深水浮式平台的类型

合集下载

深水浮式平台选择方法及其在目标油气田的应用

深水浮式平台选择方法及其在目标油气田的应用
21年 第 4 O1 0卷 第 1 2期 第 7 页 O
oI L FI ELD
石 油 矿 场 机 械 E QUI PMENT
2 1 , 0 1 ) 7 ~ 7 0 14 (2 :0 5


文 章 编 号 : 0 48 2 1 2 0 0 06 1 01 3 2( O1 )1 07 —
i fa i fe d a ie ty a f c st veo o o n o l il nd d r c l f e t hede l pme tofolfe d i a e y, e ibiiy a d e o mi n i i l n s f t r l a lt n c no — c le fce y a fiinc .Th l a e s’ a pl a i u e a n l ncn a t r r s mma ie t o h e fo t r p i ton r l s nd i fue i g f c o s we e u c rz d, hr ug
fe d a e pu o w a d il r tf r r .
Ke r s: e pwa e il fo t r ; ee to y wo d d e t r fe d; l a e s s l c i n
根据应 用经验、 能适应性 , 功 目前 只有 TL 、 P
S a、 EMI P 、 P O 4类 浮 式 平 台 已经 广 泛 应 prS — SF S F
s e s a e ho o he c i eoffo t r r o os d Fi ly,he s e n t o r e t p nd m t dsf r t ho c l a e sa e pr p e . na l t t ps a d me h dsa e us d t he c ie o l to m o e tAf ia’ a g to lfe d。 nd t o uton a le n tvef rt o t ho c fp a f r f rW s rc St r e i i l a he s l i nd a t r a i o he

深水浮式平台的类型

深水浮式平台的类型

深水浮式平台的类型深海有着强大的油气资源储备。

不断涌现的各种新型采油平台技术促进着深海采油技术的高速发展,这些技术概括起来可分为四大类:张力腿式平台(TLP),单筒式平台(SPAR),半潜式平台(SEMI)和浮(船)式生产平台(FPSO)。

在每一大类中,又有很多不同的技术概念。

下面就不同型式的平台使用和特点分别做介绍。

图1:深水平台类型一、深海张力腿平台的发展概况及发展趋势图2:张力腿平台的发展自1954年美国的提出采用倾斜系泊方式的索群固定的海洋平台方案以来,张力腿平台(TLP)经过近50年的发展,已经形成了比较成熟的理论体系。

1984年第一座实用化TLP——Hutton平台在北海建成之后,TLP在生产领域的应用也越来越普遍,逐渐成为了当今世界深海采油领域的两大主力军之一(另一种当前广泛使用的深海采油平台是Spar,将在后面部分中进行详细介绍)。

进入上个世纪90年代之后,TLP平台的发展进一步加速,在生产区域方面,TLP的应用已经从北海和墨西哥湾扩展到了西非沿海;在平台种类方面,TLP已经在原有的传统类型TLP基础上,发展出了Mini-TLP、ETLP等多种新概念张力腿平台,加之不断地采用最新地科学技术,TLP平台在降低成本,提高适应性、稳定性和安全性地道路上取得了长足地进步。

下面将简要介绍张力腿平台的总体结构,然后对1990年之后TLP平台的发展状况进行详细的论述。

1、张力腿平台总体结构简介张力腿平台(TensionLegplatform,简称TLP)是一种典型的顺应式平台,通过数条张力腿与海底相连。

张力腿平台的张力筋腱中具有很大的预张力,这种预张力是由平台本体的剩余浮力提供的。

在这种以预张力形式出现的剩余浮力作用下,张力腿时刻处于受预拉的绷紧状态,从而使得平台本体在平面外的运动(横摇、纵摇、垂荡)近于刚性,而平面内的运动(横荡、纵荡、首摇)则显示出柔性,环境载荷可以通过平面内运动的惯性力而不是结构内力来平衡。

深水浮式生产平台标准体系

深水浮式生产平台标准体系
@%AB+158?^87HOEG;RL7K:NOE7GR8HO^7LS_FMSEAF:ISMLFEI8MR8HO^7LS_FOHGKHLKFQFOMS
C引言
中华人民共和国工业和信息化部等八部委联合 印发的 /海洋工程装备制造业持续健康发展行动计 划 !$%&>@$%$%年"0提出 ,海上油气生产平台等 高端产品国际竞争力明显提高-的目标&在重点任
Copyright©博看网 . All Rights Reserved.
第#期谭越&等深水浮式生产平台标准体系
+=!+
标准号 */-&??%% */-&??%&A& */-&??%&A! */-&??%&A# */-&??%&A= */-&??%&A" */-&??%&A> */-&??%&A' */-&??%&A? */-&??%#A& */-&??%=A!
+-0/-X的标准体系以及外国船级社等先进标准结合我国深水浮式生产平台技术发展现状和工程经
验对比研究国家和行业标准对标准体系中存在的问题进行总结和分析提出深水浮式生产平台标准体系
建设的建议
关键词浮式生产平台半潜式平台标准体系
中图分类号41=!
文献标志码,
!'#,5#15!A8'%)+-V%%$B#'%1R0+#'(,3S1+5/2'(+,S0#'-+1)
/RHL广泛应用于深水油气田(#)&通过底部压载 使浮心高于重心&形成不倒翁的性能&对上部重量

