ANSYS_有限元分析_平面薄板
Ansys机械工程应用精华60例第8例 平面问题的求解实例—厚壁圆筒问题

8.3.4
创建实体模型
拾 取 菜 单 Main Menu → Preprocessor → Modeling → Create → Areas → Circle → By Dimensions。弹出如图 8-8 所示的对话框,在“RAD1” 、 “RAD2” 、 “THETA2”文本框中分 别输入 0.1、0.05 和 90,单击“OK”按钮。 77
第8例
平面问题的求解实例——厚壁圆筒问题
“Item, Comp”两个列表中分别选“Stress” 、 “Y-direction SY” ,单击“OK”按钮。 注意:该路径上各节点 X、Y 方向上的应力即径向应力r 和切向应力t。
图 8-15
映射数据对话框
8.3.12
作路径图
拾取菜单 Main Menu→General Postproc→Path Operations→Plot Path Item→On Graph。弹 出如图 8-16 所示的对话框,在列表中选“SR” 、 “ST” ,单击“OK”按钮。
8.3.6
施加约束
拾取菜单 Main Menu→Solution→Define Loads→Apply→Structural→Displacement→On Lines。弹出拾取窗口,拾取面的水平直线边,单击“OK”按钮,弹出如图 8-11 所示的对话 框,在列表中选择“ UY ” ,单击“ Apply”按钮,再次弹出拾取窗口,拾取面的垂直直线 边,单击“OK”按钮,在图 8-11 所示对话框的列表中选择“UX” ,单击“OK”按钮。
76
第8例
平面问题的求解实例——厚壁圆筒问题
图 8-3 单元类型对话框
图 8-4
单元类型库对话框
图 8-5
ANSYS有限元分析法

ANSYS中如何处理奇异性方法在有限元分析中(FEA)中,必须适当地简化实体,我们很少分析包含所有细节的实体。
由于计算条件限制了模型的规模,权宜之下,通常简化螺纹孔、倒角、安装凸台和其它一些并不重要的部分。
因为简化一些无关紧要的细节能使分析求解尽可能地高效,减少占用的RAM、硬盘空间和CPU时间。
但问题是,随着倒角和其它一些细节被简化,在它们邻近区域内计算出的应力值可能不准确。
比如用一个尖角代替倒角,尖角处产生奇异,导致该处有无限大的应力集中因子。
虽然奇异并不防碍ANSYS在该处的应力计算,但计算的结果却不能反映真实应力,由于单元密度的疏密不同,计算的结果可能比实际值过高或过低。
虽然计算的应力值是不准确的,若位移值仍然是好的,且奇异产生的区域并不特别重要,该应力值则可以忽略,分析员可以放心的关注模型的其他部分。
有时,一些模型细节明显可以被简化,有时细节刚开始并不显得重要,但后来结果分析显示该细节是至关重要的,这也是应力分析学科的一个特点。
分析员必须运用他们的经验和直觉来判断设计细节的相关性能,确定它们能否被简化而不产生错误的结果。
我发现经验能使分析员的直觉灵敏,尽管如此,但仍可能出错,有时分析员并不能掌握细节的重要性,当他检查结果时才发现,简化了的细节其实是非常重要的。
象这样的情况,我们有几种选择方案。
一种是在模型中添加该细节重新计算,该方法适应于具有简单边界条件和相对比较简单的几何实体,并且重新分析所需要的时间也不太多。
如果第一次计算需要70个小时,且任务紧迫,那么修改并重新计算整个模型并非是很好的方式,此时应该应用已有的结果来得出精确的应力。
完成该任务的方法之一是子模型法,在包含细节的相关区域建立子模型来计算精确的应力。
在ANSYS在线文档中可获得子模型法,分析向导的“高级分析技术”章节中包含了ANSYS可以完成的各种类型子模型例子,包括“shell-shell”、“shell-solid”和“solid-solid”。
ansys关于薄板、厚板、壳单元的特性区别要点

