人教版七年级数学上册第一章有理数全章知识点归纳

合集下载

人教版初一数学知识点总结

人教版初一数学知识点总结

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念 1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔a 、b 互为倒数;若ab=-1 a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a.13.有理数乘方的法则:(1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n ,当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版初中数学全册知识点归纳

人教版初中数学全册知识点归纳

七年级数学〔上〕学问点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的相识初步四个章节的内容.第一章 有理数一. 学问框架二.学问概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a 不肯定是负数,+a 也不肯定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 a+b=0 a 、b 互为相反数.4.肯定值:(1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点分开原点的间隔 ;(2) 肯定值可表示为:或 ;肯定值的问题常常分类探讨;5.有理数比大小:〔1〕正数的肯定值越大,这个数越大;〔2〕正数恒久比0大,负数恒久比0小;〔3〕正数大于一切负数;〔4〕两个负数比大小,肯定值大的反而小;〔5〕数轴上的两个数,右边的数总比左边的数大;〔6〕大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;假设 a ≠0,那么a 的倒数是a 1;假设ab=1 a 、b 互为倒数;假设ab=-1 a 、b 互为负倒数.7. 有理数加法法那么:〔1〕同号两数相加,取一样的符号,并把肯定值相加;〔2〕异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值; 〔3〕一个数及0相加,仍得这个数.8.有理数加法的运算律:〔1〕加法的交换律:a+b=b+a ;〔2〕加法的结合律:〔a+b 〕+c=a+〔b+c 〕.9.有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+〔-b 〕. 10 有理数乘法法那么:〔1〕两数相乘,同号为正,异号为负,并把肯定值相乘;〔2〕任何数同零相乘都得零;〔3〕几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数确定.11 有理数乘法的运算律:〔1〕乘法的交换律:ab=ba;〔2〕乘法的结合律:〔ab〕c=a〔bc〕;〔3〕乘法的安排律:a〔b+c〕=ab+ac .12.有理数除法法那么:除以一个数等于乘以这个数的倒数;留意:零不能做除数,. 13.有理数乘方的法那么:〔1〕正数的任何次幂都是正数;〔2〕负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或(a-b)n=(b-a)n .14.乘方的定义:〔1〕求一样因式积的运算,叫做乘方;〔2〕乘方中,一样的因式叫做底数,一样因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字.18.混合运算法那么:先乘方,后乘除,最终加减.本章内容要求学生正确相识有理数的概念,在实际生活和学习数轴的根底上,理解正负数、相反数、肯定值的意义所在。

(完整版)人教版七年级数学上册知识点归纳

(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

人教版七年级数学上册各章知识点总结

人教版七年级数学上册各章知识点总结

人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。

- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。

- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。

2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。

- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。

3. 有理数的乘除法- 同号两数相乘,积为正数。

- 异号两数相乘,积为负数。

- 有理数相除,分子乘以倒数。

第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。

- 代数式可以通过代入变量的具体数值来求得结果。

2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。

- 不同类项之间无法进行运算。

3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。

第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。

- 小数读法遵循读整数部分,读小数点,读小数部分的规则。

2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。

3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。

- 将分数转为小数,分子除以分母。

第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。

2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。

- 两个数的最小公倍数是能整除这两个数的最小正整数。

3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。

4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。

- 两个数的最大公因数是能够整除这两个数的最大正整数。

第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。

七年级人教版上册数学第一单元有理数知识点整理

七年级人教版上册数学第一单元有理数知识点整理

第一单元知识点总结(有理数)知识点一:有理数的分类1、正数和负数:大于0的数叫做正数,小于0的数叫做负数,0既不是正数也不是负数。

例如 正数:54、+89、1.57、43 负数:-54、43-、-1.2(带负号) 注:正数和负数集合都不能选0;因为0既不是正数也不是负数。

2、整数:像-2 ,-1, 0, 1, 2这个的数称整数,分为正整数,0,负整数。

例如 整数:0,56,-23(要记得选0和负整数)3、分数: 例如:43,23-,0.25,-0.52, 注:有限小数、循环小数可以化为分数,所以也属于分数4、非负整数:即正整数和05、非负数:即正数和06、有理数的分类:⎩⎨⎧分数整数按定义分 ⎝⎛负有理数正有理数按符号分0 (有关分类的文字题常常要考虑“0”是否满足)知识点二:正数和负数1、正数和负数表示具有相反意义的量,例如规定向东为正,向东走m 5,记为m 5+,如果向西走m 5,记为m 5-。