超深水半潜平台比较2解析

超深水半潜平台比较2解析
安全工作载荷:200t,最大提升:12m
2 x 275mT/2 x 75mT
十五、平台控制
十六、救生消防
CO2系统、雨淋系统、火灾探测器、气体探测器
4只封闭式救生艇(75人/只),300个救生衣
救生艇
4×80人
1只
4×80人
救生筏
8×25人
6只
14×25人
十七、通信系统
导航设备、气象设备、无线设备、电话通信设备、满眼钻具组合系统、光和信号设备、报警设备
4×2200HP@7500psi
4*1600kw*7500psi,AC驱动
级联振动筛
6台
处理能力:2200gpm
6台
6台
粗粒级筛
3台
1台
泥浆净化器
与级联振动筛集合在一起
2台
真空除气器
2台
2台
2台
进料泵
8”X6”,100HP,1200gpm
设备自带
泥浆混合/输送泵
8”X6”,125HP,1200gpm
1×1000t
2*1000吨,MH液压驱动顶驱
1000 sh.t
顶驱(辅)
500tons
1×750t
天车及天车补偿
承载(静载荷):907t(主),450t(辅)
1000 sh.t
大钩
承载:907t(主)
450T(辅)
1000 sh.t
套管扶正台
液压控制,工作半径:16m
钻机
2×850KW和1×850KW
辅井架:450t
双井架,主井架:1000吨,辅井架:1000吨
立根盒容量:50000ft钻柱/套管
一个半井架,基座14m×15.85m,64m高

Spar平台(深水浮筒平台)专题

Spar平台(深水浮筒平台)专题

Spar平台(深水浮筒平台)专题Spar平台(深水浮筒平台)属于顺应式平台的范畴,被广泛应用于人类开发深海的事业中,担负着钻探、生产、海上原油处理、石油储藏和装卸等各种工作,成为当今世界深海石油开采的有力工具。

1961年,在北海海域建造的一座浮动式工具平台,主要用于海洋研究工作。

20 世纪70年代,Royal Dutch Shell公司又在北海的中等水深中建造了一座Brent Spar平台,用作石油的储藏和装卸中心。

不过,早期建造的Spar平台结构与当前深海油气开发使用的Spar平台相比还是有区别的。

一般来讲,现代 Spar平台都具有以下几个特征(如右图所示):Spar平台示意图1. 现代Spar平台的主体是单圆柱结构,垂直悬浮于水中,特别适宜于深水作业,在深水环境中运动稳定、安全性良好。

Spar平台主体可分为几个部分,有的部分为全封闭式结构,有的部分为开放式结构,但各部分的横截面都具有相同的直径。

由于主体吃水很深,平台的垂荡和纵荡运动幅度很小,使得Spar平台能够安装刚性的垂直立管系统,承担钻探、生产和油气输出工作。

2. Spar平台的中心处开有中央井,中央井内装有独立的立管浮筒,具有良好的灵活性。

生产立管上与平台上体的控井和生产处理设施相连,向下则一直延伸到海底油井。

Spar平台的油气产品有两种输出方式,它既可以通过柔性输油管、SCR立管或顶紧张式立管将油气产品直接输送到海底管道系统,也可以将石油储藏在 Spar平台的主体中,然后用油轮将石油向岸上运输。

由于采用了缆索系泊系统固定,使得Spar平台十分便于拖航和安装,在原油田开发完后,可以拆除系泊系统,直接转移到下一个工作地点继续使用,特别适宜于在分布面广、出油点较为分散的海洋区域进行石油探采工作。