一、板壳弯曲理论简介1. 板壳分类按板面内特征尺寸与厚度之比划分:当L/h < (5~8) 时为厚板,应采用实体单元。
当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元当L/h > (80~100) 时为薄膜,可采用薄膜单元。
壳类结构按曲率半径与壳厚度之比划分:当R/h >= 20 时为薄壳结构,可选择薄壳单元。
当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。
当R/h <= 6 时为厚壳结构。
上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。
2. 薄板理论的基本假定薄板所受外力有如下三种情况:①外力为作用于中面内的面内荷载。
弹性力学平面应力问题。
②外力为垂直于中面的侧向荷载。
薄板弯曲问题。
③面内荷载与侧向荷载共同作用。
所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。
薄板通常采用Kirchhoff-Love 基本假定:①平行于板中面的各层互不挤压,即σz = 0。
②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。
③中面内各点都无平行于中面的位移。
薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。
3. 中厚板理论的基本假定考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。
该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。
自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。
但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。
厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。
4. 薄壳理论的基本假定也称为Kirchhoff-Love(克希霍夫-勒夫)假定:①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。
有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1
几个ansys经典实例(长见识)

平面问题斜支座的处理如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45º的斜支座,试用一个4节点矩形单元分析该结构的位移场。
(a)平面结构(b)有限元分析模型图5-7 带斜支座的平面结构基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。
(7) 模型加约束左边施加X,Y方向的位移约束ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK以下提供两种方法处理斜支座问题,使用时选择一种方法。
❶采用约束方程来处理斜支座ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1:UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK或者❷采用斜支座的局部坐标来施加位移约束ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OKANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS →选择4号节点ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK命令流;!---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1)!---方法1 end ---!--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束!local,11,0,2,0,0,45 !在4号节点建立局部坐标系!nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同!D,4,UY !在局部坐标下添加位移约束!--- 方法2 end受均匀载荷方形板的有限元分析针对【MATLAB 算例】6.2(1)的问题,即如图6-3(a)所示的正方形薄板四周受均匀荷载的作用,该结构在边界上受正向分布压力,同时在沿对角线轴上受一对集中压力,荷载为。
ansys关于薄板、厚板、壳单元的特性区别

一、板壳弯曲理论简介1. 板壳分类按板面内特征尺寸与厚度之比划分:当L/h < (5~8) 时为厚板,应采用实体单元。
当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元当L/h > (80~100) 时为薄膜,可采用薄膜单元。
壳类结构按曲率半径与壳厚度之比划分:当R/h >= 20 时为薄壳结构,可选择薄壳单元。
当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。
当R/h <= 6 时为厚壳结构。
上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。
2. 薄板理论的基本假定薄板所受外力有如下三种情况:①外力为作用于中面内的面内荷载。
弹性力学平面应力问题。
②外力为垂直于中面的侧向荷载。
薄板弯曲问题。
③面内荷载与侧向荷载共同作用。
所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。
薄板通常采用Kirchhoff-Love 基本假定:①平行于板中面的各层互不挤压,即σz = 0。
②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。
③中面内各点都无平行于中面的位移。
薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。
3. 中厚板理论的基本假定考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。
该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。
自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。
但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。
厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。
4. 薄壳理论的基本假定也称为Kirchhoff-Love(克希霍夫-勒夫)假定:①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。
ansys关于薄板、厚板、壳单元的特性区别

一、板壳弯曲理论简介1. 板壳分类按板面内特征尺寸与厚度之比划分:当L/h < (5~8) 时为厚板,应采用实体单元。
当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元当L/h > (80~100) 时为薄膜,可采用薄膜单元。
壳类结构按曲率半径与壳厚度之比划分:当R/h >= 20 时为薄壳结构,可选择薄壳单元。
当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。
当R/h <= 6 时为厚壳结构。
上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。
2. 薄板理论的基本假定薄板所受外力有如下三种情况:①外力为作用于中面内的面内荷载。
弹性力学平面应力问题。
②外力为垂直于中面的侧向荷载。
薄板弯曲问题。
③面内荷载与侧向荷载共同作用。
所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。
薄板通常采用Kirchhoff-Love 基本假定:①平行于板中面的各层互不挤压,即σz = 0。
②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。
③中面内各点都无平行于中面的位移。
薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。
3. 中厚板理论的基本假定考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。
该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。
自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。
但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。
厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。
4. 薄壳理论的基本假定也称为Kirchhoff-Love(克希霍夫-勒夫)假定:①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。
实验四薄板圆孔的有限元分析

