裂施工的各种因素中,压裂 液的性能是其中的主要因素之一。
1)压裂液的任务
压裂液是一个总称,根据其在施工 过程中不同阶段的任务不同,可分为前 置液、携砂液和顶替液三种。
增产(注)措施——压 裂
一、水力压裂( )
5.压裂液
增加了高温高压气体的能量利用率;简 化了施工工艺;增加了高速射流的作用过 程 ;可以实现隔层位同时施工。
增产(注)措施——压 二、高能气体压裂(裂 )
2.高能气体压裂技术发展趋势
1)高能气体压裂与射孔复合技术
高能气体压裂与射孔复合的另外一个技 术是超正压射孔技术。
超正压射孔技术 (简称 )是采用井眼压 力远高于使地层产生裂缝所需要的压力 (即 岩层破裂压力 )的条件下进行射孔。
2)压裂液的性能要求
滤失少;悬砂能力强;摩阻低;稳 定性好(热稳定性和抗机械剪切);配 伍性好;低残渣;易返排;货源广、便 于配制、价格便宜
增产(注)措施——压 一、水力压裂(裂)
5.压裂液 3)压裂液的类型
水基压裂液 油基压裂液施——压 一、水力压裂(裂)
6.支撑剂
1)支撑剂的类型
压裂后能否在地层中造出一条高裂 缝导流能力、足够长度的填砂裂缝,直 接关系到压裂后的增产效果合压裂施工 的成败。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.酸化碳酸盐岩储集层是重要的储集层类型之一。

近年来,随着世界各国石油及天然气勘探与开发工作的发展,碳酸盐岩油气田的储量和产量急剧增长。

据统计,到目前为止碳酸盐岩中的油气储量已超过世界油气总储量的一半,而碳酸盐岩油气田的产量则已达总产量的60%以上。

在规模稍大的油气田中,碳酸盐岩油气田的优势更加明显。

在开采的油气田中,就数目而言,仍以砂岩油气田为多,占总数的60%以上,碳酸盐岩油气田占总数不到40%;但就其储量而言,则以碳酸盐岩油气田为多,占总储量近60%以上。

世界上最大的油田,就是沙特阿拉伯的加瓦尔碳酸盐岩油田,其可采储量达107亿吨之多。

此外,碳酸盐岩油气田往往具有极高产能的特点,已发现的高产井几乎都在碳酸盐岩地层,最典型的是伊朗的阿加贾里和加奇萨兰二油田,其单井日产量最高可达8000~13000吨。

由此可见,碳酸盐岩在石油勘探和开发中占有十分重要的地位。

我国除西南地区以外,近年来继华北的任丘油田之后,又相继发现了一些碳酸盐岩油气田,事实证明我国也有非常丰富的碳酸盐岩油气田分布在祖国各地。

对于碳酸盐地层的增产处理或为了解除井底附近地层的堵塞来说,由于酸处理与水力压裂等其它措施相比,具有规模小、施工方便等优越性,因此酸处理和水力压裂一样,是一种经常采用的增产措施。

§5.1酸化增产原理酸化(Acidizing)是通过向地层注入酸液,溶解储层岩石矿物成分及钻井、完井、修井、采油作业过程中造成堵塞储层的物质,改善和提高储层的渗透性能,从而提高油气井产能的增产措施。

一.酸化工艺分类酸化按工艺不同可分为:酸洗、基质酸化及压裂酸化。

1. 酸洗酸洗(acid wash)是一种清除井筒中的酸溶性结垢或疏通射孔孔眼的工艺。

它是将少量酸定点注入预定井段,溶解井壁结垢物或射孔眼堵塞物。

也可通过正反循环使酸不断沿井壁和孔眼流动,以此增大活性酸到井壁面的传递速度,加速溶解过程。

2. 基质酸化基质酸化(Matrix Acidizing)是在低于岩石破裂压力下将酸注入储层孔隙(晶间,孔穴或裂缝),其目的是使酸大体沿径向渗入储层,溶解孔隙空间内的颗粒及堵塞物,通过扩大孔隙空间,消除井筒附近储层堵塞(污染),恢复和提高储层渗透率,从而达到恢复油气井产能和增产的目的。

由于页岩的易碎性,或者为了保持天然液流边界以减少或防止水、气采出而不能冒险进行压裂酸化时,一般最有效的增产措施就是基质酸化。

3. 酸压压裂酸化(也称酸压,Acidfracturing)是在高于储层破裂压力或天然裂缝的闭合压力下,将酸液挤入储层,在储层中形成裂缝,同时酸液与裂缝壁面岩石发生反应,非均匀刻蚀缝壁岩石,形成沟槽状或凹凸不平的刻蚀裂缝,施工结束裂缝不完全闭合,最终形成具有一定几何尺寸和导流能力的人工裂缝,改善油气井的渗流状况,从而使油气井获得增产。