Spar PlatformsSpar Platforms, moored to the seabed like the TLP, but whereas the TLP has vertical tension tethers the Spar has more conventional mooring lines. Spars have been designed in three configurations: the "conventional" one‐piece cylindrical hull, the "truss spar" where the midsection is composed of truss elements connecting the upper buoyant hull (called a hard tank) with the bottom soft tank containing permanent ballast, and the "cell spar" which is built from multiple vertical cylinders. The Spar may be more economical to build for small and medium sized rigs than the TLP, and has more inherent stability than a TLP since it has a large counterweight at the bottom and does not depend on the mooring to hold it upright. It also has the ability, by use of chain‐jacks attached to the mooring lines, to move horizontally over the oil field.The first Spar was Kerr‐McGee's Neptune, which is a floating production facility anchored in1,930 feet (588 m) in the Gulf of Mexico. Dominion Oil's Devil's Tower is located in 5,610 feet (1,710 m) of water, in the Gulf of Mexico, and is the world's deepest spar. The first (and only) cell spar is Kerr‐McGee's Red Hawk.sparOil and gas exploration in deep water has accelerated the need of ocean structures suitable for these depths. A spar platform is such a compliant floating structure used for deep water for the drilling, production, processing and storage of ocean deposits. This paper gives a review on the technical development of spar platform, including the research on dynamic response, mooring system, fatigue and coupled analysis and the design of heave plate and strake configuration.深海油气资源的大量开发加速了对适应深水环境的平台结构物的需求。

海洋工程各种平台分类与介绍

海洋工程各种平台分类与介绍

海洋工程各种平台分类与介绍下面图文并茂简单介绍下海洋平台分类、钻井船、FPSO SEVAN平台,纯属胡扯,各位看官不要喷我,海洋平台简单可以分为以下2大类(1)固定式平台:导管架式平台重力式平台(2)移动式平台: 坐底式平台自升式平台半潜式平台张力腿式平台牵索塔式平台SPAR平台第一个导管架平台(Jacket),适用于浅近海。

导管架平台可以看作最原始,最直接的将钻井设备与海底连接起来的措施。

钢桩穿过导管打入海底,并由若干根导管组合成导管架。

导管架先在陆地预制好后,拖运到海上安装就位,然后顺着导管打桩,桩是打一节接一节的,最后在桩与导管之间的环形空隙里灌入水泥浆,使桩与导管连成一体固定于海底。

重力式(混凝土)钻井平台: 混凝土重力式平台的底部通常是一个巨大的混凝土基础(沉箱),用三个或四个空心的混凝土立柱支撑着甲板结构,在平台底部的巨大基础中被分隔为许多圆筒型的贮油舱和压载舱,这种平台的重量可达数十万吨,正是依靠自身的巨大重量,平台直接置于海底。

坐底式钻井平台是早期在浅水区域作业的一种移动式钻井平台。

平台分本体与下体(即浮箱),由若干立柱连接平台本体与下体,平台上设置钻井设备、工作场所、储藏与生活舱室等。

钻井前在下体中灌入压载水使之沉底,下体在坐底时支承平台的全部重量,而此时平台本体仍需高出水面,不受波浪冲击。

自升式钻井平台(Jack-up)又称甲板升降式或桩腿式平台。

这种石油钻井装置在浮在水面的平台上装载钻井机械、动力、器材、居住设备以及若干可升降的桩腿,钻井时桩腿着底,平台则沿桩腿升离海面一定高度;移位时平台降至水面,桩腿升起,平台就像驳船,可由拖轮把它拖移到新的井位。

半潜式平台(Semi)是大部分浮体沉没于水中的一种小水线面的移动式平台,它从坐底式平台演变而来,由平台本体、立柱和下体或浮箱组成。

此外,在下体与下体、立柱与立柱、立柱与平台本体之间还有一些支撑与斜撑连接,在下体问的连接支撑一般都设在下体的上方,这样,当平台移位时,可使它位于水线之上,以减小阻力;平台上设有钻井机械设备、器材和生活舱室等,供钻井工作用。