2、 向东前进30m 表示的意义:向东前进30m 向东行进-30m 表示的意义:向西前进30m 知识点三:数轴 数轴需要三要素,即原点,正方向和单位长度知识点四:相反数1、相反数:只有符号不同的两个数叫作互为相反数注:正数的相反数是负数,负数的相反数是正数,0的相反数是02、相反数的性质:如果b a 和互为相反数,则0=+b a ;1-=ba 3、字母的相反数:a 的相反数是a -;b a -的相反数是b a +-; a bc +-的相反数是a b c -+-;知识点五:绝对值 1、在数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作a ,例如:2的绝对值记作:22= ; -3的绝对值记作:33=-注:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;0的绝对值是0因为负数的绝对值是正数,所以一个数的绝对值为0和正数,绝对值表示的是到原点的距离,所以不会为负数。

(3)去绝对值符号情况如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ⎪⎩⎪⎨⎧<-+-=->--=-)0()0(0)0(b a b a b a b a b a b a 若若若知识点六:有理数的加减法1、先去括号;去括号法则()()⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧-=-+-=+-⎩⎨⎧=--=++22222222异号得负:)()(同号得正: 2、同号叠加;取相同的符号;异号抵消,取数字较大的符号:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧=+--=+-⎩⎨⎧-=--=++231213321321异号抵消:同号叠加:知识点七:有理数的乘除法1、两数相乘,同号得正,异号得负,并把绝对值相乘(即数相乘)2、任何数和0相乘,都得03、乘积是1的两个数互为倒数;如果如果b a 和互为倒数,那么:1=ab乘法交换律:ba ab =,乘法结合律:)(bc a abc = ,分配律:ac ab c b a +=+)(知识点八:有理数的乘方1、一般地,a n 个相同的因数相乘,即na a a a a a ⨯⨯⨯⨯⨯⨯...,记作n a ,读作a 的n 次方. 2、对于n a ,其中a 是底数,n 是指数,n a 是幂,例如:()41-,底数是-1,指数是4,幂是4)1(-即1,读作-1的4次方或者-1的4次幂。

人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数大于的数叫做正数。

在正数前面加上负号“-”的数叫做负数。

数既不是正数,也不是负数,是正数与负数的分界。

在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数凡能写成分数形式的数,都是有理数,整数和分数统称有理数。

注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数包括正整数和正分数,负有理数包括负整数和负分数。

3、数轴【重点】用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:1.在直线上任取一个点表示数,这个点叫做原点;2.通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…数轴的三要素:原点、正方向、单位长度。