这种工艺一般只应用于碳酸盐岩油气层。

二. 酸化增产原理近井带储层受污染后的表皮系数可用Hawkins(1956)公式表示。

)/ln(1)/(w d d r r K K S -= (5-1)此式常用于评估渗透率污染的相对程度和污染深度。

式(5—1)表明,渗透率污染对表皮系数的影响比污染深度的影响要大得多。

由试井得到的表皮系数基本上是由近井地带的渗透率污染引起的。

1. 基质酸化增产原理基质酸化增产作用主要表现在:(1)酸液挤入孔隙或天然裂缝与其发生反应,溶蚀孔壁或裂缝壁面,增大孔径或扩大裂缝,提高储层的渗流能力;(2)溶蚀孔道或天然裂缝中的堵塞物质,破坏泥浆、水泥及岩石碎屑等堵塞物的结构,疏通流动通道,解除堵塞物的影响,恢复储层原有的渗流能力。

储层流体(油、气、水)从储层径向流入井内时,压力损耗在井底附近呈漏斗状。

在油气井生产中,80%~90%的压力损耗发生在井筒周围l0m 的范围内。

因此,提高井底附近的渗流能力,降低压力损耗,在生产压差不变时,可显著提高油气产量。

如图5—1所示,介于井半径r w 与污染半径r d 之间的污染带渗透率为K d ,介于r d 与泄流半径r e 之间的储层渗透率为K 。

,Muskat(1947)给出了这类井的产能与均值渗透率为K 。

的同类井的产能之比:)/ln()/ln()/ln(/d e d w d w e d o d r r X r r r r X J J += (5-2) 式中X d ——污染带渗透率与与原始渗透率比值(X d =K d /K 。

);J o、J d ——分别为无污染井采油指数和污染井采油指数。

假设r e 为300m ,r w 为0.12m ,污染深度r d -r w 。

值为0~0.33m ,上述关系如图5—2所示。

已知污染半径及渗透率比值,由图5—2中使可计算出消除污染后获得的增产量。

酸化后采油指数与酸化前采油指数之比称为酸化增产倍比,对于污染井:)/ln()/ln()11(1w e w d d o i r r r r X J J -+= (5-3) 对于未污染井:)]/ln(/)/][ln(1)/1[(1)/ln(w e w e i w d o i r r r r X r r J J -+= (5-4) 式中X i ——酸化后的渗透率与原始渗透率的比值(X i =K i /K o );J i ——酸化后的采油指数。

假定严重污染井X d 为5%,表皮系数是26,由式(5—3)计算可知,当酸化解除污染时可使采油指数增加4.5倍。

对未污染井,酸化处理使井筒周围0.4m 半径范围的渗透率增加20倍,即X i 为20,表皮系数从0下降到-1.2左右,通过式(5—4)计算表明,采油指数只能增加21%。

因此,对于受污染的油井,采用解堵酸化措施,可以大大提高油井产能,而对于未受到污染的井,解堵酸化效果不大。

2. 压裂酸化增产原理压裂酸化是碳酸盐岩储层增产措施中应用最广的酸处理工艺。

压裂酸化施工中酸液壁面的非均匀刻蚀是由于岩石的矿物分布和渗透性的不均一性所致。

沿裂缝壁面,有些地方图5—1 封闭油藏污染井示意图 图5—2 储层污染引起的产量下降的矿物极易溶解(如方解石),有些地方则难以被酸所溶解,甚至不溶解(如石膏,砂等)。

易溶解的地方刻蚀得厉害,形成较深的凹坑或沟槽,难溶解的地方则凹坑较浅,不溶解的地方保持原状。

此外渗透率好的壁面易形成较深的凹坑,甚至是酸蚀孔道,从而进一步加重非均匀刻蚀。

酸化施工结束后,由于裂缝壁面凹凸不平,裂缝在许多支撑点的作用下不能完全闭合,最终形成具有一定几何尺寸和导流能力的人工裂缝,大大提高了储层的渗流能力。

与水力压裂技术类似,压裂酸化的增产原理主要表现在:(1)压裂酸化裂缝增大油气向井内渗流的渗流面积,改善油气的流动方式,增大井附近油气层的渗流能力;(2)消除井壁附近的储层污染;(3)沟通远离井筒的高渗透带、储层深部裂缝系统及油气区。