浮式海洋结构物研究现状及发展趋势

浮式海洋结构物研究现状及发展趋势

浮式海洋结构物研究现状及发展趋势浮式海洋结构物研究现状及发展趋势1、浮式海洋结构物发展现状为迎接深水钻井和采油的挑战,先后发展了几大类适合于深水作业的浮式结构物:FPSO、半潜式平台、张力腿平台和Spar等.1.1 浮(船)式生产储运装置(FPSO)FPSO目前已在边际油田和油田的早期生产系统中得到广泛应用,该项技术已比较成熟,这种结构形式可提供多种用途,其主要特点为:(1)浮船型,机动性、运移性和结构稳定性好,具有在深水域中较大的抗风浪能力,允许在各种气候下装卸油,并且运输方便;(2)建筑成本低,建设周期短,是一种相对廉价的结构.典型的新建FPSO需2.5a左右,与张力腿平台(见图3)相比,后者至少要长1.5~2a[1].因而对于许多石油公司来说,FPSO具有较好的经济效益;(3)工作面开阔,可在甲板上装卸油,具有大产量的油、气、水生产处理能力以及较大的原油储存能力;(4)FPSO 本身没有钻井能力,但它与海底完井系统组合时,可具有适应深水采油的能力.它可以与导管架井口平台相组合,也可以与自升式钻采平台相组合成为完整的海上采油、油气处理和储油、卸油系统,但更主要的适用于深水采油与海底采油系统(包括海底采油树、海底注水井井口、海底管汇、立管管汇和控制系统等)组合成为完整的深水采油、油气处理、原油储存和卸油系统.从被统计的67艘FPSO中,工作水深主要在100~500m,但随着采油工作水深的增加,大于500m工作水深的在逐年增加.例如,由RoarRamde和挪威海事技术公司(MaritimeTentech) 联合设计,由韩国现代重工施工建造的“RamformBanff”号工作水深达1524m.另一艘工作水深达2000m的FPSO,由Harland&Wolff 全部负责设计和建造,由巴西国家石油公司(Petrobras)承担操作,用于与深海海底完井系统相结合的采油.1.2 半潜式平台(立柱稳定式平台)半潜式平台,又称立柱稳定式平台(见图2),是浮式海洋平台中的一种常见类型.它一般由平台本体,立柱和下体或浮箱组成.此外,在下体与下体,立柱与立柱,立柱与平台之间还有一些支撑与斜撑连接.平台上设有钻井机械设备,器材和生活舱室等,供钻井工作用.平台本体高出水面一定高度,以免波浪的冲击;下体或浮箱提供主要浮力,沉没于水下以减少波浪的扰动力;平台本体与下体之间连接的立柱,具有小水线面的剖面,立柱与立柱之间相隔适当距离,以保证平台的稳性,所以又有立柱稳定式之称. 半潜式平台在深水区域作业,需依靠定位设备,深水锚泊系统,需要大量链条,靠供应船运载.半潜式平台由于下体都浸没在水中,其横摇与纵摇的幅值都很小,有较大影响的是垂荡运动.由于半潜式平台在波浪上的运动响应较小,在海洋工程中,不仅可用于钻井,其他如生产平台、铺管船、供应船和海上起重船等都可采用,这也是它优于FPSO的主要方面.同时,能应用于多井口海底井和较大范围内卫星井的采油是它的另一优点.另外,半潜式平台作为生产平台使用时,可使开发者于钻探出石油之后即可迅速转入采油,特别适用于深水下储量较小的石油储层(例如4~5a内采完).随着海洋开发逐渐由浅水向深水发展,它的应用将会日渐增多,诸如建立离岸较远的海上工厂、海上电站等,这对防止内陆和沿海的环境污染将有很大的好处. 目前,世界上共有半潜式生产平台40艘左右.在已知工作水深的35艘中,工作水深小于200m共9艘,占25.7%;工作水深200~500m的共15艘,占42.9%;工作水深500~1000m的共9艘,占25.7%;工作水深大于1000m的共2艘,占5.7%.由此可见,工作水深200~500m的比率接近半数[2].2艘最深水域采油的半潜式平台均属于巴西国家石油公司所有,其一是“巴油18”号,工作水深达1000m,抗风能力可适应风速为99kn,浪高≤32m,其锚泊为8点张紧锚,由锚链与钢缆相结合.其二是“巴油36”号,工作水深达1372m,是目前世界上半潜式平台最深的工作水深,可适应巴西近海百年一遇的海况条件,为16辐射张紧锚,锚为桩腿式,锚缆由高强度聚脂绳缆与锚链相结合.从半潜式平台适应风暴能力已知的21艘中,几乎均能适应百年一遇的海况条件,适应风速普遍为100~120kn,个别最低者也在85kn以上,适应浪高普遍为16~32m,个别最低者也在12m以上.半潜式平台具有适应深水采油的能力,用途广泛,其发展仅次于FPSO.1.3 张力腿平台(TLP)张力腿平台可视为半潜式平台的派生分支,是一种顺应式结构,它是由一个刚性的半潜式平台与一个弹性的系泊系统结合成的一种较新型平台.它是用系索(或钢管)将浮于海面的浮动平台与沉浸海底的锚锭(或基座)联结起来的,通过收紧系索,使浮体的吃水比静平衡浮态时大, 导致浮力大于浮体重力,该剩余浮力由系索的张力予以平衡.由于张力腿平台具有垂直系泊的某些特征,也称它为垂直锚泊式平台.为了能在较小的张力变化范围内就能限制平台的运动,平台本体采用半潜式.因此,也有称它为张紧浮力平台.从结构上一般可将其划分为5部分:平台上体、立柱、下体(含沉箱)、张力腿、锚固基础[3].通常又将平台上体、立柱、下体三部分并称为平台本体,事实上张力腿平台可以被看作一个带有张力系泊系统的半潜式平台. 张力腿平台受风、浪作用时,平台随缆索弹性变形而产生微量运动,就像有桩腿插入海底一样,所以称为张力腿.平台系统在垂直方向(垂荡、纵摇和横摇)是刚性的,在水平方向(纵荡、横荡和首摇)是柔性的,即在非张力控制方向可有一定的漂移.