(2) 生成一个圆孔 Main Menu>Preprocessor>Modeling>Create>Areas>Circle>Solid Circle,弹出如图所示的 【Solid Circular Area】对话框。分别在【WP X】、【WP Y】和【Radius】文本框中输入“0”、 “0”、“5”。单击 OK 按钮,生成结果如下左图所示。 (3) 执行面相减操作 Main Menu>Preprocessor>Modeling>Operate>Booleans>Subtract>Areas,弹出一个拾取 框。拾取编号为 A1 的面,单击 OK 按钮。然后拾取编号为 A2 的圆面,单击 OK 按钮。生 成结果如下右图所示。
泊松比=0.3 拉伸载荷:
P=1000Pa 几何参数:
平板厚度 t=0.1m。 单元类型:
Structural Solid Quad 8node 82 1. 定义工作文件名和工作标题 (1) 定义工作文件名 Utility Menu>File>Change Jobname,输入文件名,选择【New log and error files】复选框, 单击 OK 按钮。 (2) 定义工作标题 Utility Menu>File>Change Title,输入工作标题,单击 OK。 (3) 重新显示 Utility Menu>Plot>Replot (4) 关闭三角坐标符号 Utility Menu>PlotCtrls>Window Controls>Window Options,弹出【Windows Options】对
单击 Add 按钮,弹出如图所示的【Library of Element Types】对话框。选择“Structural Solid” 和“Quad 8node 82”选项,单击 OK 按钮,然后单击 Close 按钮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:
P P h
1mm R1mm
10m m 10mm
条件:上图所示为一个承受拉伸的正方形板,长度和宽度均为10mm ,厚度为h 为1mm ,中心圆的半径R 为1mm 。
已知材料属性为弹性模量E=1MPa ,泊松比为0.3,拉伸的均布载荷q =
1N/mm 2。
根据平板结构的对称性,只需分析其中的二分之一即可,简化模型如上右图所示。
二.求解过程:
1 进入ANSYS
程序 →ANSYS12.0→ANSYS Product Launcher →File management →input job name: ZY2→Run
2设置计算类型
ANSYS Main Menu: Preferences →select Structural → OK
3选择单元类型
ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK → Options… →select K3: Plane Strs w/thk →OK →Close 4定义材料参数
ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 1e6, PRXY:0.3 → OK
5定义实常数以及确定平面问题的厚度
ANSYS Main Menu: Preprocessor →Real Constants …→Add/Edit/Delete →Add →Type 1→OK →Real Constant Set No.1,THK:1→OK →Close
6生成几何模型
a 生成平面方板
ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Rectangle →By 2 Corners →WP X:0,WP Y:0,Width:5,Height:5→OK
b 生成圆孔平面
ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Circle →Solid Circle →WPX=0,WPY=0,RADIUS=1→OK
b 生成带孔板
ANSYS Main Menu: Preprocessor →Modeling →Operate →Booleans → Subtract →Areas →点击area1→OK →点击area2→OK
7 网格划分
ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool →(Size Controls) Global: Set →SIZE: 0.5 →OK →iMesh →Pick All → Close
8 模型施加约束
a 分别给左边施加x 和y 方向的约束
ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →
On lines →拾取左侧边→OK →select UX,UY→OK
b 给斜边施加x方向均布载荷
Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取右侧边;OK →V ALUE:-10→OK
9 分析计算
ANSYS Main Menu: Solution →Solve →Current LS →OK→Close
10 结果显示
ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape…→select Def + Undeformed →OK→Contour Plot →Nodal Solu…→select: DOF solution, Displacement vector sum, Def + Undeformed , Stress ,von Mises stress, Def + Undeformed→OK
11显示整体效果
Utility Menu→PlotCtrls→Style>Symmetry Expansion>Periodic/Cyclic Symmetry Expansion →1/4Dihedral Sym→OK
10 退出系统
ANSYS Utility Menu: File→Exit…→Save Everything→OK
三.结果分析:
图1 建模、网格划分、加载图图2 变形图
图3 整体应力。