无论是在近井污染带内形成通道,或改变储层中的流型都可获得增产效果。

小酸量处理可消除井筒污染,恢复油气井天然产量,大规模深部酸压处理可使油气井大幅度增产。

酸压工艺不能用于砂岩储层,其原因是砂岩储层的胶结一般比较疏松,酸压可能由于大量溶蚀,致使岩石松散,引起油井过早出砂;酸压可能压破储层边界以及水、气层边界,造成储层能量亏空或过早见水、见气;由于酸沿缝壁均匀溶蚀岩石,不能形成沟槽,酸压后裂缝大部分闭合,形成的裂缝导流能力低,且由于用土酸酸压可能产生大量沉淀物堵塞流道。

因此,砂岩储层一般不能冒险进行酸压,要大幅度提高产能需采用水力压裂措施。

§5.2碳酸盐岩地层的盐酸处理碳酸盐地层的主要矿物成分是方解石CaCO3和白云石CaMg(CO3)2。

其中方解石含量多于50%的称为石灰岩类,白云石含量多于50%的称为白云岩类。

碳酸盐地层的储集空间分为孔隙和裂缝两种类型。

根据孔隙和裂缝在地层中的主次关系又可把碳酸盐油气层分为三类:孔隙性碳酸盐油层,则孔隙是油气的主要储集空间和渗流通道;孔隙——裂缝性碳酸盐油气层,则孔隙是主要储集空间,裂缝是主要渗流通道;裂缝性碳酸盐油气田,则微、小裂缝、溶蚀孔洞是主要储集空间,较大裂缝是主要渗流通道。

碳酸盐地层酸处理,就是要解决孔隙、裂缝中的堵塞物质,或扩大沟通地层原有的孔隙、裂缝提高地层的渗透性能。

一.酸—岩化学反应及生成物状态酸处理中,主要的工作介质是盐酸,盐酸进入地层孔隙或裂缝后,将与裂缝壁面发生化学反应。

现以石灰岩的主要成分——方解石为例,说明盐酸与碳酸盐岩的反应过程。

(一).盐酸与碳酸钙的化学反应由化学反应方程式(5-5)可知:2HCl+CaCO3=CaCl2+ H2O+ CO2(5-5)(73) (100)(111)(18)(44)(320) (438)(486)(79)(193)两个克分子重量的氯化氢与一个克分子重量的碳酸钙反应,生成一个克分子重量的氯化钙、一个克分子重量的水和一个克分子重量的二氧化碳。

由于实际酸处理时,使用的是某一浓度的氯化氢溶液,并不是纯的氯化氢。

为了分析不同浓度的盐酸溶液,溶解碳酸钙的重量关系,现以1米328%浓度的盐酸溶液为例,说明其定量关系。

1米328%浓度的盐酸溶液重1140公斤,其中含氯化氢320公斤,水820公斤。

根据化学反应方程式,不难算出能溶解的碳酸钙和反应后生成物的重量。

即:1米328%的盐酸溶液,可以溶解438公斤碳酸钙,生成486公斤氯化钙、79公斤水和193公斤二氧化碳,而被溶解的438公斤碳酸钙,相当于0.162米3体积。

由此可见,与1米328%浓度的盐酸反应后的地层能增加0.162米3空间,这是很可观的。

表(5-1)列出了不同浓度的盐酸与碳酸钙反应的数量关系。

表5-1. 不同浓度盐酸与碳酸钙作用情况表注:CaCO3的比重按2.71计。

(二).反应生成物的状态从盐酸溶解碳酸盐岩的数量关系来看,渗透性应有明显的增加。

然而酸处理后,地层的渗透性能是否得到改善,仅仅根据盐酸能溶解碳酸盐岩还是不够的。

可以设想,如果反应生成物都沉淀在孔隙或裂缝里,或者即使不沉淀但粘度很大,以致在现有工艺条件下排不出来。

那么,即使岩石被溶解掉了,但对于地层渗透性的改善仍是无济于事的。

因此,图5—3. CaCl 2溶解度曲线 图5—4. CO 2溶解度曲线 必须研究反应生成物的状态和性质。

1. 氯化钙的溶解能力: 根据化学反应方程式(5-5)可知:1米328%浓度的盐酸和碳酸钙反应,生成486公斤的氯化钙。

假设全部溶解于水,则此时氯化钙水溶液的重量浓度X%为: %100%⨯+=氯化钙重量全部水重量氯化钙重量X 全部水重量即为1米328%浓度盐酸溶液中的水重,与反应生成水重之和。

将具体数值代入上式,则得:%35%10048679820486%=⨯++=X 图(5-3)是氯化钙在不同温度下,在水中的溶解度曲线。

相关文档
最新文档