垂荡自然周期一般在2~4s,远低于海况的特征周期,而纵荡自然周期在100~200s,远大于海况的特征周期,从而可避免在波浪中的共振现象.又由于平台控制方向的张力对非控制方向的运动有牵制,漂移和摇摆比一般半潜式平台小,具有波浪中运动性能好、抗恶劣环境作用能力强等优点.与固定式平台相比,除了造价低以外,其抗震能力显著优于固定式,且张力腿平台在必要时还可移位,至多损失锚基和钢索,故适用于开采周期稍短的油田,在该油田开采完后,可将其移至不同地点重新安装,大大提高了其通用性和经济性,但目前还没有重新安装的经验.它的主要缺点是对重量变化敏感,有效载荷的调节有限制,在大波高的状况下,甲板载荷过大容易产生系泊索松弛现象.由于张力腿平台没有储油能力,主要用于生产平台,不能用作储油装置,在没有管路设施的地方,需要浮式油轮.1.4 独柱式平台(Spar) 为降低成本,弥补张力腿平台的不足,有人提出了Spar(见图4)的概念.最近20年在挪威海湾和墨西哥海湾都在进行大量的设计和研究工作,目前Spar已能适用于水深达3000m的环境较恶劣的海域. Spar的主体是一个大直径、大吃水的具有规则外形的浮式柱状结构.它的水线结构是敞开的,基本不提供浮力,以减少垂荡;水线以下部分为密封空心体,以提供浮力,又称浮力舱,舱底部一般装水压载或用以储油(柱内可储油也成为Spar的显著优点);中部有锚链呈悬链线状锚泊于海底,底部有系缆或系留管锚固于海底.Spar可适用于深达3000m的海域.它的优点是在波浪中比较稳定,适应于任意角度的风浪,能显著减少垂荡反应;造价低,便于安装,可以重复使用,因而对边际油田比较适用;并且它的柱体内部可储油;它的大吃水形成对立管的良好保护,同时其运动响应对水深变化不敏感,更适宜于在深水海域应用[4].Spar 兼具了张力腿平台和浮(船)式生产储运装置的特点,优越性显著.被认为是除了张力腿平台之外的另一种适用于深水的海洋平台,有望在今后得到推广.2、浮式海洋结构物的发展趋势2.13 浮式海洋结构物的发展趋势随着浮式结构物在深海油气开发中的广泛应用,不少专家和学者对深海平台开展了大量的研究,开发了几种新型系统.为提高安全性和操作性,FPSO和半潜式平台都得到了很大的发展.新式的半潜式平台的设计努力减小垂荡运动以提高其性能.老式FPSO大部分由VLCC油轮改装,近年来FPSO大多根据规范制造,这些新的FPSO船体呈长方形状以增加可用体积.杨建民等对储油量为32万t,吃水为19.49m的软刚臂塔式大型FPSO在浅水中(水深为21~26m)的运动性能进行了试验研究,其结果表明:(1)FPSO的升沉、横摇和纵摇的波频运动随着水深的减少而减少,但在水平面的低频运动则增大;(2)即使水深降低至21m 的所谓“极浅水”,FPSO也极少碰底;(3)在“极浅水”状态,FPSO 并没有随流速的增加而下沉(无吸底现象).这一研究对采用大型FPSO开发浅水油田很有意义.FPSO在今后的发展中,工作水深在逐年增加,抗风暴能力不断增强(如“RamformBanff”号工作水深达1524m,抗风暴能力为百年一遇,浪高可达16.76m);原油储存能力增大,船的主尺度和载重吨位提高;原油、生产水的处理能力增强;立管型式增多,除大量使用挠性立管外,也可采用刚性立管;锚泊能力和动力配置能力增大,动力定位技术也有了新的发展,适应海况能力增强.FPSO因其在整体技术上的完善和提高,体现出优越的性能特点和较高的商业价值,从其近年来的发展趋势来看,在深海采油领域中,FPSO正迎来其广泛应用的黄金时期,它已成为浮式结构物中极具发展潜力的一种结构形式,前景极为广阔.Spar的研究重点已转移到保持其运动性能而不增加主体与水线上部重量之比上.提出了一种复合概念——TrussSpar.TrussSpar上部的圆柱箱体提供浮力,12~16根悬链线锚链保持位置,圆柱箱体下面桁架结构提供纵向强度.TrussSpar是一种典型的复合结构,由于其重量轻、易移动和可重复使用的特点,可用于深水的边际油田.TLP作为一种深海理想的平台型式得到了广泛的重视和发展,主要表现在以下几个方面:工作水深在逐年增加;建造成本得到降低,进一步提高了其经济性;注重多次重复实用性,对可移动性的研究取得了很大进展;由单一的井口生产平台向深海工作站发展,在所在地区形成一个以TLP 为核心的油气开发群.根据我国海上油田的分布特点,100~500m左右中等水深范围是一个很有开发潜力的海域,因此对浅海和中深水海域的浮式结构物的研究成为我国海洋工程的研究重点.针对边际油田和偏远油田,李润培等提出了一种适应中深水海域的轻型张力腿平台(miniTLP)概念.这种平台的浮力舱置于水下,浮力舱上竖立的空间刚架支承着平台甲板及其上的设备,浮力舱下端用四组钢管张力腿平台固定于海底,张力腿与海底的连接用筒型基础(吸力锚).对这种平台在100~500m水深范围内的理论与试验研究表明:这种平台有良好的运动性能,完全能满足海上油气开发对平台运动的要求.以120m 水深为例,其造价低于相应的导管架平台,随着水深的增加,其在造价上的优势更加明显.这种平台将是中深水边际油田开发的一种很有潜力的平台形式.由于TLP在整体技术上更加完善和提高,在今后的发展中向着更深、更广阔的水域进军,必将超出海洋油气开发的范畴而应用到更广泛的领域中去.4 结束语我国的海岸线辽阔,海洋资源十分丰富,浮式海洋工程结构物对于我国新世界海洋开发具有十分重要的战略意义。