画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

4、相反数只有符号不同的两个数叫做互为相反数。

a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。

一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。

3、相反数的概念a和-a互为相反数。

一个数的相反数是指,正数的相反数是负数,负数的相反数是正数。

每个数都有它自己的相反数。

4、相反数的运用在任意一个数前面添加“-”号,这个新的数就表示原数的相反数。

如果两个数a和b互为相反数,那么a+b=0;反之,如果a+b=0,则a和b互为相反数。

人教版七年级数学上册第一章有理数及其运算知识点总结大全

人教版七年级数学上册第一章有理数及其运算知识点总结大全

有理数及其运算知识点总结大全一、本章知识概述本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分:主要内容是有理数的有关概念.首先是理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是认识数轴,用数轴上的点表示有理数,借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是理解绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.第二部分:学习有理数的加减法运算,通过探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,利用有理数的加法法则进行有理数的加法运算,并利用运算律简化运算;通过探索有理数减法法则的过程,理解有理数的减法法则,利用有理数的减法法则进行有理数的减法运算;利用有理数的加、减法法则进行包括整数、分数或小数的有理数的加减混合运算,并适当利用运算律简化运算;综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.第三部分:主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力.根据有理数乘法法则进行有理数的乘法运算,运用乘法运算律简化计算;根据有理数除法法则进行有理数的除法运算,求有理数的倒数;根据有理数乘方的意义进行有理数的乘方运算,通过实例感受当底数大于1时,乘方运算结果的快速增长.根据有理数混合运算顺序的规定,进行有理数加、减、乘、除、乘方的混合运算,在运算过程中,合理使用运算律简化运算;使用计算器进行有理数的加、减、乘、除、乘方运算,使用计算器进行实际问题的复杂运算.二、重点知识归纳及讲解1、正数和负数的概念 比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数. 为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略. 对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数.2、有理数的概念及分类 整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和负整数;负整数包括负整数和负分数. 到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为1的分数,但本章中的分数是指不包括分母是1的分数. 通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.3、数轴的概念及画法 规定了原点、正方向和单位长度的直线叫做数轴. 数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念 如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0. 在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义. 一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了. 相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符合不同的两个数是说除了符号不同以外完全相同.5、绝对值的概念 在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则 在数轴上表示的两个数,右边的数总比左边的数大; 正数都大于0,负数都小于0,正数大于一切负数; 两个负数,绝对值大的反而小.8、有理数加法法则在中,a 叫做底数,n 叫做指数,叫做幂.n a na 的读法有两种:n a (1)读作a 的n 次幂.(2)读作a 的n 次方.20、有理数的乘方法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.21、科学记数法把一个大于10的数记成的形式,其中a 的整数位数只有一位,这种记数的方法,叫做科学记10na 数法.22、有理数的混合运算有理数的运算中,加减为一级运算,乘除为二级运算,乘方(及开方——乘方的逆运算,以后将讲到)为三级运算.对于有理数的混合运算,要特别注意运算顺序及正确使用符号法则确定各步运算结果的符号.有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行.如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的.如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理.三、难点知识剖析1、负数的产生及其意义 随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数、负数是由于实际需要产生的,负数也是客观存在的数 . 正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然 .2、数集的概念 把一些数放在一起,就组成一个数的集合,简称数集、所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等 .3、多重符号的化简规律 单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号 . 括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数 . 在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数 .4、两个负有理数的大小比较 两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大 . 两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小 .5、有关绝对值的计算及化简107。

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册第一章有理数全章知识点归纳
一、知识要点
1、正数和负数
(1)、大于0的数叫做正数。

(2)、在正数前面加上负号“-”的数叫做负数。

(3)、数0既不是正数,也不是负数,0是正数与负数的分界。

(4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数
(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.
注意:0即不是正数,也不是负数;-a 不一定是负数,如:-(-2)=4,这个时候的a=-2。

π不是有理数;
(2)有理数的分类:①⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧
⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪

⎩⎪⎪
⎪⎨⎧⎩⎨⎧
⎪⎩
⎪⎨⎧负分数
正分数
分数负整数零
正整数
整数有理数
(3)自然数⇔0和正整数; a >0 ⇔a 是正数;
a <0 ⇔a 是负数;a≥0⇔a 是正数或 0⇔是非负数;
a≤0⇔a 是负数或0⇔a 是非正数.
3、数轴【重点】
(1)、用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:
①在直线上任取一个点表示数0,这个点叫做原点;
②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…
(2)、数轴的三要素:原点、正方向、单位长度。

(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a 个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

4、相反数
(1)、只有符号不同的两个数叫做互为相反数。

①注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;
②非零数的相反数的商为-1;
③相反数的绝对值相等。

(2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。

(3)、a和-a互为相反数。

0的相反数是0,正数的相反数是负数,负数的相反数是正数。

相反数是它本身的数只有0。

(4)、在任意一个数前面添上“-”号,新的数就表示原数的相反数。

(5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=0,则a、b互为相反数。

(6)、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-“的个数为奇数,化简结果为负数。

比如:-2×4×(-3)×(-1)×(-5),首先由4个负号,所以最终结果是正数,再算数字相乘得到120
5、绝对值
(1)、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

(2)、正数的绝对值等于它本身;0的绝对值是0(或者说0的绝对值是它本身,或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的意义是数轴上表示某数的点离开原点的距离;)。