浮式海洋平台-半潜式平台

浮式海洋平台-半潜式平台
自重比。 通常大多数海上工程用钢的屈服强度(R)为250-350Mpa,目 前,高强度钢( R=700MPa )已用作平台的重要结构,甚至使用 R=827Mpa的钢材,这些钢材不仅强度高,而且韧性好,可焊性好。。
浮 式 海 洋 平 台 设 计 原 理
半潜式平台简介
技术特点
适应更恶劣海域
半潜式平台仅少数立柱暴露在波浪环境中,抗风暴能力强,稳
浮 式 海 洋 平 台 设 计 原 理
半潜式平台简介
未来研究热点
高效钻井作业系统
如何配置多井口作业系统、钻杆处理系统、动力锚道等,以提
高工作效率,是研制半潜式钻井平台的关键。
升沉补偿系统
在深海钻井作业过程中为了保持钻头恒定接触井底,必须设法 补偿平台由于风浪作用而产生的升沉落差,早期的方法是使用伸 缩钻杆,目前主要采用天车补偿、游车补偿以及绞车补偿等方法。
1966年Sedco135 半潜式平台为12 根立柱,为Friede&Goldman 公
司设计; 这个时期的平台结构布局大多不合理,设备自动化程度低。
浮 式 海 洋 平 台 设 计 原 理
半潜式平台简介
发展阶段
第二代半潜式钻井平台:
20 世 纪 70 年 代 , 出 现 了 以 Bulford Dolphin, Ocean Baroness, Noble Therald Martin等为代表的第2代半潜式钻井 平 台 , 这 类 平 台 作 业 水 深 180 ~ 600 m , 钻 深 能 力 以 6096m(20000英尺) 和7620m(25000 英尺)两种为主,采用锚 泊定位,设备操作自动化程度不高。
建造过程(在陆地上建造)
甲板建造
浮 式 海 洋 平 台 设 计 原 理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深水浮式平台的类型深海有着强大的油气资源储备。

不断涌现的各种新型采油平台技术促进着深海采油技术的高速发展,这些技术概括起来可分为四大类:张力腿式平台(TLP),单筒式平台(SPAR),半潜式平台(SEMI)和浮(船)式生产平台(FPSO)。

在每一大类中,又有很多不同的技术概念。

下面就不同型式的平台使用和特点分别做介绍。

图1:深水平台类型一、深海张力腿平台的发展概况及发展趋势图2:张力腿平台的发展自1954年美国的P.D.Marsh提出采用倾斜系泊方式的索群固定的海洋平台方案以来,张力腿平台(TLP)经过近50年的发展,已经形成了比较成熟的理论体系。

1984年第一座实用化TLP——Hutton平台在北海建成之后,TLP在生产领域的应用也越来越普遍,逐渐成为了当今世界深海采油领域的两大主力军之一(另一种当前广泛使用的深海采油平台是Spar,将在后面部分中进行详细介绍)。

进入上个世纪90年代之后,TLP平台的发展进一步加速,在生产区域方面,TLP的应用已经从北海和墨西哥湾扩展到了西非沿海;在平台种类方面,TLP已经在原有的传统类型TLP基础上,发展出了Mini-TLP、ETLP等多种新概念张力腿平台,加之不断地采用最新地科学技术,TLP平台在降低成本,提高适应性、稳定性和安全性地道路上取得了长足地进步。

下面将简要介绍张力腿平台的总体结构,然后对1990年之后TLP平台的发展状况进行详细的论述。

1、张力腿平台总体结构简介张力腿平台(Tension Leg platform,简称TLP)是一种典型的顺应式平台,通过数条张力腿与海底相连。

张力腿平台的张力筋腱中具有很大的预张力,这种预张力是由平台本体的剩余浮力提供的。

在这种以预张力形式出现的剩余浮力作用下,张力腿时刻处于受预拉的绷紧状态,从而使得平台本体在平面外的运动(横摇、纵摇、垂荡)近于刚性,而平面内的运动(横荡、纵荡、首摇)则显示出柔性,环境载荷可以通过平面内运动的惯性力而不是结构内力来平衡。

张力腿平台在各个自由度上的运动固有周期都远离常见的海洋能量集中频带,一座典型的TLP,其垂荡运动的固有周期为2~4s,而纵横荡运动的固有周期为100~200s,这就避免了调和共振的发生,显示出良好的稳定性。

一座典型的TLP平台的总体结构,一般都是矩形或三角形,平台上体位于水面以上,通过4根或是3根立柱连接下体,立柱为圆柱型结构,主要作用是提供给平台本体必要的结构刚度。

平台的浮力由位于水面之下的沉体浮箱提供,浮箱首尾与各立柱相接,形成环状结构。

张力腿与立柱呈一一对应,每条张力腿由1~4根张力筋腱组成,上端固定在平台本体上,下端与海底基座模板相连,或是直接连接在桩基顶端。

有时候为了增加平台系统的侧向刚度,还会安装斜线系泊索系统,作为垂直张力腿系统的辅助。

海底基础将平台固定入位主要有桩基或是吸力式基础两种形式。

中央井位于平台上体,可以支持干树系统,生产立管通过中井上与生产设备相接,下与海底油井相接。

张力腿平台的总体结构特点,使它在深海作业具有运动性能好,抗恶劣环境作用能力强,造价低等优点,并且便于移位,可以重复利用,通用性好。

因此,张力腿平台作为优秀的深海平台,受到世界多国的高度重视,我国也将TLP技术列入第二个“863”计划,其发展一直朝气蓬勃。

2、典型TLP的发展状况由于TLP在经济上和技术上的优势,使其获得了很大的发展。

从1990年至今,世界上相继建成8座典型的TLP,不断地打破水深和吨位的世界记录,并时有创新成果出现。

1992年,挪威的saga石油公司在snorre油田第一期的开发工作中采用了TLP的设计方案,这是北海区域第一座真正意义上的深水平台结构,它引进了一种简单经济的海洋浮式结构的锚固基础——裙式重力基础,第一次使用轻质紧密型混凝土(LWA)制造大型吸力锚。

Snorre平台的混凝土基座是一种新型经济的海洋浮体结构的基础形式,比较适合软粘海底地基。

Snorre TLP的产权后来划归Norsk Hydro石油公司所有。

1995年,世界上第一座混凝土结构的张力腿平台在北海的Heidrun油田建成,平台的业主是挪威的conoco石油公司,Heidrun TLP与其它的TLP相比,具有较大的吃水,平台本体和张力腿系统通过结构调整减小了一阶波浪运动,但是,结构高阶的Ringing较其他TLP显著。

从1994年到2001年,shell石油公司在墨西哥湾相继制造了五座典型的TLP,分别是Auger、Mars、Ram/Powell、Ursa和Brutus,1999年,BP建成了该公司第一座TLP,这6座张力腿平台接连打破了深海采油平台工作水深的世界记录,其中Ursa的水深更是突破了千米大关,达到了1158米,证明了TLP设计在深水海域的实用性,从吨位上来看,Ursa 是世界上目前最大的TLP,排水量达到了97500t。

典型TLP是目前世界上数量最多的TLP,占了平台总数的一半以上,并正朝着更大水深,更大吨位的方向发展。

表1是典型TLP的资料。

表1 1990年后建成的典型TLP基本情况目前张力腿平台有以下几种结构型式:传统式(Conventional TLP),海之星(Seastar TLP),MOSES (MOSES TLP),伸张式(ETLP),其中后三种型式相对于传统式可统称为新型TLP。

新型TLP的出现,使得TLP在安装技术及成本等方面有所改善,从而提高了TLP在各种浮式钻采平台的竞争力。

3、Mini-TLP的发展状况Mini-TLP不是一种简单缩小化的传统类型TLP,它通过对平台上体、立柱以及张力腿系统进行结构上的改进,从而达到优化各项参数、以更小吨位获得更大载荷的目标,以MODEC公司生产的Prince Mini-TLP为例,该平台的排水量为13200t,上体重量5500t,而一座具有相近上体重量的传统类型TLP,如Jolliet TLP,其排水量却有16700t。