0是绝对值最小的数。

(3)、绝对值可表示为:⎪⎩
⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧≤-≥=)0()0(a a a a a ; (4)、01>⇔=a a a ;01<⇔-=a a a ;
(5)、任何数的绝对值总是非负数(非负数是正数或0),即|a|≥0。

(6)、互为相反数的两个数的绝对值相等。

绝对值相等的两个数可能是互为相反数或者相等。

(7)、有理数比大小:
① 正数比0大,0大于负数,正数大于负数;
② 两个负数比较,绝对值大的反而小;
③ 数轴上的两个数,右边的数总比左边的数大;
(8)、比较两个负数的大小的步骤如下:
① 先求出两个数负数的绝对值;
② 比较两个绝对值的大小;
③ 根据“两个负数,绝对值大的反而小”做出正确的判断。

三、经验之谈:
本节我们要理解很多的名词概念,希望同学们多读几遍。

其次我们还要重点理解正数和负数的关系,以及对绝对值几何意义,还有数轴的画法。

总之本节我们要认真学习。

有理数的运算
一、本节学习指导
有理数的运算和我们小学学习的四则运算很相似,运算规律都一样,不同的是有负数参与,所以相对要复杂一些,本节要多加练习。

本节有配套学习视频。

二、知识要点
1、有理数的加法
(1)、有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加;
②异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
③一个数与0相加,仍得这个数.
(2)、加法计算步骤:先定符号,再算绝对值。

(3)、有理数加法的运算律:
①加法的交换律:a+b=b+a;
②加法的结合律:(a+b)+c=a+(b+c).
(4)、为了计算简便,往往会采取以下方法:
①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。

2、有理数的减法
(1)、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).(有理数减法运算时注意两“变”:①减法变加法;②把减数变为它的相反数.)
注:有理数的减法实质就是把减法变加法。

3、有理数的乘法
(1)、有理数乘法法则:
①两数相乘,同号得正,异号得负,并把绝对值相乘;
②任何数同零相乘都得零;
(2)、一个数同1相乘,结果是原数;一个数同-1相乘,结果是原数的相反数。

(3)、乘积为1的两个数互为倒数;
注意:0没有倒数;若ab=1<====>a、b互为倒数。

(4)、几个不是偶的数相乘,积的符号由负因式的个数决定。

负因数的个数是偶数时,积是正数;负因数的个数是奇数是,积是负数。

(5)、有理数乘法的运算律:
①乘法的交换律:ab=ba;
②乘法的结合律:(ab)c=a(bc);
③乘法的分配律:a(b+c)=ab+ac.
4、有理数的除法
(1)、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

(2)、有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

(3)、乘除混合运算的步骤:①先把除法转化为乘法;②确定积的符号;③运用乘法运算律和乘法法则进行计算得出结果。

5、有理数的乘方
(1)、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a n中,a叫做底数,n叫做指数。

(2)、a n表示的意义是n个a相乘。

如:2³=2×2×2=8
(3)、分数的乘方,在书写时一定要把整个分数用小括号括起来。

如:(1/2)²
(4)、负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来。

(5)、10的几次方,幂的结果中1后面就有几个0。

如:105 =100000
(6)、负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何正整数次幂都是0。

1的任何次幂都是1。

-1的奇数次幂是-1,-1的偶数次幂是1。

6、科学记数法
(1)、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,而且1≤︱a︱<10,n是正整数),使用的是科学计数法。

(2)、用科学记数法表示一个n位整数,其中10的指数是n-1。

例:240 000 000用科学计数法记为2.4×108
7、近似数
(1)、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数。

(2)、精确度:近似数与准确数的接近程度可以用精确度表示。

(3)、利用四舍五入法得到的近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

(4)、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字。

(5)、解题技巧:①近似数精确到哪一位,只需看这个数的最末一位在原数的哪一位。

②当四舍五入到十位或十位以上时,应先用科学记数法表示这个数,再按要求取近似数。

(6)、a×10n中有效数字是指a的有效数字。

7、等于本身的数汇总:
①相反数等于本身的数:0
②倒数等于本身的数:1,-1
③绝对值等于本身的数:正数和0
④平方等于本身的数:0,1
⑤立方等于本身的数:0,1,-1.。

相关文档
最新文档