Mini-TLP 体积小、造价低、灵活性好、受环境载荷的影响也较传统TLP要小,非常适合于开发中小油田。

自1998年7月世界上第一座Mini-TLP—British Borneo公司的Morpeth TLP安装下水以来,Mini-TLP在生产领域的应用发展迅速,截至2003年初,全世界已有在役的Mini-TLP 五座,另有一座在建,发展前景良好。

目前,世界上出现的Mini-TLP主要由两大系列,一是由Atlantia公司设计的SeaStar TLP系列,一是由MODEC公司设计的MOSES TLP 系列,下文就将分别对这两种类型的Mini-TLP进行详细论述。

(1) SeaStar Mini-TLPSeaStar TLP是最早按照Mini-TLP概念设计的张力腿平台(图1),该TLP由Atlantia 公司设计,经过多年的生产实践,SeaStar TLP被公认为一种安全、可靠、稳定、经济的张力腿平台形式,并已形成了一个完整的系列,其技术已经趋于成熟。

SeaStar TLP打破了传统类型TLP的三柱或四柱式结构,其主体采用了一种非常独特的单柱式设计,这一圆柱体结构称为中央柱,中央柱穿过水平面,上端支撑平台甲板,在接近下端的部位,通过内部的水平和斜拉牵条连接固定了三根矩形截面的浮筒,各浮筒向外延伸成悬臂梁结构,彼此在水面上的夹角为120度,形成辐射状,且浮筒的末端截面逐渐缩小。

这三根浮筒向平台本体提供浮力,并且在外端与张力腿系统连接。

中央柱中开有中央井,立管系统通过中央井与上体管道相连。

图3 SeaStar 总体图从1998年至2001年,世界在役和在建的SeaStar TLP共4座,全部位于墨西哥湾,这些平台都采用海底桩基连接,上体都为双层甲板结构,其中Typhoon和Matterhorn是干树平台。

规模最大的一座是在建的TotalFinaElf公司的Matterhorn TLP,这座TLP的体积和吨位都是其他三座TLP的近两倍,排水量达到23950t,设计吃水32m,干舷高度21m,中央柱主体有效半径(从浮筒顶端至中央柱中心的距离)54.6m,中央井直径11m,浮筒在中央柱处高度为12.8m,在外端的高度则减少为8.2m。

平台上体为双层甲板结构,甲板高度18.9m,装有一座1000马力的钻塔。

张力筋腱共6根,每两根为一组与悬臂式浮筒外端相连,张力筋腱直径0.81m,下端连接海底桩基,桩基共6根,每根直径2.44m、长126.5,总重2100t。

这四座TLP 的资料见表2所列。

张力腿直径高度数 量Morpeth British Borneo 5181998Ewing Bank block 921400017.734.16Allegheny British Borneo 10061999Green Canyon Block 254400017.734.16Typhoon Chevron 6402001Green Canyon Block 237500017.734.16MatterhornTotalFinaElf8602004Mississippi Canyon Block 2431100025.638.16表2 SeaStar 系列TLP 资料列表(重量单位:t 尺度单位:m )名称公司水深建成年份位置有效载荷中央柱(2) MOSES Mini-TLPMOSES TLP 是“最小化深海水面设备结构”(Minimum Offshore Surface Equipment Structure )的简称,这种Mini-TLP 是由MODEC 公司开发的,设计排水量3000~50000t ,工作水深范围300~1800m 。

MOSES TLP (图4)继承了传统张力腿平台的各项主要优点(例如小垂荡运动等),同时又通过对传统TLP 的结构进行全方位的改进,创新性地利用各项现有技术,从而以更低的造价提供与传统TLP 同样的功能,其主要改进点在于以下各方面:图4 MOSES TLP 总体图在平台主体方面。

MOSES TLP 平台浮力主要由一个位于平台基座中的浮舱来提供,平台基座位于水面以下深处,形状比较特殊,基座中央为一正方体,每条棱沿对角线向外延伸形成悬臂梁结构,悬臂梁纵截面为三角形,张力腿系统就连接在这四条悬臂梁的顶端,这种特殊的平台基座的设计,能使张力腿系统所受到的动力载荷最小化。

立柱与基座连为一体,分别坐落在基座顶面的四个边角上。

与单柱主体SeaStar TLP不同,MOSES TLP的主体设计仍然沿袭了传统TLP的四角柱结构,据该类平台的设计者Dr Picter Wybro介绍,立柱之间保持一定距离能够提供给平台上体更大支撑力,改善甲板的受力情况,从而减少上体的建造费用。

相关文档
最新文档